JP2000353632A - Magnetic field application apparatus - Google Patents

Magnetic field application apparatus

Info

Publication number
JP2000353632A
JP2000353632A JP16364599A JP16364599A JP2000353632A JP 2000353632 A JP2000353632 A JP 2000353632A JP 16364599 A JP16364599 A JP 16364599A JP 16364599 A JP16364599 A JP 16364599A JP 2000353632 A JP2000353632 A JP 2000353632A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
powder
superconducting coil
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16364599A
Other languages
Japanese (ja)
Inventor
Shoichi Yokoyama
彰一 横山
Seiji Endo
政治 遠藤
Yuji Kaneko
裕治 金子
Atsushi Ogawa
篤史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Sumitomo Special Metals Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP16364599A priority Critical patent/JP2000353632A/en
Publication of JP2000353632A publication Critical patent/JP2000353632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To mass-produce superior magnetic molded elements with reduced electric power by relative moving a receptacle containing magnetic anisotropic powder into the inside of a producing part which causes magnetic field gradient to be produced a superconducting coil. SOLUTION: This magnetic field application apparatus is provided with a punch rod 53, which vertically extends and whose upper end is connected to a mold support portion 51, and a mold support portion 51 in disc form which supports the lower edge of a mold 3 as receptacle containing magnetic powder 2. The lower end of the punch rod 53 is connected to the lower ram on the press side and the mold 3 is put into and taken out from a steady magnetic field generating portion 4 by vertically moving the punch rod 53. By moving the magnetic power 2 from the place far from a superconducting coil 7 toward its central part, since the grains of the anisotropic magnetic powder 2 pass through the points where the magnetic field gradient is large, they are placed in the central part of the superconducting coil 7, while being oriented along the lines of magnetic flux. The magnetic powder 2 is pressed by upper and lower punches 6 and 5 in the center of the coil where they are oriented and is fixed to form a magnetic molded element, in such a way that the orientation of the magnetic powder is not lost. The magnetic molded element is moved in the magnetic field and is taken out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導磁石などの
定常磁場発生部に磁性粉体を導入して応用するもの、例
えば永久磁石の粉末成形装置などの磁場応用装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for applying a magnetic powder to a stationary magnetic field generating section such as a superconducting magnet, for example, to a magnetic field application apparatus such as a permanent magnet powder molding apparatus.

【0002】[0002]

【従来の技術】図4は、特開平9−312229号公報
に示された従来の磁場応用装置の断面図である。この磁
場応用装置は永久磁石の粉末成形に適用したものであ
る。永久磁石の成形は、金型101内に保持された磁性
粉体102を上,下ベッド103,104に備えられた
上,下パンチ105,106によって圧縮成形すること
によってなされる。この磁性粉体102の個々の粒は磁
気異方性を持つため、永久磁石の特性を向上させるため
には磁性粉体102の個々の粒の異方性を揃える、すな
わち配向させる必要がある。この磁性粉体102を配向
させるために、従来から金型101を取り囲むように電
磁コイルによって構成される磁場発生部107が設けら
れていた。
2. Description of the Related Art FIG. 4 is a sectional view of a conventional magnetic field application apparatus disclosed in Japanese Patent Application Laid-Open No. 9-313229. This magnetic field application apparatus is applied to powder molding of a permanent magnet. The permanent magnet is formed by compression molding the magnetic powder 102 held in the mold 101 by the upper and lower punches 105 and 106 provided on the upper and lower beds 103 and 104. Since the individual grains of the magnetic powder 102 have magnetic anisotropy, it is necessary to make the anisotropy of the individual grains of the magnetic powder 102 uniform, that is, to orient them in order to improve the properties of the permanent magnet. In order to orient the magnetic powder 102, a magnetic field generating unit 107 constituted by an electromagnetic coil is conventionally provided so as to surround the mold 101.

【0003】すなわち、金型101に磁性粉体102を
導入し、磁性粉体102が磁場発生部107の中心部付
近に設置された状態で約1.5Tの磁場を発生させ、磁
性粉体102を磁束線に沿って配向させる。その上で、
下パンチ105,106で圧縮成形し、成形が終了した
段階で磁場を低下させ磁性成形体を取り出していた。
That is, a magnetic powder 102 is introduced into a mold 101, and a magnetic field of about 1.5 T is generated in a state where the magnetic powder 102 is installed near the center of a magnetic field generating unit 107. Are oriented along the magnetic flux lines. Moreover,
The compression molding was performed by the lower punches 105 and 106, and at the stage when the molding was completed, the magnetic field was reduced and the magnetic molded body was taken out.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の磁場応
用装置の場合には、磁性粉体102を磁場発生部107
の所定の位置に設置した後に磁場を印加していたので、
磁性粉体102に加わる電磁力が小さく、磁性粉体10
2の配向性を向上させるには限界があった。
However, in the case of a conventional magnetic field application apparatus, the magnetic powder 102 is transferred to the magnetic field generator 107.
Since the magnetic field was applied after installing at the predetermined position of
The electromagnetic force applied to the magnetic powder 102 is small,
There was a limit in improving the orientation of No. 2.

【0005】また、一般的に磁場発生部107には常電
導コイルが用いられており、磁場発生に係わる励磁時間
を要する。また励磁電源も高電圧,高電流型が必要であ
り、電力消費が大きく発生磁場も2T程度が限界であっ
た。また、励磁時間を無くするために定常磁界を発生さ
せることも考えられるが、電磁力が作用している状態で
成形された磁性成形体を取り外すことが困難である。
Generally, a normal conducting coil is used for the magnetic field generating unit 107, and it takes an exciting time for generating a magnetic field. Also, a high voltage and high current type excitation power source is required, and power consumption is large, and the generated magnetic field is limited to about 2T. It is also conceivable to generate a steady magnetic field in order to eliminate the excitation time, but it is difficult to remove the magnetic compact formed while the electromagnetic force is acting.

【0006】本発明は、上記のような課題を解決するた
めになされたもので、磁気特性の良い磁性成形体を省電
力で量産できる磁場応用装置を得ることを目的としてい
る。また、他の目的とするところは、磁場発生部から容
易に磁性成形体を取り外すことができる磁場応用装置を
得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has as its object to provide a magnetic field application apparatus capable of mass-producing a magnetic compact having good magnetic properties with low power consumption. Another object of the present invention is to provide a magnetic field application device capable of easily removing a magnetic molded body from a magnetic field generating unit.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明は、磁気異方性を有する磁性粉
体を収納する容器と、超電導コイルにより磁場勾配を発
生させる磁場発生部と、前記容器を前記磁場発生部内部
に相対移動させる移動機構とを備えたものである。
In order to achieve the above object, the invention according to claim 1 is directed to a container for storing magnetic powder having magnetic anisotropy, and a magnetic field generation for generating a magnetic field gradient by a superconducting coil. And a moving mechanism for relatively moving the container into the magnetic field generating unit.

【0008】また、請求項2に係る発明は、磁場発生部
内部で配向された容器内の磁性粉体を押し固めるパンチ
を備えているものである。
[0008] The invention according to claim 2 is provided with a punch for pressing the magnetic powder in the container oriented inside the magnetic field generating unit.

【0009】また、請求項3に係る発明は、超電導コイ
ルにより磁場勾配を発生させる定常磁場発生部と、この
定常磁場発生部の周囲に設けられた磁気シールドと、前
記定常磁場発生部の内部に配置された磁性を有する磁性
成形体を定常磁場発生部内部から磁気シールドの外に移
動させる移動機構とを備えたものである。
According to a third aspect of the present invention, there is provided a stationary magnetic field generating section for generating a magnetic field gradient by a superconducting coil, a magnetic shield provided around the stationary magnetic field generating section, and A moving mechanism for moving the placed magnetic molded body having magnetism from inside the stationary magnetic field generating section to outside the magnetic shield.

【0010】また、請求項4に係る発明は、磁気異方性
を有する磁性粉体を収納する容器と、磁場勾配を発生さ
せるとともに超電導コイルを有する定常磁場発生部と、
この定常磁場発生部の周囲に設けられた磁気シールド
と、前記定常磁場発生部内部で前記容器内の磁性粉体を
押し固めて磁性成形体を成形するパンチと、前記容器を
前記定常磁場発生部内部に相対移動させると共に前記磁
性成形体を定常磁場発生部内部から磁気シールドの外に
移動させる移動機構とを備えたものである。
According to a fourth aspect of the present invention, there is provided a container for storing a magnetic powder having magnetic anisotropy, a stationary magnetic field generating section having a superconducting coil while generating a magnetic field gradient,
A magnetic shield provided around the stationary magnetic field generating unit, a punch for compacting a magnetic powder in the container inside the stationary magnetic field generating unit to form a magnetic molded body, and And a moving mechanism for relatively moving the magnetic molded body from inside the stationary magnetic field generating unit to outside the magnetic shield.

【0011】また、請求項5に係る発明は、磁気シール
ドに磁性成形体を脱磁する脱磁用コイルを配置したもの
である。
Further, in the invention according to claim 5, a demagnetizing coil for demagnetizing the magnetic molded body is arranged on the magnetic shield.

【0012】[0012]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて説明する。 実施の形態1.図1は、本発明の実施の形態1に係る磁
場応用装置を示している。この実施の形態は、従来例と
同様に、磁場応用装置を永久磁石の粉末成形装置に適用
したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. Embodiment 1 FIG. FIG. 1 shows a magnetic field application apparatus according to Embodiment 1 of the present invention. In this embodiment, as in the conventional example, a magnetic field application device is applied to a permanent magnet powder molding device.

【0013】すなわち、この磁場応用装置1は、磁化の
異方性を有する磁性粉体2を収納する容器としての金型
3と、励磁時間が無しで定常磁場勾配を発生させる定常
磁場発生部4と、金型3を支持して定常磁場発生部4内
部へ前記磁場勾配を通して移動させる移動機構を構成す
る下パンチ5とを備えている。また、金型3には磁性粉
体2が充填される空間部31が形成されており、この空
間部31内の磁性粉体2を上下から圧縮して固めるパン
チとして、上記下パンチ5と、この下パンチ5と対向す
る上パンチ6を備えている。上パンチ6は図示されてい
ないプレスの上ラムによって駆動され、下パンチ5は図
示されていないプレスの下ラムあるいはプレスに設けら
れる他の駆動機構によって駆動される。
That is, the magnetic field application apparatus 1 comprises a mold 3 as a container for storing a magnetic powder 2 having anisotropy of magnetization, and a stationary magnetic field generator 4 for generating a stationary magnetic field gradient without excitation time. And a lower punch 5 that constitutes a moving mechanism that supports the mold 3 and moves the inside of the stationary magnetic field generator 4 through the magnetic field gradient. The mold 3 has a space 31 filled with the magnetic powder 2. The lower punch 5 is used as a punch for compressing and solidifying the magnetic powder 2 in the space 31 from above and below. An upper punch 6 facing the lower punch 5 is provided. The upper punch 6 is driven by an upper ram (not shown) of the press, and the lower punch 5 is driven by a lower ram (not shown) or another drive mechanism provided on the press.

【0014】下パンチ5は、上記金型3の下端面を支持
する円板状の金型支持部51と、金型3の空間部31の
下端開口部に挿入され金型支持部51上面に載置される
円板状の下パンチチップ52と、上下方向に延びて上端
が金型支持部51に接続されたパンチロッド53とを備
えている。このパンチロッド53の下端は図示しないプ
レス側の下ラムあるいは他の駆動装置に接続され、パン
チロッド53を上下方向に移動することによって、金型
3を定常磁場発生部4内部に出し入れするようになって
いる。この意味で、下パンチ5のパンチロッド53およ
び金型支持部51が移動機構を構成する。もっとも、定
常磁場発生部4を移動させて金型3を定常磁場発生部4
内部に出し入れするようにしてもよい。その場合には、
定常磁場発生部4を移動させる移動機構を別途設ければ
よい。
The lower punch 5 has a disk-shaped mold support portion 51 for supporting the lower end surface of the mold 3, and is inserted into the lower end opening of the space 31 of the mold 3 and is provided on the upper surface of the mold support portion 51. It has a disc-shaped lower punch tip 52 to be mounted, and a punch rod 53 extending vertically and having an upper end connected to the mold support 51. The lower end of the punch rod 53 is connected to a lower ram on the press side (not shown) or another driving device, and the die 3 is moved in and out of the stationary magnetic field generator 4 by moving the punch rod 53 in the vertical direction. Has become. In this sense, the punch rod 53 of the lower punch 5 and the mold support 51 constitute a moving mechanism. However, the stationary magnetic field generating section 4 is moved so that the mold 3 is moved to the stationary magnetic field generating section 4.
You may make it put in and out. In that case,
A moving mechanism for moving the stationary magnetic field generator 4 may be separately provided.

【0015】定常磁場発生部4は、超電導コイル7と、
この超電導コイル7を収容する真空容器8と、超電導コ
イル7を真空容器8に支持する断熱支持材9と、超電導
コイル7を冷却する冷却手段としての冷凍機10とを備
えている。真空容器8は磁場空間を利用するための室温
ボア11を有するリング形状で、筒状の外周壁81と、
上端壁82と、下端壁83と、室温ボア11を取り囲む
筒状の内周壁84とから構成されている。この室温ボア
11に上記金型3が下パンチ5によって出し入れされ
る。
The stationary magnetic field generator 4 includes a superconducting coil 7,
A vacuum vessel 8 containing the superconducting coil 7, a heat insulating support 9 for supporting the superconducting coil 7 in the vacuum vessel 8, and a refrigerator 10 as a cooling means for cooling the superconducting coil 7 are provided. The vacuum vessel 8 has a ring shape having a room temperature bore 11 for utilizing a magnetic field space, and has a cylindrical outer peripheral wall 81;
It is composed of an upper end wall 82, a lower end wall 83, and a cylindrical inner peripheral wall 84 surrounding the room temperature bore 11. The mold 3 is put into and taken out of the room temperature bore 11 by the lower punch 5.

【0016】超電導コイル7はリング形状のソレノイド
コイルで、内周壁84を介して室温ボア11を取り囲む
ように配置され、超電導コイル7を支持するコイル支持
部材71が断熱支持材9によって上端壁82から吊り下
げられている。超電導コイル7としては種々の材料が適
用可能であるが、たとえばNbTi(ニオブチタン合
金)超電導線により巻線され、コイル中心で5Tの高磁
場が常時発生するように構成される。たとえば、コイル
の内径を400mm、軸長300mmとすれば、中心軸
上での最大磁場勾配が約200T/mとなり、非常に大
きな磁場勾配を発生させるようになっている。そして、
下パンチ5によって真空容器8の室温ボア11に挿入さ
れた金型3は、超電導コイル7の中心部に挿入される。
超電導コイル7の中心部付近は磁場勾配が小さく例えば
20mm球の範囲で1T/m以下である。
The superconducting coil 7 is a ring-shaped solenoid coil, which is disposed so as to surround the room temperature bore 11 via an inner peripheral wall 84, and a coil supporting member 71 for supporting the superconducting coil 7 is separated from the upper end wall 82 by the heat insulating supporting member 9. Hanged. Various materials can be used as the superconducting coil 7. For example, the superconducting coil 7 is wound by an NbTi (niobium titanium alloy) superconducting wire, and is configured to constantly generate a high magnetic field of 5 T at the coil center. For example, if the inner diameter of the coil is 400 mm and the axial length is 300 mm, the maximum magnetic field gradient on the central axis is about 200 T / m, and a very large magnetic field gradient is generated. And
The mold 3 inserted into the room temperature bore 11 of the vacuum container 8 by the lower punch 5 is inserted into the center of the superconducting coil 7.
The magnetic field gradient near the center of the superconducting coil 7 is small, for example, 1 T / m or less in the range of a 20 mm sphere.

【0017】冷凍機11はたとえばギフォードマクマホ
ン式の小型冷凍機が用いられ、真空容器8の上端壁82
上面に設置され、伝熱部材12を介して超電導コイル7
のコイル支持部材71に接続され、伝熱によってマイナ
ス270℃付近まで冷却されている。
For example, a small refrigerator of the Gifford McMahon type is used as the refrigerator 11, and the upper end wall 82 of the vacuum vessel 8 is used.
The superconducting coil 7 is installed on the upper surface and
And cooled to around minus 270 ° C. by heat transfer.

【0018】この磁場応用装置において、磁性粉体2の
うち磁性粉体1粒に注目する。磁性粉体2の持つ磁気モ
ーメントMが磁場勾配中で受ける電磁力Fは F=grad(M・H) である。Hは外部磁場である。この式から分かるように
磁場勾配が大きいほど電磁力は大きいことがわかる。先
に示したように磁性粉体2を超電導コイル7の遠方より
中心部に移動させることにより磁場勾配の大きな箇所を
通るため異方性を持つ磁性粉体2の粒子は図1の磁束線
に添うように配向しながら超電導コイル7の中心部に配
置される。中心部付近では磁場勾配が小さく均一な磁場
分布であり、図1のようなソレノイドコイルの場合はコ
イル軸方向に磁束線が通っているので、超電導コイル7
の中心部に配置された磁性粉体2は同じく軸方向に配向
される。すなわち、従来のように磁性粉体をコイル中心
に配置してから磁場を印加した場合は、磁場勾配を経験
しないために磁性粉体102が配向しにくかった。
In this magnetic field application apparatus, attention is paid to one magnetic powder among the magnetic powders 2. The electromagnetic force F received by the magnetic moment M of the magnetic powder 2 in the magnetic field gradient is F = grad (MH). H is an external magnetic field. As can be seen from this equation, the electromagnetic force increases as the magnetic field gradient increases. As described above, the particles of the magnetic powder 2 having anisotropy are moved to the magnetic flux lines in FIG. It is arranged at the center of the superconducting coil 7 while being oriented along. In the vicinity of the center, the magnetic field gradient is small and the magnetic field distribution is uniform. In the case of a solenoid coil as shown in FIG.
The magnetic powder 2 disposed at the center of the above is similarly oriented in the axial direction. That is, when a magnetic field was applied after the magnetic powder was arranged at the center of the coil as in the related art, the magnetic powder 102 was hardly oriented because no magnetic field gradient was experienced.

【0019】超電導コイル7の中心部に配置された磁性
粉体2をそのまま磁場の外へ移動させると上記の逆の現
象で配向性は崩れてしまう。そこで、磁性粉体2が配向
したコイル中心で上下パンチ6、5により加圧成形し、
磁性粉体2の配向性が崩れないようにプレスして固定す
る。このように固定された成形体である磁性成形体21
は磁場中を移動して取り出される。
If the magnetic powder 2 disposed at the center of the superconducting coil 7 is moved out of the magnetic field as it is, the orientation reverses due to the opposite phenomenon. Then, pressure molding is performed by the upper and lower punches 6 and 5 at the coil center where the magnetic powder 2 is oriented,
The magnetic powder 2 is pressed and fixed so that the orientation of the magnetic powder 2 is not lost. The magnetic molded body 21 which is the molded body fixed in this way.
Is moved and extracted in the magnetic field.

【0020】なお、上記の構成においては定常磁場発生
部4に超電導コイル7を用いたが、水冷の常電導コイル
でも上記実施の形態と同様の効果がある。ただし、定常
磁場発生部4に超電導コイル7を用いたので、コイルの
消費電力は極めて小さくほぼ小型冷凍機の電力だけで済
む。また、超電導コイル7の場合は5T,6Tの発生磁
場を出すのは容易であるため、上記のような大きい磁場
勾配を発生させることができる。これに対して、常電導
コイルを用いると消費電力は水冷の電力を含め超電導コ
イルの2から5倍も必要となる。さらに、発生磁場は鉄
ヨークを併用し2T程度が限度と考えられる。このこと
から、超電導コイル7を用いることによる効果は大き
い。また、時間がかかるものの、金型を磁場発生部内部
に移動させるときのみ、超電導コイルを励磁するように
してもよい。
In the above configuration, the superconducting coil 7 is used for the stationary magnetic field generator 4. However, a water-cooled normal conducting coil has the same effect as the above embodiment. However, since the superconducting coil 7 is used for the stationary magnetic field generator 4, the power consumption of the coil is extremely small, and only the power of the small refrigerator is sufficient. Further, in the case of the superconducting coil 7, since it is easy to generate a generated magnetic field of 5T and 6T, it is possible to generate a large magnetic field gradient as described above. On the other hand, when the normal conducting coil is used, the power consumption is required to be two to five times that of the superconducting coil, including the power of water cooling. Further, it is considered that the generated magnetic field is limited to about 2T using an iron yoke. From this, the effect of using the superconducting coil 7 is great. Although it takes time, the superconducting coil may be excited only when the mold is moved into the magnetic field generating unit.

【0021】実施の形態2.以下、本発明の実施の形態
2による磁場応用装置を図に基づいて説明する。以下の
説明では、上記実施の形態1と同一の構成部分について
は同一の符号を付してその説明を省略する。この実施の
形態2では、上記実施の形態1で示した超電導コイル7
の周囲に強磁性成形体による磁気シールド20を配置し
たものである。
Embodiment 2 FIG. Hereinafter, a magnetic field application device according to a second embodiment of the present invention will be described with reference to the drawings. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In the second embodiment, the superconducting coil 7 shown in the first embodiment is used.
A magnetic shield 20 made of a ferromagnetic molded body is disposed around the periphery.

【0022】磁気シールド20は、真空容器8の外周壁
81,上端壁82及び下端壁83の外周を所定厚さの強
磁性成形体によって全面的に覆っており、磁気シールド
20の外部では極めて磁場が低減されている。例えば、
厚さ20mm軟鉄による磁気シールド20ではその表面
磁場は0.005T以下と低い値になっている。このよ
うに磁気シールド20の外では磁場がほとんど無いの
で、図2のように磁性成形体21には超電導コイル7が
発生する磁場による電磁力がほとんど発生しない。従っ
て、図2の上下パンチ6,5が非磁性材であれば金型ご
と容易に取り外すことができる。
The magnetic shield 20 entirely covers the outer periphery of the outer peripheral wall 81, the upper end wall 82, and the lower end wall 83 of the vacuum vessel 8 with a ferromagnetic molded body having a predetermined thickness. Has been reduced. For example,
The surface magnetic field of the magnetic shield 20 made of soft iron having a thickness of 20 mm is as low as 0.005 T or less. As described above, since there is almost no magnetic field outside the magnetic shield 20, almost no electromagnetic force is generated in the magnetic molded body 21 by the magnetic field generated by the superconducting coil 7 as shown in FIG. Therefore, if the upper and lower punches 6 and 5 in FIG. 2 are made of a non-magnetic material, they can be easily removed together with the mold.

【0023】なお、上記構成においては磁気シールド2
0に強磁性体を用いたが、超電導コイル7と反対の磁場
を発生するアクティブシールドコイルを用いても上記実
施の形態と同様の効果がある。
In the above configuration, the magnetic shield 2
Although a ferromagnetic material is used for 0, an effect similar to that of the above embodiment can be obtained by using an active shield coil that generates a magnetic field opposite to that of the superconducting coil 7.

【0024】実施の形態3.次に、本発明の実施の形態
3による磁場応用装置を図に基づいて説明する。図3は
実施の形態3による磁場応用装置の一部を示す断面図で
ある。この実施の形態は、実施の形態2の磁気シールド
20の磁性成形体21の取り出し部付近に、磁性成形体
21を脱磁する脱磁用コイル22を設けたもので、その
他の構成は実施の形態2と同一であり、同一の構成部分
については同一の符号を付してその説明は省略する。
Embodiment 3 FIG. Next, a magnetic field application device according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a sectional view showing a part of the magnetic field application device according to the third embodiment. In this embodiment, a demagnetizing coil 22 for demagnetizing the magnetic molded body 21 is provided near the take-out portion of the magnetic molded body 21 of the magnetic shield 20 according to the second embodiment. The second embodiment is the same as the second embodiment, and the same components are denoted by the same reference numerals and description thereof will be omitted.

【0025】脱磁用コイル22は例えば超電導コイル7
と逆の磁場0.2Tを発生する常電導コイルが用いら
れ、磁性成形体21を取り出し、通過するときのみこの
磁場を発生させる。磁性成形体21を取り出す時に脱磁
コイル22の逆磁場の発生により磁性成形体21は脱磁
され、磁性成形体21の発生磁場はほぼゼロになる。磁
性成形体21が脱磁されるので、上下パンチ6,5が磁
性材料であった場合、磁性成形体21は上下パンチ6,
5に吸着しないので、磁性成形体21及び金型3は容易
に上下パンチ6、5から取り出すことが可能である。ま
た、磁性成形体21を金型3から取り出しても周囲の磁
性材に吸着しないので取り扱いが容易である。なお、上
記構成においては脱磁コイル22に常電導コイルを用い
たが、超電導コイルであってもよく、上記実施の形態と
同様の効果がある。
The demagnetizing coil 22 is, for example, a superconducting coil 7.
A normal conducting coil that generates a magnetic field of 0.2 T, which is opposite to the above, is used. This magnetic field is generated only when the magnetic molded body 21 is taken out and passed. When the magnetic molded body 21 is taken out, the magnetic molded body 21 is demagnetized by the generation of the reverse magnetic field of the demagnetizing coil 22, and the generated magnetic field of the magnetic molded body 21 becomes almost zero. Since the magnetic molded body 21 is demagnetized, when the upper and lower punches 6 and 5 are made of a magnetic material, the magnetic molded body 21 is
5, the magnetic molded body 21 and the mold 3 can be easily taken out from the upper and lower punches 6 and 5. Further, even if the magnetic molded body 21 is taken out of the mold 3, it is not adsorbed to the surrounding magnetic material, so that the handling is easy. In the above configuration, a normal conducting coil is used as the demagnetizing coil 22, but a superconducting coil may be used, and the same effect as in the above embodiment can be obtained.

【0026】また、上記構成においては脱磁コイル22
は磁性成形体21を取り出すときにのみ逆磁場を発生す
るようにしたが、定常磁場の超電導コイル7と同様に定
常の逆磁場を発生させてもよく、上記実施の形態と同様
の効果がある。この場合は、磁性成形体21を超電導コ
イル7の中心部へ導入する際に、一旦はこの脱磁コイル
7による逆方向の磁場が加わるので磁性粉体2の粉体の
全てが180度以上回転するため、磁性成形体21の粒
子の配向性が向上するという効果もある。
In the above configuration, the demagnetizing coil 22
Generates a reverse magnetic field only when the magnetic compact 21 is taken out, but may generate a steady reverse magnetic field in the same manner as the superconducting coil 7 having a steady magnetic field, and has the same effect as the above embodiment. . In this case, when the magnetic compact 21 is introduced into the center of the superconducting coil 7, a magnetic field in the opposite direction is once applied by the demagnetizing coil 7, so that all of the magnetic powder 2 rotates by 180 degrees or more. Therefore, there is also an effect that the orientation of the particles of the magnetic molded body 21 is improved.

【0027】[0027]

【発明の効果】以上のように、請求項1に係る発明は、
磁気異方性を有する磁性粉体を収納する容器と、超電導
コイルにより磁場勾配を発生させる磁場発生部と、前記
容器を前記磁場発生部内部に相対移動させる移動機構と
を備えたことにより、前記磁性粉体は磁場勾配を通過す
るので、従来のように磁場勾配を経験しない場合に比べ
て磁性粉体の配向性が向上する効果がある。また、超電
導コイルは電力をほとんど消費しないので省電力で高磁
場を発生させることができる。
As described above, the invention according to claim 1 is
A container that stores magnetic powder having magnetic anisotropy, a magnetic field generating unit that generates a magnetic field gradient by a superconducting coil, and a moving mechanism that relatively moves the container into the magnetic field generating unit; Since the magnetic powder passes through the magnetic field gradient, there is an effect that the orientation of the magnetic powder is improved as compared with the conventional case where no magnetic field gradient is experienced. Further, since the superconducting coil consumes almost no power, a high magnetic field can be generated with low power consumption.

【0028】また、請求項2に係る発明は、磁場発生部
内部で配向された容器内の磁性粉体を押し固めるパンチ
を備えているので、磁性粉体が配向した状態で押し固め
ることができ、取り出す際に磁場勾配中を移動しても配
向性が崩れない。
Further, the invention according to claim 2 is provided with a punch for compacting the magnetic powder in the container oriented inside the magnetic field generating section, so that the magnetic powder can be compacted in an oriented state. In addition, the orientation does not collapse even if it moves in a magnetic field gradient when it is taken out.

【0029】また、請求項3に係る発明は、磁場勾配を
発生させるとともに超電導コイルを有する定常磁場発生
部と、この定常磁場発生部の周囲に設けられた磁気シー
ルドと、前記定常磁場発生部の内部に配置された磁性を
有する磁性成形体を定常磁場発生部内部から磁気シール
ドの外に移動させる移動機構とを備えたので、磁性成形
体は移動機構によりシールドの外に配置された後に取り
外されることになり、磁性成形体は定常磁場発生部によ
る電磁力の影響を受けないので容易に移動機構から取り
外すことができる効果がある。
According to a third aspect of the present invention, there is provided a stationary magnetic field generating section having a superconducting coil while generating a magnetic field gradient, a magnetic shield provided around the stationary magnetic field generating section, A moving mechanism for moving the magnetic molded body having magnetism disposed inside from the inside of the stationary magnetic field generating unit to the outside of the magnetic shield, so that the magnetic molded body is removed after being arranged outside the shield by the moving mechanism That is, since the magnetic molded body is not affected by the electromagnetic force by the stationary magnetic field generating unit, there is an effect that it can be easily removed from the moving mechanism.

【0030】また、請求項4に係る発明は、磁気異方性
を有する磁性粉体を収納する容器と、超電導コイルによ
り磁場勾配を発生させる定常磁場発生部と、この定常磁
場発生部の周囲に設けられた磁気シールドと、前記定常
磁場発生部内部で前記容器内の磁性粉体を押し固めて磁
性成形体を成形するパンチと、前記容器を前記定常磁場
発生部内部に相対移動させると共に前記磁性成形体を定
常磁場発生部内部から磁気シールドの外に移動させる移
動機構とを備えたので、磁性粉体の配向性を向上させる
ことができると共に、圧縮成形された磁性成形体を取り
外す際に定常磁場発生部による電磁力の影響を受けない
ので容易に移動機構から取り外すことができる。
Further, the invention according to claim 4 is a container for accommodating magnetic powder having magnetic anisotropy, a stationary magnetic field generating section for generating a magnetic field gradient by a superconducting coil, and a stationary magnetic field generating section surrounding the stationary magnetic field generating section. A magnetic shield provided, a punch for compacting the magnetic powder in the container inside the stationary magnetic field generating unit to form a magnetic molded body, and moving the container relative to the stationary magnetic field generating unit and the magnetic material. A moving mechanism is provided to move the compact from the inside of the stationary magnetic field generation unit to outside the magnetic shield, so that the orientation of the magnetic powder can be improved and the compacted compact can be removed when the magnetic compact is removed. Since it is not affected by the electromagnetic force by the magnetic field generator, it can be easily removed from the moving mechanism.

【0031】また、請求項5に係る発明は、磁気シール
ドに磁性成形体を脱磁する脱磁用コイルを配置したの
で、磁性成形体を支持している部材が磁性体であったと
しても、電磁力が生じないので、容易に移動部材から取
り外すことができるのみならず、取り出された磁性成形
体が他の磁性材に吸着しないので取り扱いが容易とな
る。
In the invention according to claim 5, since the demagnetizing coil for demagnetizing the magnetic molded body is disposed on the magnetic shield, even if the member supporting the magnetic molded body is a magnetic material, Since no electromagnetic force is generated, not only can the magnetic member be easily removed from the moving member, but also the taken-out magnetic molded body does not stick to other magnetic materials, so that handling becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による磁場応用装置を
示す断面図である。
FIG. 1 is a sectional view showing a magnetic field application device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態2による磁場応用装置を
示す断面図である。
FIG. 2 is a sectional view showing a magnetic field application device according to a second embodiment of the present invention.

【図3】 本発明の実施の形態3による磁場応用装置の
一部を示す断面図である。
FIG. 3 is a sectional view showing a part of a magnetic field application device according to a third embodiment of the present invention.

【図4】 従来の磁場応用装置を示す断面図である。FIG. 4 is a cross-sectional view showing a conventional magnetic field application device.

【符号の説明】[Explanation of symbols]

1 磁場応用装置、2 磁性粉体、3 金型(容器)、
4 定常磁場発生部、5 下パンチ(移動機構)、51
金型支持部、52 下パンチチップ、53パンチロッ
ド、6 上パンチ、7 超電導コイル、8 真空容器、
11 室温ボア、20 磁気シールド、21 磁性成形
体、22 脱磁コイル。
1 magnetic field application device, 2 magnetic powder, 3 mold (container),
4 Stationary magnetic field generator, 5 lower punch (moving mechanism), 51
Mold support, 52 lower punch tip, 53 punch rod, 6 upper punch, 7 superconducting coil, 8 vacuum vessel,
11 room temperature bore, 20 magnetic shield, 21 magnetic molded body, 22 demagnetizing coil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 政治 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社内 (72)発明者 金子 裕治 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社内 (72)発明者 小川 篤史 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社内 Fターム(参考) 4K018 CA04 CA12 5E062 CC02 CE04 CE07 CF05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Endo Politics 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. (72) Inventor Yuji Kaneko 2--15 Egawa, Shimamoto-cho, Mishima-gun, Osaka No. 17 Sumitomo Special Metals Co., Ltd. (72) Inventor Atsushi Ogawa 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka F-term in Sumitomo Special Metals Co., Ltd. 4K018 CA04 CA12 5E062 CC02 CE04 CE07 CF05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁気異方性を有する磁性粉体を収納する
容器と、 超電導コイルにより磁場勾配を発生させる磁場発生部
と、 前記容器を前記磁場発生部内部に相対移動させる移動機
構とを備え、 前記容器の相対移動時に前記磁性粉体が配向されるよう
になっている磁場応用装置。
A container for storing magnetic powder having magnetic anisotropy; a magnetic field generating unit for generating a magnetic field gradient by a superconducting coil; and a moving mechanism for relatively moving the container into the magnetic field generating unit. A magnetic field application device in which the magnetic powder is oriented when the container is relatively moved.
【請求項2】 磁場発生部内部で配向された容器内の磁
性粉体を押し固めて磁性成形体を成形するパンチを備え
ている請求項1に記載の磁場応用装置。
2. The magnetic field application device according to claim 1, further comprising a punch for pressing the magnetic powder in the container oriented inside the magnetic field generating unit to form a magnetic compact.
【請求項3】 超電導コイルにより磁場勾配を発生させ
る定常磁場発生部と、 前記定常磁場発生部の周囲に設けられた磁気シールド
と、 前記定常磁場発生部の内部に配置された磁性粉体が配向
された磁性成形体を磁場発生部内部から前記磁気シール
ドの外に移動させる移動機構とを備えている磁場応用装
置。
3. A stationary magnetic field generator for generating a magnetic field gradient by a superconducting coil; a magnetic shield provided around the stationary magnetic field generator; and a magnetic powder disposed in the stationary magnetic field generator. A moving mechanism for moving the formed magnetic molded body from inside the magnetic field generating unit to outside the magnetic shield.
【請求項4】 磁気異方性を有する磁性粉体を収納する
容器と、 超電導コイルにより磁場勾配を発生させる定常磁場発生
部と、 該定常磁場発生部の周囲に設けられた磁気シールドと、 前記定常磁場発生部内部で前記容器内の前記磁性粉体を
押し固めて磁性成形体を成形するパンチと、 前記容器を前記定常磁場発生部内部に相対移動させると
共に前記磁性成形体を定常磁場発生部内部から磁気シー
ルドの外に移動させる移動機構とを備えている磁場応用
装置。
4. A container for storing magnetic powder having magnetic anisotropy, a stationary magnetic field generator for generating a magnetic field gradient by a superconducting coil, a magnetic shield provided around the stationary magnetic field generator, A punch for compacting the magnetic powder in the container inside the stationary magnetic field generating unit to form a magnetic molded body; and relatively moving the container into the stationary magnetic field generating unit and moving the magnetic molded body into the stationary magnetic field generating unit. A magnetic field application device comprising a moving mechanism for moving the magnetic shield from inside to outside the magnetic shield.
【請求項5】 磁気シールドに磁性成形体を脱磁する脱
磁用コイルを配置したことを特徴とする請求項3または
4に記載の磁場応用装置。
5. The magnetic field application device according to claim 3, wherein a demagnetizing coil for demagnetizing the magnetic molded body is disposed on the magnetic shield.
JP16364599A 1999-06-10 1999-06-10 Magnetic field application apparatus Pending JP2000353632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16364599A JP2000353632A (en) 1999-06-10 1999-06-10 Magnetic field application apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16364599A JP2000353632A (en) 1999-06-10 1999-06-10 Magnetic field application apparatus

Publications (1)

Publication Number Publication Date
JP2000353632A true JP2000353632A (en) 2000-12-19

Family

ID=15777894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16364599A Pending JP2000353632A (en) 1999-06-10 1999-06-10 Magnetic field application apparatus

Country Status (1)

Country Link
JP (1) JP2000353632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108655375A (en) * 2018-05-17 2018-10-16 上海大学 The method and its device for directionally solidifying of functionally graded material are prepared using axial homogeneous magnetic field
CN110534336A (en) * 2019-09-05 2019-12-03 刘敏洁 A kind of transformer wire circle manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108655375A (en) * 2018-05-17 2018-10-16 上海大学 The method and its device for directionally solidifying of functionally graded material are prepared using axial homogeneous magnetic field
CN110534336A (en) * 2019-09-05 2019-12-03 刘敏洁 A kind of transformer wire circle manufacturing method
CN110534336B (en) * 2019-09-05 2021-03-12 湖南利航电子有限公司 Method for manufacturing transformer coil

Similar Documents

Publication Publication Date Title
EP0898287B1 (en) Hard magnetic alloy having supercooled liquid region, sintered product thereof and applications
JP4433345B2 (en) Ring magnet and speaker
KR100518067B1 (en) Permanent magnet manufacturing method and press apparatus
WO2005124796A1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US20190326054A1 (en) Method for producing rare earth magnet
JP2000353632A (en) Magnetic field application apparatus
US7371290B2 (en) Production method for permanent magnet and press device
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
JP2003031432A (en) Rare-earth sintered magnet and method of manufacturing the same
WO2003001542A1 (en) Ferromagnetic force field generator
JP3602373B2 (en) Magnetic field application equipment
JP3315235B2 (en) Magnetostrictive actuator
JP2003257767A (en) Manufacturing method for permanent magnet, and pressing device
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP2001226701A (en) Method and device for supplying magnetic powder as well as method for manufacturing magnet
Lin Magnetic Properties of Hot Deformed and Boundary Diffused Nd-Fe-B Permanent Magnet
JPS6167599A (en) Magnetic field forming method and forming device
JP2822180B2 (en) Ring magnet forming equipment
JPH11150033A (en) Preparation for rare-earth magnet and magnetic circuit unit for loudspeaker
JP2000351100A (en) Magnetic field application device
JP2916879B2 (en) Manufacturing method of radially oriented magnet
JPH07211567A (en) Method of molding cylindrical radial anisotropic bonded magnet
JP2024054785A (en) Molding Method
JP2638995B2 (en) Permanent magnet structure
JPS5957411A (en) Dust core molding method in magnetic field

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323