JPS5957411A - Dust core molding method in magnetic field - Google Patents

Dust core molding method in magnetic field

Info

Publication number
JPS5957411A
JPS5957411A JP16750382A JP16750382A JPS5957411A JP S5957411 A JPS5957411 A JP S5957411A JP 16750382 A JP16750382 A JP 16750382A JP 16750382 A JP16750382 A JP 16750382A JP S5957411 A JPS5957411 A JP S5957411A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
container
magnetic
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16750382A
Other languages
Japanese (ja)
Inventor
Wataru Yamagishi
山岸 亙
Yuji Matsui
祐司 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16750382A priority Critical patent/JPS5957411A/en
Publication of JPS5957411A publication Critical patent/JPS5957411A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide magnetic material having high energy product, by a method wherein magnetic field is applied to ferromagnetic crystal powders using a superconductive magnet. CONSTITUTION:A superconductive magnet 1 is held to a temperature of 4.2K and coil resistance is decreased thereby strong magnetic field is generated. A magnet pole 2 is held to room temperature, and a core as magnet pole 2 is connected to the magnet body and the magnetic field is taken in the room temperature. A molding container of a dust core molding device is disposed in a region 3 where the magnetic field is obtained. Sm2 (Co, Fe, Cu)17 pulverized into average grain diameter 3-5mum is filled in the container and molded under pressure of 1-2ton/cm<2> and then taken out of the container and sintered within argon at 1,200 deg.C for 1hr. The manufactured magnet has excellent magnetic properties particularly in energy product and rectangular ratio.

Description

【発明の詳細な説明】 (1)技術分野 本発明は磁J月中で磁性材料を圧粉成形する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a method for compacting magnetic materials in a magnetic chamber.

(2)技☆1:「の背景 近年、各分野において小型で強力な磁性材4′斗に対す
るニーズが」11u大してきた。たとえば、磁気ディス
クのヘノドアクナユエータ、ドツトプリンタのハンママ
グネット、ウオークマンの振動板マグネットなどである
(2) Technique☆1: ``Background'' In recent years, the need for compact and strong magnetic materials has increased in various fields. Examples include hendo actuators for magnetic disks, hammer magnets for dot printers, and diaphragm magnets for Walkmans.

(3)従来技術と問題点 磁場中圧粉成形方法は、圧粉成形装置の周囲に磁石全配
置して、磁性結晶粉末に磁場全印加して結晶全磁化芥易
方向に配向させながら、圧縮して成形した俵に焼結−r
る。
(3) Prior art and problems In the magnetic field compacting method, all magnets are placed around the powder compacting device, and the entire magnetic field is applied to the magnetic crystal powder to orient the crystals in the direction of magnetization while compacting. sintered into bales formed by
Ru.

従来は磁石として電磁石全使用していた。磁性材料が希
土類コAルトのように保磁力が非常に旨い場合には、こ
の保ルfj力の冒さに伴なって、電磁石の出力を増大さ
せる心安がある。それには大tlj流を供給するために
、′市W・電磁石の大型化、コイルの抵抗の増大といっ
た欠点を伴なうはかりでなく、実用的にイ:tられる磁
場il″j通常は15,0000e 稈m二、最1[,
5でも20,0000e であるので、希土類磁件相科
全配向させるのに十分とはいえない0 (4)発明の目的 本発明の1的は旨いエネルギー檀全Mする磁性材料金f
辞る4iff場中圧粉成形方法ケ唾供することである。
Previously, all electromagnets were used as magnets. When the magnetic material has a very good coercive force, such as rare earth colt, it is safe to increase the output of the electromagnet as the coercive force fj deteriorates. In order to supply a large tlj current, it is necessary to use a magnetic field il''j, which is usually 15, for practical purposes, rather than using a scale that has disadvantages such as increasing the size of the electromagnet and increasing the resistance of the coil. 0000e Culm m2, maximum 1 [,
5 is 20,0000 e, so it cannot be said to be sufficient to fully orient the rare earth magnetic phase family.
The 4iff is to provide an in-situ powder compaction method.

(5)発明の114成 本発明の上記目的は、強磁性結晶粉末を磁化容易方向に
配向式せて成形し焼結する磁場中圧粉成形刃法であって
、超伝導磁石全使用して強41′B性結晶粉末に(+’
Fj場を印加すること全特徴とする11ζそ場中圧粉成
形方法によって達成することができる。
(5) 114th aspect of the invention The above-mentioned object of the present invention is to provide a powder compacting method in a magnetic field in which ferromagnetic crystal powder is oriented in the direction of easy magnetization, compacted and sintered, and which is highly 41'B crystal powder (+'
This can be achieved by the 11ζ in-situ powder compaction method, which is characterized entirely by applying an Fj field.

(6)実施例および比較例 超伝導、ダイ磁石は温度4.2Kに保付し、コイル抵抗
を減少させて強力な磁JJIJ全発生させる。磁極全j
〜常ボアーと呼び、ボアーは室温とする。このボアーと
して鉄芯?磁石本体に接続して室温中に磁場全取出″j
(第1図)。この磁場が得られる領域に通常の圧粉成形
機の成形容器を配置し、平均粒径3〜571mに粉砕し
たSm、’(Co 、 Fe 、 C11)+7に容器
に充填し、圧力1〜2ton/iで加圧して成形した。
(6) Examples and Comparative Examples The superconducting die magnet is maintained at a temperature of 4.2K to reduce the coil resistance and generate a strong magnetic field. magnetic pole total j
~It is called a regular bore, and the bore is kept at room temperature. Iron core as this bore? Connect to the magnet body and take out the entire magnetic field at room temperature
(Figure 1). A molding container of a normal powder compacting machine is placed in an area where this magnetic field can be obtained, and the container is filled with Sm, '(Co, Fe, C11)+7, which has been crushed to an average particle size of 3 to 571 m, and the pressure is 1 to 2 tons. /i was pressurized and molded.

これ忙容器よジ取出して、1200’Cにおいてアルゴ
ン中で1時間、焼結した。
This was removed from the container and sintered in argon at 1200'C for 1 hour.

このTiRFAは最大で50,0000e が得られた
This TiRFA yielded a maximum of 50,0000e.

これによって製;告したSmt (Co 、 Fe 、
 Cu )17 ’、m石の磁気的性質を、通−常の出
力15,0OOOe の電磁石全使用し成形したSmt
 (Co 、 li’e + Cu )t y?i11
石と比較して矢表に示す。なお、角型化■■に/I■o
のHKは残留磁束密度Brが0.9となるときn9の値
であって、HK/Hcが1 c、 100%)に近づく
はど、角型ししが良好となシ、高性能な永久磁石となる
Smt (Co, Fe,
Cu ) 17', Smt molded using all the electromagnets with a normal output of 15,000e to enhance the magnetic properties of the m stone.
(Co, li'e + Cu)ty? i11
A comparison with stone is shown in the arrow table. In addition, the square shape ■■ /I■o
HK is the value of n9 when the residual magnetic flux density Br is 0.9, and the closer HK/Hc is to 1 c (100%), the better the square shape is, and the higher the performance is permanent. Becomes a magnet.

本発明の方法によって製造した磁性材科人は、通常の電
磁石全使用して製造した磁性材料Bより角型比が良好で
ある(第2図)0 実施例 比較例 保イ【8力kIC(KOe )         6.
2  6.0残留磁未密度13r(KG)      
11,0  10.6工ネルギーf¥jBHmay (
MGOe)   29.3 24.5角具し巳ト塘/、
tIo (%)            95.0  
 78.0(7)発明の効呆 本発明の方法によって製造したS+n2(Co、 F’
e、Cu)、電磁石td%にエネルギー積および角型比
において、通常の電磁石を使用した場合よシも優れた磁
気的性質會有する0
The magnetic material B produced by the method of the present invention has a better squareness ratio than the magnetic material B produced by using all conventional electromagnets (Fig. 2). KOe) 6.
2 6.0 residual magnetic density 13r (KG)
11,0 10.6 Engineering energy f¥jBHmay (
MGOe) 29.3 24.5 Kakugu Shimito Tong/,
tIo (%) 95.0
78.0 (7) Effects of the invention S+n2(Co, F' produced by the method of the present invention)
e, Cu), electromagnet td%, energy product and squareness ratio, it has magnetic properties that are superior to those using ordinary electromagnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で使用する超電導磁石のがF祝図
である。 第2図は本発明によって製造した磁性材料および従来技
術の磁性材料の角型比を示すグラフである0 1・・・超伝導磁石本体 2・・・磁極 計・・原初容器を配置する場所 4・・・液体ヘリウム全保持する容器 A・・・本発明によって製造した研性杓科B・・・従来
技術の磁性材料 特許出願人 富士通株式会社 特許出願代理人 弁理士 官本 朗 弁理士 西舘和之 ヅP理士 内11幸男 弁理士  山 口 昭 之
FIG. 1 is a diagram of a superconducting magnet used in the method of the present invention. Fig. 2 is a graph showing the squareness ratio of the magnetic material manufactured by the present invention and the magnetic material of the prior art. ...Container A that holds all of the liquid helium...Resistance container B manufactured according to the present invention...Prior art magnetic material patent applicant Fujitsu Ltd. Patent application representative Patent attorney Akira Kanmoto Patent attorney Kazu Nishidate 11 Yukio Patent Attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1、強磁性結晶粉末1m化容易方向に配向させて成形し
焼結する磁場中圧粉成形方法であって、超伝導?a石全
全使用て強磁性結晶粉末に磁場?即用1することを特徴
とする磁場中圧粉成形方法。
1. A compacting method in a magnetic field in which ferromagnetic crystal powder is oriented in a direction that facilitates formation of 1 m, then compacted and sintered, and is it superconducting? Magnetic field for ferromagnetic crystal powder using all a stones? A method for compacting powder in a magnetic field, characterized in that it can be used immediately.
JP16750382A 1982-09-28 1982-09-28 Dust core molding method in magnetic field Pending JPS5957411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16750382A JPS5957411A (en) 1982-09-28 1982-09-28 Dust core molding method in magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16750382A JPS5957411A (en) 1982-09-28 1982-09-28 Dust core molding method in magnetic field

Publications (1)

Publication Number Publication Date
JPS5957411A true JPS5957411A (en) 1984-04-03

Family

ID=15850887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16750382A Pending JPS5957411A (en) 1982-09-28 1982-09-28 Dust core molding method in magnetic field

Country Status (1)

Country Link
JP (1) JPS5957411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689099B1 (en) * 2006-08-01 2007-03-02 주목산업(주) The aggregate exhaust apparatus for the device for carrying out wet treatment of the construction waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689099B1 (en) * 2006-08-01 2007-03-02 주목산업(주) The aggregate exhaust apparatus for the device for carrying out wet treatment of the construction waste

Similar Documents

Publication Publication Date Title
Strnat The hard-magnetic properties of rare earth-transition metal alloys
JPWO2009057742A1 (en) Composite magnetic material for magnet and manufacturing method thereof
JP5501828B2 (en) R-T-B rare earth permanent magnet
US7344606B2 (en) Permanent magnet manufacturing method and press apparatus
US4891078A (en) Rare earth-containing magnets
CN111540556A (en) Composite magnet having hard and soft magnetic phases
US4601754A (en) Rare earth-containing magnets
US7371290B2 (en) Production method for permanent magnet and press device
JP3296507B2 (en) Rare earth permanent magnet
JPS5957411A (en) Dust core molding method in magnetic field
US4776902A (en) Method for making rare earth-containing magnets
Li et al. Simple hot deformation process for fabrication of anisotropic NdFeB magnet
Paik et al. Improvement of coercive force in Fe-Ce· Didymium-B powder prepared by conventional powder techniques
JP2003203818A (en) Method of manufacturing permanent magnet and pressing apparatus
JPH10242543A (en) Resin bonding type magnetostrictive material
Kaneko et al. Research on high performance Nd Fe B sintered magnets
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JPH11195548A (en) Production of nd-fe-b magnet
JPH0318329B2 (en)
JPH0559572B2 (en)
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JP2003257767A (en) Manufacturing method for permanent magnet, and pressing device
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPH09199361A (en) Method for manufacturing rare-earth and iron based magnet
Fidler et al. High performance magnets-microstructure and coercivity