JP2703267B2 - Metal-hydrogen alkaline storage battery - Google Patents

Metal-hydrogen alkaline storage battery

Info

Publication number
JP2703267B2
JP2703267B2 JP63150788A JP15078888A JP2703267B2 JP 2703267 B2 JP2703267 B2 JP 2703267B2 JP 63150788 A JP63150788 A JP 63150788A JP 15078888 A JP15078888 A JP 15078888A JP 2703267 B2 JP2703267 B2 JP 2703267B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen
metal
storage battery
gasket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63150788A
Other languages
Japanese (ja)
Other versions
JPH01319245A (en
Inventor
孝直 松本
修弘 古川
健次 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63150788A priority Critical patent/JP2703267B2/en
Publication of JPH01319245A publication Critical patent/JPH01319245A/en
Application granted granted Critical
Publication of JP2703267B2 publication Critical patent/JP2703267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金よりなる負極と、金属酸化物
よりなる正極と、アルカリ電解液とが電池缶内に内蔵さ
れ、上記電池缶はガスケットにより封口される金属−水
素アルカリ蓄電池に関する。
The present invention relates to a negative electrode made of a hydrogen storage alloy, a positive electrode made of a metal oxide, and an alkaline electrolyte contained in a battery can. The present invention relates to a sealed metal-hydrogen alkaline storage battery.

従来の技術 従来からよく用いられている蓄電池としては、ニッケ
ル−カドミウム蓄電池の如きアルカリ蓄電池、或いは鉛
蓄電池などがある。ところが、近年、これらの電池より
軽量、高容量、且つ高エネルギー密度となる可能性を有
する水素吸蔵合金を用いた水素吸蔵電極を負極に備えた
金属−水素アルカリ蓄電池が注目されている。
2. Description of the Related Art Conventionally, storage batteries that are often used include an alkaline storage battery such as a nickel-cadmium storage battery and a lead storage battery. However, in recent years, a metal-hydrogen alkaline storage battery having a negative electrode equipped with a hydrogen storage electrode using a hydrogen storage alloy, which has a lighter weight, a higher capacity, and a higher energy density than these batteries, has attracted attention.

この種電池の負極に用いられる水素吸蔵合金として
は、例えば特公昭59−49671号公報に開示されているよ
うに、LaNi5やその改良である三元素系のLaNi4Co,LaNi4
Cu及びLaNi4.8Fe0.2等の合金が知られており、これら水
素吸蔵合金粉末と導電材粉末との混合物を耐電解液性の
粒子状結着剤によって電極支持体に固着させて水素吸蔵
電極とする方法(特公昭57−30273号公報)などによっ
て負極が製造されている。一方、正極としては、ニッケ
ル−カドミウム蓄電池に用いられる焼結式ニッケル極な
どが用いられている。また、セパレータとしてはナイロ
ン系不織布、ポリプロピレン系織布、ナイロン−ポリプ
ロピレン系不織布などが使用され、更にガス抜き弁(安
全弁)が併設され、且つガスケットにはナイロン系高分
子材料が使用されている。このように、上記金属−水素
アルカリ蓄電池は、負極を除きニッケル−カドミウム電
池と略同様の構成をとっている。
As the hydrogen storage alloy used for the negative electrode of this type of battery, for example, as disclosed in Japanese Patent Publication No. 59-49671, LaNi 5 or a three-element LaNi 4 Co, LaNi 4
Alloys such as Cu and LaNi 4.8 Fe 0.2 are known, and a mixture of the hydrogen storage alloy powder and the conductive material powder is fixed to an electrode support with an electrolyte-resistant particulate binder to form a hydrogen storage electrode. The negative electrode is manufactured by a method (Japanese Patent Publication No. 57-30273). On the other hand, as a positive electrode, a sintered nickel electrode used for a nickel-cadmium storage battery or the like is used. Further, a nylon-based nonwoven fabric, a polypropylene-based woven fabric, a nylon-polypropylene-based nonwoven fabric, or the like is used as a separator, a gas release valve (safety valve) is additionally provided, and a nylon-based polymer material is used for a gasket. Thus, the metal-hydrogen alkaline storage battery has substantially the same configuration as the nickel-cadmium battery except for the negative electrode.

発明が解決しようとする課題 しかしながら、上記構成の金属−水素アルカリ蓄電池
では、高温保存時の自己放電が大きく、また、高温トリ
クル充電を行うと電池容量が減少するという課題を有し
ていた。これは以下に示す理由によるものと考えられ
る。
Problems to be Solved by the Invention However, the metal-hydrogen alkaline storage battery having the above configuration has a problem that the self-discharge during high-temperature storage is large, and the battery capacity is reduced by performing high-temperature trickle charging. This is considered to be due to the following reason.

即ち、金属−水素アルカリ蓄電池は、ニッケル−カド
ミウム電池と異なり、電池缶内ガス雰囲気が、高圧水素
ガスリッチの雰囲気となっている。このため、蓄電池を
保存(時に高温保存)すると、負極に使用している水素
吸蔵合金の水素平衡圧力が高くなり、電池系内の水素分
圧が水素吸蔵合金の水素平衡圧力を常に維持するよう
に、負極から次々と水素ガスが放出される。この結果、
正極での水素消費速度が大きくなって、負極での自己放
電が加速される。加えて、ガスケットがナイロン系高分
子材料から成るため、電池缶内の高圧水素ガスがガスケ
ットを透過して大気中へ放出される。この結果、負極か
ら水素ガスが一層放出されることになり、負極の自己放
電が加速されることとなる。
That is, the metal-hydrogen alkaline storage battery differs from the nickel-cadmium battery in that the gas atmosphere in the battery can is a high-pressure hydrogen gas-rich atmosphere. Therefore, when the storage battery is stored (sometimes stored at high temperature), the hydrogen equilibrium pressure of the hydrogen storage alloy used for the negative electrode increases, and the partial pressure of hydrogen in the battery system always maintains the hydrogen equilibrium pressure of the hydrogen storage alloy. Then, hydrogen gas is successively released from the negative electrode. As a result,
The hydrogen consumption rate at the positive electrode increases, and self-discharge at the negative electrode is accelerated. In addition, since the gasket is made of a nylon-based polymer material, high-pressure hydrogen gas in the battery can permeates the gasket and is released to the atmosphere. As a result, hydrogen gas is further released from the negative electrode, and self-discharge of the negative electrode is accelerated.

また、高温トリクル充電時にも、水素吸蔵合金の水素
平衡圧力が高くなるため、電池缶内の水素分圧が高くな
る。このため、電池缶内の水素ガスが電池のパッキング
を透過して大気中へ放出され、負極が充電不良となる。
したがって、本来、金属−水素アルカリ蓄電池は正極の
容量律速(正極容量>負極容量)で構成してあるにもか
かわらず、負極の容量律速に転じる。この結果、高温ト
リクル充電特性が劣化する等の課題を有していた。
In addition, even during high-temperature trickle charging, the hydrogen equilibrium pressure of the hydrogen storage alloy increases, so that the hydrogen partial pressure in the battery can increases. For this reason, the hydrogen gas in the battery can permeates through the battery packing and is released into the atmosphere, resulting in poor charging of the negative electrode.
Therefore, although the metal-hydrogen alkaline storage battery is originally constituted by the capacity control of the positive electrode (positive electrode capacity> negative electrode capacity), it shifts to the capacity control of the negative electrode. As a result, there has been a problem that the high-temperature trickle charging characteristics are deteriorated.

そこで本発明は上記の課題を考慮してなされたもので
あって、電池系内の水素ガスが電池系外へ放出されるの
を抑制することにより、水素吸蔵電極を負極に備えたア
ルカリ蓄電池の保存特性、及び高温トリクル充電特性を
向上させることを目的とするものである。
Therefore, the present invention has been made in consideration of the above problems, and by suppressing the release of hydrogen gas in the battery system to the outside of the battery system, an alkaline storage battery having a hydrogen storage electrode on the negative electrode. An object of the present invention is to improve storage characteristics and high-temperature trickle charging characteristics.

課題を解決するための手段 本発明は上記目的を達成するために、水素吸蔵合金よ
りなる負極と、金属酸化物よりなる正極と、アルカリ電
解液とが電池缶内に内蔵され、上記電池缶はガスケット
により封口される金属−水素アルカリ蓄電池において、
前記ガスケットは水素ガス透過量がナイロン6より小さ
い高分子材料から成ることを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention has a negative electrode made of a hydrogen storage alloy, a positive electrode made of a metal oxide, and an alkaline electrolyte solution incorporated in a battery can. In a metal-hydrogen alkaline storage battery sealed by a gasket,
The gasket is made of a polymer material having a hydrogen gas permeability smaller than nylon 6.

また、本発明は、水素吸蔵合金よりなる負極と、金属
酸化物よりなる正極と、アルカリ電解液とが電池缶内に
内蔵され、上記電池缶はガスケットにより封口される金
属−水素アルカリ蓄電池において、前記ガスケットの表
面は、水素ガス透過量がナイロン6より小さい高分子材
料にて被覆されていることを特徴とする。
The present invention also provides a metal-hydrogen alkaline storage battery in which a negative electrode made of a hydrogen storage alloy, a positive electrode made of a metal oxide, and an alkaline electrolyte are built in a battery can, and the battery can is sealed with a gasket. The surface of the gasket is coated with a polymer material having a hydrogen gas permeation amount smaller than that of nylon 6.

作用 上記の構成であれば、ガスケットは、水素ガス透過量
がナイロン6より小さい高分子材料からなるか、或はガ
スケットの表面は、水素ガス透過量がナイロン6より小
さい高分子材料にて被覆されているので、電池缶内の高
圧水素ガスがガスケットを透過して大気中に放出される
のを抑制することができる。これにより、負極の自己放
電を抑制することができ、且つ負極が充電不良となるこ
ともない。
With the above configuration, the gasket is made of a polymer material having a hydrogen gas permeation amount smaller than nylon 6, or the surface of the gasket is coated with a polymer material having a hydrogen gas permeation amount smaller than nylon 6. Therefore, it is possible to suppress the high-pressure hydrogen gas in the battery can from being transmitted through the gasket and released into the atmosphere. As a result, self-discharge of the negative electrode can be suppressed, and the negative electrode does not have poor charging.

第1実施例 (実施例1) 本発明の一実施例を、第1図に基づいて、以下に説明
する。
First Embodiment (Embodiment 1) An embodiment of the present invention will be described below with reference to FIG.

第1図は1.2Ahのニッケル−水素アルカリ蓄電池の断
面図であり、公知の焼結式ニッケルから成る正極1と、
水素吸蔵合金から成る負極2と、これら正負両極1・2
間に介挿された耐アルカリ性のセパレータ3とから成る
電極群4は渦巻状に巻回されている。この電極群4は負
極端子兼用の電池間5内に収納され、この電池缶5と上
記負極2とは負極リード6により接続されている。一
方、上記電池缶5の上部開口にはセロハンから成るガス
ケット6を介して封口体7が装着されており、この封口
体7の内部にはコイルスプリング8が設けられている。
このコイルスプリング8は電池内部の内圧が異常上昇し
たときに矢印A方向に押圧されて内部のガスが大気中に
開放されるように構成されている。また、上記封口体7
と前記正極1とは正極用導電タブ9にて接続されてい
る。
FIG. 1 is a cross-sectional view of a 1.2 Ah nickel-hydrogen alkaline storage battery, and a positive electrode 1 made of a known sintered nickel,
A negative electrode 2 made of a hydrogen storage alloy;
The electrode group 4 including the alkali-resistant separator 3 interposed therebetween is spirally wound. The electrode group 4 is housed in a battery space 5 also serving as a negative electrode terminal, and the battery can 5 and the negative electrode 2 are connected by a negative electrode lead 6. On the other hand, a sealing body 7 is attached to the upper opening of the battery can 5 via a gasket 6 made of cellophane. A coil spring 8 is provided inside the sealing body 7.
The coil spring 8 is configured such that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A to release the gas inside to the atmosphere. In addition, the sealing body 7
And the positive electrode 1 are connected by a positive electrode conductive tab 9.

上記の構成の金属−水素アルカリ蓄電池は以下のよう
にして作製される。
The metal-hydrogen alkaline storage battery having the above configuration is manufactured as follows.

先ず初めに、水素吸蔵能力を有するLaNi5を機械的に
粉砕して微粉化する。次に、このLaNi5粉末に、小さな
せん断力で粒子が簡単に繊維化し塑性変形するポリテト
ラフルオロエチレン粉末を、LaNi5粉末の重量に対し1
〜5%添加して混合機で均一混合すると共に、上記ポリ
テトラフルオロエチレンを繊維化した後、この混合物に
水を加えてペースト状とする。次いで、このペーストを
ニケッルメッキを施したパンチグメタルからなる集電体
に貼り付け、これによって水素収蔵合金から成る負極2
を作製する。この後、上記負極2と正極1との間にセパ
レータ3を介挿し、これらを巻回して渦巻状の電極体4
を作製する。しかる後、この電極体4を外装缶5に挿入
した後、電解液を所定量注入する。次に、封口体7を備
えセロハンから成るガスケット6を用いて電池の封口を
行って、ニッケル−水素アルカリ蓄電池を得た。
First, LaNi 5 having a hydrogen storage capacity is mechanically pulverized and pulverized. Then, the LaNi 5 powder, polytetrafluoroethylene powder particles with a small shear force is easily fibrillated plastic deformation, relative to the weight of LaNi 5 powder 1
After adding about 5% and uniformly mixing with a mixer and fibrillating the polytetrafluoroethylene, water is added to the mixture to form a paste. Next, this paste was attached to a current collector made of punched metal plated with nickel, thereby forming a negative electrode 2 made of a hydrogen storage alloy.
Is prepared. Thereafter, a separator 3 is inserted between the negative electrode 2 and the positive electrode 1, and these are wound to form a spiral electrode body 4.
Is prepared. Thereafter, after inserting the electrode body 4 into the outer can 5, a predetermined amount of an electrolyte is injected. Next, the battery was sealed using a gasket 6 made of cellophane provided with a sealing body 7 to obtain a nickel-hydrogen alkaline storage battery.

ここで、上記セロハンの水素ガス透過量はASTM(Amer
ican Society Mechanical Engineers)により測定する
と1cm3/100cm2/mil厚さ/24hr/atm at25℃である。この
ようにして作製した電池を、以下(A1)電池と称する。
Here, the hydrogen gas permeation amount of the above cellophane is ASTM (Amer
It is 1cm 3 / 100cm 2 / mil thickness / 24hr / atm at 25 ° C when measured by ican Society Mechanical Engineers). The battery fabricated in this manner is hereinafter referred to as (A 1 ) battery.

(実施例−2〜実施例−5) 下記第1表に示す材料でガスケット6を作製した以外
は上記実施例−1と同様にして電池を作製した。このよ
うにして作製した電池を、以下(A2)電池〜(A5)電池
と称する。
(Example-2 to Example-5) A battery was manufactured in the same manner as in Example 1 except that the gasket 6 was manufactured using the materials shown in Table 1 below. Thus the battery thus fabricated is hereinafter referred to as (A 2) batteries ~ (A 5) batteries.

尚、水素ガス透過量は上記と同様ASTMにて測定した。 The hydrogen gas permeation amount was measured by ASTM as described above.

(比較例−1〜比較例8) 下記第2表に示す材料でガスケット6を作製した以外
は上記実施例−1と同様にして電池を作製した。このよ
うにして作製した電池を、以下(B1)電池〜(B8)電池
と称する。
(Comparative Example-1 to Comparative Example 8) A battery was manufactured in the same manner as in Example 1 except that the gasket 6 was manufactured using the materials shown in Table 2 below. The batteries fabricated in this manner are hereinafter referred to as batteries (B 1 ) to (B 8 ).

尚、水素ガス透過量は上記と同様ASTMにて測定した。 The hydrogen gas permeation amount was measured by ASTM as described above.

(実験−1) 上記本発明の(A1)電池〜(A5)電池及び比較例の
(B1)電池〜(B8)電池を、120mAの電流で16時間充電
し、240mAの電流で電池電圧が1Vになるまで放電すると
いう充放電サイクルを5回繰り返した後、60℃の雰囲気
中で5日間保存し、電池容量を比較した。この結果を第
2図に示す。
(Experiment-1) The batteries (A 1 ) to (A 5 ) of the present invention and the batteries (B 1 ) to (B 8 ) of the comparative example were charged at a current of 120 mA for 16 hours, and charged at a current of 240 mA. After repeating the charge and discharge cycle of discharging until the battery voltage reached 1 V five times, the battery was stored in an atmosphere at 60 ° C. for 5 days, and the battery capacities were compared. The result is shown in FIG.

第2図より明らかなように、水素ガス透過量が少ない
本発明の(A1)電池〜(A5)電池では、電池容量の低下
が少ないのに対して、水素ガス透過量の多い従来例の
(B1)電池〜(B8)電池では電池容量の低下が多くなる
ことが認められる。
As is clear from FIG. 2, in the batteries (A 1 ) to (A 5 ) of the present invention, in which the amount of hydrogen gas permeation is small, while the battery capacity is small, the hydrogen gas permeation amount is large. It is recognized that the batteries (B 1 ) to (B 8 ) have a large decrease in battery capacity.

(実験−2) 上記本発明の(A1)電池〜(A5)電池及び比較例の
(B1)電池〜(B8)電池を、60℃雰囲気下に置き、24mA
で80時間充電した後、電池容量を比較したので、この結
果を第3図に示す。
(Experiment-2) The batteries (A 1 ) to (A 5 ) of the present invention and the batteries (B 1 ) to (B 8 ) of the comparative example were placed in a 60 ° C. atmosphere at 24 mA.
After charging for 80 hours, the battery capacities were compared, and the results are shown in FIG.

第3図より明らかなように、水素ガス透過量が少ない
本発明の(A1)電池〜(A5)電池では、電池容量の低下
が少ないのに対して、水素ガス透過量の多い従来例の
(B1)電池〜(B8)電池では電池容量の低下が多くなる
ことが認められる。
As is clear from FIG. 3, in the batteries (A 1 ) to (A 5 ) of the present invention, in which the amount of hydrogen gas permeated is small, while the battery capacity is small, the conventional example has a large amount of hydrogen gas permeated. It is recognized that the batteries (B 1 ) to (B 8 ) have a large decrease in battery capacity.

上記実験結果より、ガスケットに用いる高分子材料と
しては、ASTMによる水素透過量がナイロン6より小さい
材料が好ましいことが伺える。
From the above experimental results, it is suggested that as the polymer material used for the gasket, a material whose hydrogen permeation amount by ASTM is smaller than nylon 6 is preferable.

第2実施例 (実施例−1) 従来のアルカリ蓄電池で使用されてきたナイロン6の
表面をセロハンで被覆したガスケット6を用いた以外は
上記第1実施例の実施例−1と同様にして電池を作製し
た。このようにして作製した電池を、以下(C1)電池と
称する。
Second Example (Example-1) A battery was manufactured in the same manner as in Example-1 of the first example except that a gasket 6 in which the surface of nylon 6 used in a conventional alkaline storage battery was coated with cellophane was used. Was prepared. The battery fabricated in this manner is hereinafter referred to as a (C 1 ) battery.

(実施例−2、実施例−3) ナイロン6の表面をポリ塩化ビニル又はポリ弗化ビニ
ルで被覆したガスケット6を用いた以外は、上記第1実
施例の実施例−1と同様にして電池を作製した。このよ
うにして作製した電池を、以下(C2)電池、(C3)電池
と称する。
(Examples 2 and 3) A battery was manufactured in the same manner as in Example 1 of the first embodiment except that a gasket 6 in which the surface of nylon 6 was coated with polyvinyl chloride or polyvinyl fluoride was used. Was prepared. The batteries fabricated in this manner are hereinafter referred to as (C 2 ) batteries and (C 3 ) batteries.

(比較例−1〜比較例−5) ナイロン6の表面をポリイミド、ナイロン6・6、ナ
イロン11或いはポリカーボネートで被覆したガスケット
6を用いるか、又はナイロン6の表面を被覆しないガス
ケット6を用いた以外は、上記第1実施例の実施例−1
と同様にして電池を作製した。このようにして作製した
電池を、以下(D1)電池〜(D5)電池と称する。
(Comparative Example-1 to Comparative Example-5) Except for using a gasket 6 in which the surface of nylon 6 is coated with polyimide, nylon 6.6, nylon 11, or polycarbonate, or using a gasket 6 in which the surface of nylon 6 is not coated Is the first embodiment of the first embodiment.
In the same manner as in the above, a battery was produced. Thus the battery produced, hereinafter referred to as (D 1) cell ~ (D 5) batteries.

(実験) 上記本発明の(C1)電池〜(C3)電池及び比較例の
(D1)電池〜(D5)電池を、上記第1実施例の実験1と
同様の条件で保存試験を行ったので、その結果を下記第
3表に示す。
(Experiment) A storage test was performed on the (C 1 ) battery to (C 3 ) battery of the present invention and the (D 1 ) battery to (D 5 ) battery of the comparative example under the same conditions as in Experiment 1 of the first embodiment. The results are shown in Table 3 below.

上記第3表より明らかなように、水素ガス透過量が少
ない本発明の(C1)電池〜(C3)電池では、電池容量が
40〜55%であり、電池容量の低下が少ないのに対して、
水素ガス透過量の多い従来例の(D1)電池〜(D5)電池
では電池容量が33〜35%であり、電池容量の低下が多く
なることが認められる。
As is clear from Table 3 above, in the (C 1 ) battery to (C 3 ) battery of the present invention having a small hydrogen gas permeation amount,
40-55%, while the battery capacity is low,
In the conventional batteries (D 1 ) to (D 5 ) having a large amount of hydrogen gas permeation, the battery capacity is 33 to 35%, and it is recognized that the battery capacity is greatly reduced.

上記実験結果より、ガスケットの表面被覆に使用する
高分子材料としては、ASTMによる水素透過量がナイロン
6より小さい材料が好ましいことが伺える。
From the above experimental results, it can be seen that as a polymer material used for coating the surface of the gasket, a material having a hydrogen permeation amount according to ASTM smaller than nylon 6 is preferable.

上記第2実施例の如く、ナイロン6の表面をナイロン
6より水素ガス透過量の少ない高分子材料で被覆すれ
ば、上記第1実施例と同様の効果を奏する他、成型性、
量産系等の加工技術がより優れるという効果を奏する。
If the surface of nylon 6 is coated with a polymer material having a smaller amount of hydrogen gas permeation than nylon 6, as in the second embodiment, the same effects as those of the first embodiment can be obtained, as well as the moldability.
This produces an effect that the processing technology for mass production and the like is more excellent.

尚、上記第1実施例及び第2実施例においては水素吸
蔵合金としてLaNi5を用いたが、これに限定するもので
はなく、いかなる種類の水素吸蔵合金であっても本発明
を適用できることは勿論である。
In the first and second embodiments, LaNi 5 was used as the hydrogen storage alloy. However, the present invention is not limited to this, and the present invention can be applied to any type of hydrogen storage alloy. It is.

また、公知であるニッケル−カドミウム電池において
各種高分子材料によるガスケットを使用し、保存特性及
び高温トリクル充電特性を比較したが、材料による差は
小さかった。これは、ニッケル−カドミウム電池では、
通常の使用状態において、電池内に高圧の水素ガスが多
量に存在することはほとんどないことに起因するものと
考えられる。
In addition, the storage characteristics and the high-temperature trickle charge characteristics were compared using a gasket made of various polymer materials in a known nickel-cadmium battery, but the difference between the materials was small. This is for nickel-cadmium batteries.
This is considered to be due to the fact that a large amount of high-pressure hydrogen gas hardly exists in the battery in a normal use state.

発明の効果 以上のように本発明によれば、ガスケットは、水素ガ
ス透過量がナイロン6より小さい高分子材料からなる、
或はガスケットの表面は、水素ガス透過量がナイロン6
より小さい高分子材料で被覆されているので、電池缶内
の高圧水素ガスがガスケットを透過して大気中に放出さ
れるのを抑制することができる。これにより、負極の自
己放電を抑制することができ、且つ負極が充電不良とな
ることもないので、金属−水素アルカリ蓄電池の保存特
性及び高温トリクル充電特性が大幅に改善される。この
結果、金属−水素アルカリ蓄電池の性能を飛躍的に向上
させることができるという効果を奏する。
Effects of the Invention As described above, according to the present invention, the gasket is made of a polymer material having a hydrogen gas permeation amount smaller than nylon 6,
Alternatively, the surface of the gasket has a hydrogen gas permeation amount of nylon 6
Since the battery is covered with the smaller polymer material, the high-pressure hydrogen gas in the battery can is prevented from permeating the gasket and being released into the atmosphere. Thereby, the self-discharge of the negative electrode can be suppressed, and the negative electrode does not suffer from poor charging, so that the storage characteristics and the high-temperature trickle charging characteristics of the metal-hydrogen alkaline storage battery are significantly improved. As a result, there is an effect that the performance of the metal-hydrogen alkaline storage battery can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の金属−水素アルカリ蓄電池の断面図、
第2図は本発明の(A1)電池〜(A5)電池及び従来例の
(B1)電池〜(B8)電池の保存後における電池容量と水
素透過量との関係を示すグラフ、第3図は(A1)電池〜
(A5)電池及び従来例の(B1)電池〜(B8)電池の高温
トリクル充電後の電池容量と水素透過量との関係を示す
グラフである。 1……正極、2……負極、3……セパレータ、5……電
池缶、6……ガスケット。
FIG. 1 is a sectional view of a metal-hydrogen alkaline storage battery of the present invention,
FIG. 2 is a graph showing the relationship between the battery capacity and the hydrogen permeation amount after storage of the (A 1 ) to (A 5 ) batteries of the present invention and the (B 1 ) to (B 8 ) batteries of the conventional example; Figure 3 is (A 1) cells -
(A 5) is a battery and a graph showing the relationship between the (B 1) cell ~ (B 8) the battery capacity and the hydrogen permeation amount after hot trickle charging of the battery of the conventional example. DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 5 ... Battery can, 6 ... Gasket.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−131472(JP,A) 特開 昭59−9852(JP,A) 特開 昭55−25912(JP,A) 特開 昭53−43828(JP,A) 特開 昭53−104820(JP,A) 実公 昭47−25869(JP,Y1) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-131472 (JP, A) JP-A-59-9852 (JP, A) JP-A-55-25912 (JP, A) JP-A 53-131 43828 (JP, A) JP-A-53-104820 (JP, A) Jikken 47-25869 (JP, Y1)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金よりなる負極と、金属酸化物
よりなる正極と、アルカリ電解液とが電池缶内に内蔵さ
れ、上記電池缶はガスケットにより封口される金属−水
素アルカリ蓄電池において、 前記ガスケットは、 水素ガス透過量がナイロン6より小さい高分子材料から
成ることを特徴とする金属−水素アルカリ蓄電池。
1. A metal-hydrogen alkaline storage battery in which a negative electrode made of a hydrogen storage alloy, a positive electrode made of a metal oxide, and an alkaline electrolyte are built in a battery can, and the battery can is sealed with a gasket. A metal-hydrogen alkaline storage battery characterized in that the gasket is made of a polymer material having a hydrogen gas permeability smaller than nylon 6.
【請求項2】水素吸蔵合金よりなる負極と、金属酸化物
よりなる正極と、アルカリ電解液とが電池缶内に内蔵さ
れ、上記電池缶はガスケットにより封口される金属−水
素アルカリ蓄電池において、 前記ガスケットの表面は、 水素ガス透過量がナイロン6より小さい高分子材料にて
被覆されていることを特徴とする金属−水素アルカリ蓄
電池。
2. A metal-hydrogen alkaline storage battery in which a negative electrode made of a hydrogen storage alloy, a positive electrode made of a metal oxide, and an alkaline electrolyte are built in a battery can, and the battery can is sealed with a gasket. A metal-hydrogen alkaline storage battery, characterized in that the surface of the gasket is coated with a polymer material having a hydrogen gas permeability smaller than nylon 6.
【請求項3】前記高分子材料は、 ASTM(American Society Mechanical Engineers)に
より測定すると、水素ガス透過量が100cm3/100cm2/mil
厚さ/24hr/atm at25℃未満であることを特徴とする請
求項1又は請求項2記載の金属−水素アルカリ蓄電池。
Wherein the polymeric material, ASTM as measured by (American Society Mechanical Engineers), the hydrogen gas permeation amount was 100cm 3 / 100cm 2 / mil
The metal-hydrogen alkaline storage battery according to claim 1 or 2, wherein the thickness is less than 24 hr / atm at 25 ° C.
【請求項4】前記高分子材料は、 セロハン、ポリ塩化ビニル、塩化ビニル、塩化ビニリデ
ン共重合体、ポリ弗化ビニル、ポリエステル、或いはこ
れら高分子化合物の官能基を他の官能基で置換した高分
子化合物からなる群から選択されることを特徴とする請
求項1又は請求項2記載の金属−水素アルカリ蓄電池。
4. The polymer material may be cellophane, polyvinyl chloride, vinyl chloride, vinylidene chloride copolymer, polyvinyl fluoride, polyester, or a polymer obtained by substituting a functional group of these polymer compounds with another functional group. The metal-hydrogen alkaline storage battery according to claim 1, wherein the storage battery is selected from the group consisting of molecular compounds.
JP63150788A 1988-06-17 1988-06-17 Metal-hydrogen alkaline storage battery Expired - Fee Related JP2703267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150788A JP2703267B2 (en) 1988-06-17 1988-06-17 Metal-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150788A JP2703267B2 (en) 1988-06-17 1988-06-17 Metal-hydrogen alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH01319245A JPH01319245A (en) 1989-12-25
JP2703267B2 true JP2703267B2 (en) 1998-01-26

Family

ID=15504447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150788A Expired - Fee Related JP2703267B2 (en) 1988-06-17 1988-06-17 Metal-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2703267B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725869U (en) * 1971-04-19 1972-11-22
US4110518A (en) * 1976-10-01 1978-08-29 P.R. Mallory & Co. Inc. Fluorocarbon seal
JPS53104820A (en) * 1977-02-23 1978-09-12 Hitachi Maxell Gasket for battery
JPS5525912A (en) * 1978-08-11 1980-02-25 Seiko Instr & Electronics Ltd Button type alkali cell
JPS599852A (en) * 1982-07-07 1984-01-19 Hitachi Maxell Ltd Alkaline battery
JPS63131472A (en) * 1986-11-19 1988-06-03 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery

Also Published As

Publication number Publication date
JPH01319245A (en) 1989-12-25

Similar Documents

Publication Publication Date Title
EP0723305B1 (en) Nickel positive electrode for use in alkaline storage battery.
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
EP0477461A2 (en) Nickel/hydrogen storage battery and method of manufacturing the same
US5132177A (en) Alkaline storage cell
JPH11162505A (en) Nickel-hydrogen battery
EP2690690B1 (en) Nickel-metal hydride secondary cell and negative electrode therefor
US6042753A (en) Active materials for the positive electrode in alkaline storage batteries
US6348284B1 (en) Non-sintered nickel electrode for a secondary electro-chemical cell having an alkaline electrolyte
EP0901179A2 (en) Alkaline storage battery
JP2604282B2 (en) Alkaline storage battery
JP2703267B2 (en) Metal-hydrogen alkaline storage battery
US5108851A (en) Metal-hydrogen alkaline storage cell
US6197448B1 (en) Hydrogen storage alloy
JPH11162468A (en) Alkaline secondary battery
US3347707A (en) Charged secondary cell
JP2001118597A (en) Alkaline secondary cell
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP2001223000A (en) Alkaline secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH0810596B2 (en) Metal oxide / hydrogen battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0517659B2 (en)
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees