JP2000351671A - Particle-dispersed silicon carbide-based sintered product and guide roller which use the same and is used for rolling wire rod - Google Patents

Particle-dispersed silicon carbide-based sintered product and guide roller which use the same and is used for rolling wire rod

Info

Publication number
JP2000351671A
JP2000351671A JP11165418A JP16541899A JP2000351671A JP 2000351671 A JP2000351671 A JP 2000351671A JP 11165418 A JP11165418 A JP 11165418A JP 16541899 A JP16541899 A JP 16541899A JP 2000351671 A JP2000351671 A JP 2000351671A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered product
resistance
guide roller
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11165418A
Other languages
Japanese (ja)
Other versions
JP4347949B2 (en
Inventor
Shigeharu Matsubayashi
重治 松林
Tetsuo Nose
哲郎 野瀬
Atsushi Aoyama
敦司 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16541899A priority Critical patent/JP4347949B2/en
Publication of JP2000351671A publication Critical patent/JP2000351671A/en
Application granted granted Critical
Publication of JP4347949B2 publication Critical patent/JP4347949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered article which has high hardness, high toughness, high thermal shock resistance and high oxidation resistance, by dispersing titanium boride-zirconium boride solid solution particles having a specific average diameter in a silicon carbide sintered product in a specific rate and specifying the relative density. SOLUTION: This sintered article is obtained by adding prescribed amounts of TiB2 and ZrB2 or ZrC to raw materials for the silicon carbide sintered product, kneading the mixture, molding the kneaded product, sintering the molded product under vacuum or in the flow of an inert gas without adding a pressure, and then subjecting the sintered product to a hot hydrostatic pressure press sintering treatment in an Ar gas atmosphere. The sintering treatment is preferably carried out at a highest temperature of 1,950 to 2,200 deg.C for 4 hr or longer, The titanium boride-zirconium boride solid solution particles expressed by the formula: Ti1-xZrxB2 [0.02<=(x)<=0.25] having an average particle diameter of 1 to 10 μm are dispersed in the silicon carbide(SiC) sintered product in a volume fraction of 20 to 70%, and the particle-dispersed silicon carbide-based sintered product has a relative density of >=99%. The sintered product is cut to obtain a guide roller which has excellent abrasion resistance and excellent lacking resistance and is used for rolling metal wire rods.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温強度や破壊靭
性に優れる炭化珪素質焼結体に関し、さらに、鉄などの
金属線材を熱間圧延で製造する際に使用する耐摩耗性、
耐欠損性、耐熱性に優れるガイドローラーに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide sintered body excellent in high-temperature strength and fracture toughness, and further has an abrasion resistance, which is used when a metal wire such as iron is manufactured by hot rolling.
The present invention relates to a guide roller having excellent fracture resistance and heat resistance.

【0002】[0002]

【従来の技術】これまで、炭化珪素質焼結体は耐熱衝撃
性や硬度に優れるものの、破壊靭性が低く機械的衝撃の
大きな用途にはほとんど適用されていなかった。そこ
で、炭化珪素質焼結体の高靭化を図る目的で、焼結体中
に種々の粒子やウイスカーを分散させるなどの研究が進
められてきた。
2. Description of the Related Art Heretofore, although silicon carbide sintered bodies have excellent thermal shock resistance and hardness, they have hardly been applied to uses having low fracture toughness and large mechanical impact. Therefore, in order to increase the toughness of the silicon carbide sintered body, researches such as dispersing various particles and whiskers in the sintered body have been advanced.

【0003】ところで、熱間線材圧延ラインは、一般に
1000℃以上の高温に熱せられた太い角柱状ビレットを、
多数のロールスタンド間を連続的に通過させて減面し、
所定の形状・寸法に仕上げるもので、各ロールスタンド
間には、圧延中の線材を圧延ロールの所定の位置に誘導
するための多数のガイド部材が用いられている。このガ
イド部材は、通常、高温かつ高速の線材の確実な誘導を
実現するため、線材の進行方向に回転可能なローラーと
することが多い。圧延ラインで、特に最終スタンドであ
る仕上げ圧延機の入側に用いられるガイドローラーは、
線材の減面化に従い、通材速度が60m/秒以上と極めて高
速となる場合があることに加え、線材の誘導性を高める
ため圧延ロールに近づける必要性から、直径の小さいガ
イドローラーを用いることが要求されるなど、使用環境
が極めて厳しいものになっている。
[0003] By the way, hot wire rolling lines are generally
Thick prismatic billet heated to a high temperature of 1000 ° C or more,
Continuously passes between a number of roll stands to reduce the area,
It finishes to a predetermined shape and size, and a number of guide members are used between the roll stands to guide the wire being rolled to a predetermined position on the rolling roll. In general, the guide member is often a roller that can rotate in the traveling direction of the wire in order to reliably guide the wire at high temperature and high speed. In the rolling line, especially the guide roller used on the entry side of the finishing mill, which is the final stand,
Use of guide rollers with a small diameter is necessary because, in accordance with the reduction in the surface area of the wire, the threading speed may be extremely high, 60 m / sec or more, and it is necessary to move closer to the rolling rolls in order to increase the inductivity of the wire. And the use environment is extremely severe.

【0004】従来、これら鉄などの金属線材の圧延機の
ガイドローラーとしては、高硬度炭素鋼製、もしくは炭
化タングステン(WC)等の超硬合金製のものが用いられて
きた。超硬合金製のローラーは、熱間で被圧延材と反応
し難く、かつ、高硬度炭素鋼製のものに比べて耐摩耗性
に優れるため、最終スタンド入側に用いた場合でも摩耗
によるローラー交換回数は少なくて済むが、一方で、WC
粒の脱落、チッピング、巨視的な割れ等が、線材と接触
するローラーカリバー部で生じる場合があり、これが、
被圧延材であるところの線材における線材表面の肌荒れ
や摩耗傷の原因となっていた。また、脱落したWC含有の
硬質粒が圧延中に線材表面に付着・圧入され、後工程で
の更なる線材伸線化・細線化の際に、断線の原因となる
場合があった。
Heretofore, as a guide roller for a rolling machine for metal wires such as iron, those made of high-hardness carbon steel or cemented carbide such as tungsten carbide (WC) have been used. Cemented carbide rollers are less likely to react with the material to be rolled hot and have better wear resistance than those made of high-hardness carbon steel. Although the number of replacements is small, WC
Dropping of grains, chipping, macroscopic cracks, etc. may occur at the roller caliber part that contacts the wire,
This has been a cause of surface roughness and abrasions on the surface of the wire rod which is the material to be rolled. In addition, the dropped WC-containing hard grains adhered and pressed into the surface of the wire during rolling, which sometimes caused wire breakage during further wire drawing and thinning in a later step.

【0005】ガイドローラーは、通常、摩耗領域を研削
して再利用するが、残存き裂が、再利用時のチッピング
の原因となるため、チッピングと割れが生じている領域
を完全に削除しておく必要がある。チッピング・割れが
生じると、その研削量としては、割れの深さも含めると
一般に摩耗深さの3 倍程度必要となり、追加工コストが
高くなる一方で、ローラーとしての繰り返し使用総寿命
が短くなるなど、経済性の面で不利となっていた。さら
に、WC等の超硬合金は、一般に比重が大きくローラーの
慣性モーメントが大きくなるため、圧延時のローラー回
転が加速されるまでの間に激しい摩耗を受け、本来の高
い耐摩耗性が十分に発揮されない場合があった。
[0005] The guide roller is usually reused by grinding the worn area. However, since the remaining cracks cause chipping at the time of reuse, the area where chipping and cracks occur is completely removed. Need to be kept. If chipping or cracking occurs, the amount of grinding, including the depth of cracking, is generally required to be about three times the abrasion depth, increasing the cost of additional work and shortening the total life of repeated use as a roller. , It was disadvantageous in terms of economy. In addition, cemented carbides such as WC generally have a high specific gravity and a large moment of inertia of the roller, so they undergo severe wear before the roller rotation is accelerated during rolling, and the original high wear resistance is sufficiently high. There was a case that was not exhibited.

【0006】一方、超硬合金に比べて低比重で、かつ高
硬度である耐摩耗性の改善が期待される炭化珪素セラミ
ックスをガイドローラーに適用する試みもなされてきて
おり、特開平1-130807号公報では、線材と接触する部分
を炭化珪素セラミックスで形成し、耐摩耗性と線材表面
性状の改善を試みている。さらに、特開平9-278523号公
報では、炭化珪素セラミックスの破壊靭性値を大幅に向
上させたガイドローラーを提案し、ローラー寿命の改善
が報告されているが、セラミックス原料の一部に極めて
高価なハフニウム化合物(HfB2)を使用しているため、製
造コストが高くなる問題があった。
On the other hand, attempts have been made to apply a silicon carbide ceramic, which has a lower specific gravity and a higher hardness than a cemented carbide and is expected to have improved wear resistance, to a guide roller. In the gazette, a portion in contact with the wire is formed of silicon carbide ceramics, and an attempt is made to improve wear resistance and wire surface properties. Further, Japanese Patent Application Laid-Open No. 9-278523 proposes a guide roller having a significantly improved fracture toughness value of silicon carbide ceramics, and is reported to have improved roller life. Since a hafnium compound (HfB 2 ) is used, there is a problem that the production cost is increased.

【0007】[0007]

【発明が解決しようとする課題】ところが、従来のモノ
リシック炭化珪素セラミックス製ガイドローラーは、ロ
ーラーの軽量化の面においては十分機能を発揮し、かつ
比較的高い耐摩耗性を有するものの、摩耗部周囲に巨視
的なチッピングや割れの発生が認められ、超硬合金製ロ
ーラーとほぼ同等の耐摩耗性を維持したまま耐欠損性を
飛躍的に改善するには至っていないため、圧延ラインの
最終圧延機入側のように高温の圧延鋼材が極めて高速で
通過するような厳しい使用環境下においては、信頼性に
欠ける問題点があった。
However, the conventional guide roller made of monolithic silicon carbide ceramics has a sufficient function in terms of reducing the weight of the roller and has relatively high abrasion resistance. The occurrence of macroscopic chipping and cracking was observed in the final rolling mill of the rolling line because the fracture resistance has not been dramatically improved while maintaining the wear resistance almost equal to that of cemented carbide rollers. In a severe use environment where a high-temperature rolled steel passes at an extremely high speed, such as on the entry side, there is a problem of lack of reliability.

【0008】炭化珪素質焼結体の高靭化を目的とした粒
子分散などの研究の中で、例えば、特開平9-278523号公
報では、高価なHfB2を原料に用い、焼結過程で反応生成
するTi-Hf-B 固溶体を使用し焼結体の破壊靭性値を著し
く向上させることが出来た。これを加工してガイドロー
ラーとして使用した場合、通材時の摺動摩耗特性とし
て、割れやチッピングを抑制し再利用時の必要削除量を
低減するものの、通材時の摩耗量自体は、現行超硬(WC)
材の摩耗量から大幅に低減するには至らなかった。さら
に、特開平9-278523号公報の材料は原料調製時の安定性
に欠け、非水系の湿式混合を必須としていた。このた
め、通常広く行われている水系混合に比べ、原料コスト
が大幅に増大するとともに、製造時の安全性確保に配慮
しなければならないという問題点があった。
[0008] In the study of particle dispersion for the purpose of increasing the toughness of a silicon carbide sintered body, for example, in Japanese Patent Application Laid-Open No. 9-278523, expensive HfB 2 is used as a raw material, Using the Ti-Hf-B solid solution produced by the reaction, the fracture toughness value of the sintered body was significantly improved. When this is processed and used as a guide roller, as the sliding wear characteristics during passing, cracks and chipping are suppressed and the amount of necessary removal when reused is reduced, but the wear itself during passing is the same as the current Carbide (WC)
It was not possible to significantly reduce the wear amount of the material. Further, the material disclosed in Japanese Patent Application Laid-Open No. 9-278523 lacks stability at the time of raw material preparation, and requires non-aqueous wet mixing. For this reason, there have been problems that the raw material cost is greatly increased as compared with the water-based mixing that is usually widely performed, and that safety must be ensured during production.

【0009】本発明は、上記の如き課題を解決するため
になされたものである。そして、本発明の目的は、耐酸
化性改善に基づく耐摩耗特性と破壊靭性の改善による耐
欠損特性を大幅に向上させた低コストの焼結体及びこれ
を用いた線材圧延ガイドローラーを提供することにあ
る。
The present invention has been made to solve the above problems. An object of the present invention is to provide a low-cost sintered body having significantly improved wear resistance based on oxidation resistance and improved fracture resistance due to improved fracture toughness, and a wire rod guide roller using the same. It is in.

【0010】[0010]

【課題を解決するための手段】本発明において、課題を
解決するための手段は、炭化珪素(SiC) 焼結体中に平均
径1 〜10μm のTi1-x Zrx B2(0.02 ≦x ≦0.25) で表わ
される硼化チタン−硼化ジルコニウム固溶体粒子が、体
積分率20〜70% の範囲で分散し、かつ、相対密度が99%
以上である粒子分散炭化珪素質焼結体、及び、この焼結
体を成形加工してなる線材圧延ガイドローラーである。
In the present invention, a means for solving the problem is that Ti 1-x Zr x B 2 (0.02 ≦ x) having an average diameter of 1 to 10 μm in a silicon carbide (SiC) sintered body. ≦ 0.25), the titanium boride-zirconium boride solid solution particles are dispersed in a volume fraction range of 20 to 70%, and the relative density is 99%.
A particle-dispersed silicon carbide sintered body as described above, and a wire rolling guide roller formed by molding the sintered body.

【0011】[0011]

【発明の実施の形態】本発明者らは種々の研究の結果、
セラミックス製線材圧延ガイドローラーの摩耗は高速で
通過する線材との摺動により生じ、酸化され易い材料で
は、高温の線材が通過している際や通材間隔の水冷して
いる間に酸化層が形成され、その酸化層は、非常に摩耗
され易いことを解明した。また、摩耗部周囲のチッピン
グや割れ等の欠損は、主に線材先端部分がローラーへ突
入する際の機械的衝撃、および、1000〜1200℃の高温の
線材との接触による加熱と周囲からの水冷による熱衝撃
の繰り返しにより生成・進展するものであり、これら摩
耗と欠損は、ローラーの材質が低硬度、低靭性、低耐熱
衝撃性、低酸化耐性の場合に顕著であることを見出し
た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies,
Wear of the ceramic wire rolling guide roller is caused by sliding with the wire passing at high speed, and for materials that are easily oxidized, the oxidized layer is formed during the passage of the high-temperature wire or during water cooling at the interval between the wires. It has been found that the formed oxide layer is very susceptible to wear. In addition, chipping and cracking around the worn part are mainly caused by mechanical shock when the tip of the wire enters the roller, heating by contact with a high temperature wire of 1000 to 1200 ° C, and water cooling from the surroundings. It has been found that these wears and defects are remarkable when the material of the roller has low hardness, low toughness, low thermal shock resistance, and low oxidation resistance.

【0012】従って、耐摩耗性と耐欠損性を同時に改善
し本課題を達成するためには、ローラー材質の高硬度
化、高靭性化、高耐熱衝撃性化、高耐酸化性が必要不可
欠である。これらの特性を同時に向上させる方法として
は、充分緻密な焼結体において、硬質かつ耐酸化性の高
い粒子を分散させることが効果的であり、特に、硬質か
つ耐酸化性の高いTi-Zr-B 固溶体粒子を炭化珪素中に分
散させることにより、従来のモノリシック炭化珪素製ガ
イドローラーに比べて、耐摩耗性を高めつつ、さらに、
チッピング、割れ等の耐欠損性を著しく向上させる作用
を付与することが可能であることを見出した。
Therefore, in order to simultaneously improve the wear resistance and the fracture resistance and achieve the object, it is necessary to increase the hardness, toughness, thermal shock resistance, and oxidation resistance of the roller material. is there. As a method for simultaneously improving these properties, it is effective to disperse hard and highly oxidation-resistant particles in a sufficiently dense sintered body, and in particular, Ti-Zr- having high hardness and high oxidation resistance. By dispersing the B solid solution particles in silicon carbide, compared to a conventional monolithic silicon carbide guide roller, while increasing the wear resistance,
It has been found that it is possible to impart an effect of significantly improving chipping resistance, cracking and other chipping resistance.

【0013】Ti-Zr-B 固溶体は、hcp 構造をもつ硬質か
つ耐酸化性のある高融点化合物であり、焼結後に炭化珪
素焼結体中に分散粒子として残留し、焼結体全体の硬度
を向上させる作用をもつ。そして、炭化珪素相−固溶体
相の熱膨張係数差やヤング率の相異等により分散粒子近
傍に残留応力を発生させ、破壊の際の破壊エネルギーを
向上させる作用を持ち、靭性を著しく向上させつつ耐熱
衝撃性を向上させる作用を持つ。
[0013] The Ti-Zr-B solid solution is a hard and oxidation-resistant high melting point compound having an hcp structure, remains as dispersed particles in a silicon carbide sintered body after sintering, and has a hardness of the entire sintered body. Has the effect of improving Then, a residual stress is generated in the vicinity of the dispersed particles due to a difference in thermal expansion coefficient between the silicon carbide phase and the solid solution phase or a difference in Young's modulus, and has an effect of improving fracture energy at the time of fracture, while significantly improving toughness. Has the effect of improving thermal shock resistance.

【0014】本発明のガイドローラーに用いられるTi-Z
r-B 固溶体は、Ti1-x Zrx B2で表すことができ、x の値
の範囲としては0.02〜0.25であり、より好ましくは0.02
〜0.10である。TiB2にZrB2を所定量固溶させると、TiB2
単身の場合に比べて硬さを著しく向上させることができ
るが、x が0.02より少ない場合、Zrの固溶効果が乏しく
十分な高硬度化が図れず、また、0.25を超えるとマトリ
ックスである炭化珪素との熱膨張係数がかけ離れてしま
い、複合材料を焼結する際に、理論密度比99%以上の相
対密度が得られ難く、破壊靭性値も低下するため好適で
はない。
Ti-Z used for the guide roller of the present invention
rB solid solution, can be represented by Ti 1-x Zr x B 2 , as the range of the value of x is 0.02 to 0.25, more preferably 0.02
~ 0.10. When the predetermined amount of solid solution of ZrB 2 in TiB 2, TiB 2
Hardness can be significantly improved as compared with a single body, but when x is less than 0.02, the solid solution effect of Zr is poor and sufficient hardness cannot be achieved, and when x exceeds 0.25, the matrix carbonization The coefficient of thermal expansion is very different from that of silicon, so that when sintering a composite material, it is difficult to obtain a relative density of 99% or more in theoretical density and the fracture toughness value is lowered, which is not preferable.

【0015】本発明の焼結体では、Ti1-x Zrx B2固溶体
を20〜70体積% 含むが、70体積% より多く添加すると粒
子分散させることによる残留応力が過大になり靭性値が
大きく低下し、耐欠損性が低下する。また、20体積% よ
り少ないと、硬さ、靭性、耐熱衝撃性の向上に充分な寄
与が認められない。より好ましくは40〜60体積% であ
る。
The sintered body according to the present invention contains 20 to 70% by volume of the Ti 1-x Zr x B 2 solid solution. However, if it is added in an amount of more than 70% by volume, the residual stress due to the particle dispersion becomes excessive and the toughness value becomes low. It greatly decreases, and the fracture resistance decreases. On the other hand, if it is less than 20% by volume, sufficient contribution to improvement in hardness, toughness and thermal shock resistance cannot be recognized. More preferably, it is 40 to 60% by volume.

【0016】分散させるTi1-x Zrx B2固溶体相の粒子径
としては、平均結晶粒径の範囲が、1 〜10μm であるこ
とが好ましく、より好ましくは3 〜5 μm が適してい
る。1μm より小さいと、靭性への寄与が得られ難く、
また、10μm より大きいと、硬さ、耐熱衝撃性の低下を
招く。さらに、本発明では、焼結体の相対密度を99% 以
上とするが、99% 未満では、Ti1-xZr xB2固溶体粒子の
分散による焼結体中への残留応力の付与が不十分となる
ため好ましくない。
The particle diameter of the Ti 1-x Zr x B 2 solid solution phase to be dispersed is preferably in the range of an average crystal grain diameter of 1 to 10 μm, more preferably 3 to 5 μm. If it is smaller than 1 μm, it is difficult to obtain a contribution to toughness.
On the other hand, if it is larger than 10 μm, hardness and thermal shock resistance are reduced. Further, in the present invention, the relative density of the sintered body is set to 99% or more. However, when the relative density is less than 99%, the application of residual stress to the sintered body due to the dispersion of the Ti 1-x Zr x B 2 solid solution particles is not possible. It is not preferable because it becomes sufficient.

【0017】また、セラミックス原料としては、TiB
2に、ZrB2とZrC の少なくとも1 種を所定量添加すれば
良く、炭化珪素焼結時に、硼化物でも炭化物でも、最終
固溶体として、Ti1-x Zrx B2固溶体が得られれば構わな
い。炭化珪素(SiC) は共有結合性の強い物質であり、単
味では焼結が困難であるため、緻密化に際しては種々の
添加物を加えても構わない。焼結助剤としては炭化硼
素、金属硼素、炭素( カーボンブラック等) 、有機質炭
素源、窒化アルミニウム、酸化アルミニウム、希土類酸
化物、等を用いることができる。
As a ceramic material, TiB
2 , a predetermined amount of at least one of ZrB 2 and ZrC may be added, and it is sufficient if Ti 1-x Zr x B 2 solid solution can be obtained as a final solid solution at the time of silicon carbide sintering, whether boride or carbide. . Silicon carbide (SiC) is a substance having a strong covalent bond, and it is difficult to sinter simply. Therefore, various additives may be added at the time of densification. As the sintering aid, boron carbide, metallic boron, carbon (such as carbon black), an organic carbon source, aluminum nitride, aluminum oxide, rare earth oxide, and the like can be used.

【0018】焼結方法としては、無加圧焼結法、ガス圧
焼結法、熱間静水圧プレス焼結法、ホットプレス法の何
れの方法も用いることが可能であり、更に、一種もしく
は複数の焼結法を組み合わせることも可能である。無加
圧焼結は、真空中または不活性ガス流通中にて行うと、
緻密な焼結体が得られ易い。複雑形状であるガイドロー
ラーにおいて、高密度を達成するためには、無加圧焼結
後、さらにArガス雰囲気中にて熱間静水圧プレス焼結を
行うことが好ましい。
As the sintering method, any of a pressureless sintering method, a gas pressure sintering method, a hot isostatic press sintering method, and a hot press method can be used. It is also possible to combine a plurality of sintering methods. Pressureless sintering is performed in a vacuum or in the flow of an inert gas.
A dense sintered body is easily obtained. In order to achieve high density in a guide roller having a complicated shape, it is preferable to perform hot isostatic press sintering in an Ar gas atmosphere after sintering without pressure.

【0019】焼結時の最高温度の範囲としては、1950〜
2200℃であることが好ましく、最高温度での保持時間
は、4 時間以上であることが望ましい。1950℃未満では
充分高い密度が得られず、固溶体相粒子近傍に高い残留
応力を発生させることが困難で、高い靭性が得られな
い。また、2200℃より高い温度では、SiC が昇華・分解
するため好ましくない。
The maximum temperature range during sintering is 1950 to
The temperature is preferably 2200 ° C., and the holding time at the maximum temperature is preferably 4 hours or more. If the temperature is lower than 1950 ° C., a sufficiently high density cannot be obtained, it is difficult to generate a high residual stress in the vicinity of solid solution phase particles, and a high toughness cannot be obtained. On the other hand, if the temperature is higher than 2200 ° C., SiC is undesirably sublimated and decomposed.

【0020】焼結時の保持時間としては、原料として用
いたTiB2粉末とZrB2粉末が反応し安定なTi1-x Zrx B2
溶体相を生成するために、上記焼結温度の範囲にて、4
時間以上の保持が必要である。また、本発明で使用する
ZrC やZrB2は、特開平9-278523号公報で開示されるセラ
ミックス原料であるHfB2に比べて安価な原料であり、本
発明の粒子分散炭化珪素系全体の原料コストを大幅に抑
えることが可能になる。しかも、耐酸化性を有するた
め、粉体調製時に分散媒としてアルコールやアセトン等
の非水系に限定することはなく、水系での粉体調製も可
能であり、調製時のコスト低減や作業時の安全性を向上
することが容易である。
The holding time during sintering is set in the above range of the sintering temperature so that the TiB 2 powder used as a raw material and the ZrB 2 powder react to form a stable Ti 1-x Zr x B 2 solid solution phase. At 4
Requires more than an hour of retention. Also used in the present invention
ZrC and ZrB 2 are inexpensive raw materials as compared with HfB 2 which is a ceramic raw material disclosed in Japanese Patent Application Laid-Open No. 9-278523, and can significantly reduce the raw material cost of the entire particle-dispersed silicon carbide system of the present invention. Will be possible. Moreover, since it has oxidation resistance, it is not limited to a non-aqueous dispersion medium such as alcohol or acetone as a dispersion medium at the time of powder preparation. It is easy to improve safety.

【0021】本発明の粒子分散炭化珪素質焼結体からな
る線材圧延ガイドローラーは、炭化珪素(SiC) 焼結体中
に、平均径1 〜10μm のTi1-x Zrx B2(0.02 ≦x ≦0.2
5) で表わされる硼化チタン−硼化ジルコニウム固溶体
粒子が、体積分率20〜70% の範囲で分散し、相対密度が
99% 以上の粒子分散炭化珪素質焼結体からなるが、これ
ら要件の組み合わせにより、該焼結体から得られたガイ
ドローラーは、高硬度、高靭性、高耐熱衝撃性を有し、
かつ、耐摩耗性、耐欠損性、耐酸化性、長時間信頼性が
高いものである。
The wire rod guide roller made of the particle-dispersed silicon carbide sintered body of the present invention can be used for producing a Ti 1-x Zr x B 2 (0.02 ≦ m ) having an average diameter of 1 to 10 μm in a silicon carbide (SiC) sintered body. x ≤0.2
5) Titanium boride-zirconium boride solid solution particles represented by the following formula are dispersed in a volume fraction range of 20 to 70%, and the relative density is
99% or more of the particle-dispersed silicon carbide-based sintered body, by a combination of these requirements, the guide roller obtained from the sintered body has high hardness, high toughness, high thermal shock resistance,
In addition, it has high wear resistance, chipping resistance, oxidation resistance, and long-term reliability.

【0022】[0022]

【実施例】次に、本発明の実施例を比較例と共に説明す
る。 ( 実施例1 〜5)炭化珪素(SiC) 粉末( α型、純度99% 、
平均粒径0.5 μm)に、硼化チタン(TiB 2)粉末( 平均粒径
4 μm)、硼化ジルコニウム(ZrB2)粉末( 平均粒径2 μm)
または炭化ジルコニウム(ZrC) 粉末( 平均粒径2 μm)、
炭化硼素(B4C) 粉末( 平均粒径1.5 μm)、及び、炭素
(C) 粉末( 平均粒径0.02μm)を、第1 表に示す所定量(
重量%)添加し、分散媒としてアセトン及び精製水を用
い、炭化珪素を内貼りしたボールミルで24時間混練し
た。アセトン及び精製水の添加量は、セラミックス全粉
末原料100gに対し100gとした。
Next, examples of the present invention will be described together with comparative examples.
You. (Examples 1 to 5) Silicon carbide (SiC) powder (α type, purity 99%,
Titanium boride (TiB Two) Powder (average particle size
4 μm), zirconium boride (ZrBTwo) Powder (average particle size 2 μm)
Or zirconium carbide (ZrC) powder (average particle size 2 μm),
Boron carbide (BFourC) powder (average particle size 1.5 μm) and carbon
(C) Powder (average particle size 0.02 μm) was added to a specified amount (Table
Weight%), and acetone and purified water were used as dispersion media.
Kneading for 24 hours in a ball mill with silicon carbide
Was. The amount of acetone and purified water added is
The amount was 100 g with respect to 100 g of the raw material.

【0023】次いで、得られた混合粉末を、成形後焼結
した。成形条件としては、冷間静水圧による加圧150MPa
とし、外径φ70mm、内穴径φ30mm、厚さ35mmのドーナツ
状成形体を得た。焼結条件としては、Arガス流通中に
て、第1 表中に示す温度で8 時間保持の無加圧焼結後、
同じく、第1 表中に示す温度、高圧Arガス雰囲気中にて
3 時間保持の熱間静水圧プレス(HIP) 焼結を行った。
Next, the obtained mixed powder was molded and sintered. As the molding conditions, pressurization by cold hydrostatic pressure 150MPa
A donut-shaped molded body having an outer diameter of 70 mm, an inner hole diameter of 30 mm, and a thickness of 35 mm was obtained. The sintering conditions were as follows: During Ar gas circulation, after pressureless sintering at the temperature shown in Table 1 for 8 hours,
Similarly, at the temperature shown in Table 1 and in a high-pressure Ar gas atmosphere.
Hot isostatic pressing (HIP) sintering for 3 hours was performed.

【0024】得られた焼結体から、外径約φ56mm、内径
約φ28mm、厚さ約25mm、カリバー面角度142 ゜、ガイド
ローラー内径側に外径φ35mmのボールベアリングを厚さ
方向に対面配置可能なガイドロ―ラーを研削加工し、線
材圧延試験に供した。また、得られた焼結体から各種形
状の試験片を切り出し、機械的特性を評価した。硬さ
は、押込荷重10kgにてビッカース硬さとして測定した。
靭性については、JIS R1607 のSEPB法により、室温にて
破壊靭性値K ICを測定した。また、耐熱衝撃性として
は、曲げ試験片を大気中にて所定の温度に加熱後、水中
急冷し、抗折強さの劣化が始まる急冷温度差ΔT で評価
した。焼結体密度は、アルキメデス法により相対密度と
して測定した。
From the obtained sintered body, a ball bearing having an outer diameter of about 56 mm, an inner diameter of about 28 mm, a thickness of about 25 mm, a caliber surface angle of 142 mm, and an outer diameter of 35 mm on the inner side of the guide roller can be arranged in the thickness direction. The various guide rollers were ground and subjected to a wire rolling test. Test pieces of various shapes were cut out from the obtained sintered body, and the mechanical properties were evaluated. Hardness was measured as Vickers hardness at an indentation load of 10 kg.
Regarding toughness, the fracture toughness value K IC was measured at room temperature by the SEPB method of JIS R1607. The thermal shock resistance was evaluated by heating the bending test piece to a predetermined temperature in the atmosphere, then quenching it in water, and determining a quenching temperature difference ΔT at which the bending strength starts to deteriorate. The sintered body density was measured as a relative density by the Archimedes method.

【0025】Ti-Zr-B 固溶体の粒径および体積分率は、
焼結体の鏡面研磨面を撮影した光学顕微鏡像( 拡大率50
0 倍) より、30個以上の粒子径および撮影面中の粒子面
積分率として測定し、その平均値として表した。また、
Ti1-xZr xB2(hcp構造) のx値は、高周波プラズマ発光
分光(ICP) 分析により求めた。さらに、X 線回折法を用
いて、混合前の原料粉末段階でのTiB2、ZrC 及びZrB2
及び、焼結体中の固溶体を、それぞれ測定し、焼結後に
はTiB2中にZrが固溶していることを確認した。
The particle size and volume fraction of the Ti-Zr-B solid solution are as follows:
Optical microscope image of a mirror-polished surface of the sintered body (50 magnification)
(× 0), the particle diameter of 30 or more particles and the particle area fraction in the photographing surface were measured and expressed as an average value. Also,
The x value of Ti 1-x Zr x B 2 (hcp structure) was determined by high frequency plasma emission spectroscopy (ICP) analysis. Further, using X-ray diffraction, TiB 2 , ZrC and ZrB 2 in the raw material powder stage before mixing,
The solid solution in the sintered body was measured, and it was confirmed that Zr was dissolved in TiB 2 after sintering.

【0026】得られた各焼結体の諸特性をTi-Zr-B 固溶
体の粒径、体積分率、x 値、相対密度と共に第2 表に示
す。また、圧延試験としては、被圧延材として普通鋼を
用い、初期ビレット形状約120mm □×長さ約18m 、重さ
約2 トンを、圧延時線材温度約1000℃、通材速度約60m/
秒の条件にて圧延して、圧延後線材形状φ5.5mm ×長さ
約12kmの線材を製造した。最終圧延ロール手前のガイド
ローラーとして、各材種ごとに2 個1 セットを配置し、
合計160 トン( ビレット2 トン×80本) を通材させた
後、ローラーカリバー部に発生した摩耗痕跡の深さh
を、表面粗さ計にて測定した。また、摩耗痕跡周囲の損
傷有無、チッピング深さ、および、割れ深さを、蛍光探
傷法および断面研磨面の光学顕微鏡観察により評価し
た。再利用に当たってのローラーカリバー面の必要研削
量は、摩耗痕跡周囲に割れ・チッピングの損傷が観察さ
れない場合は、摩耗痕跡深さh の1.2 倍、チッピングが
生じている場合は、チッピング深さの1.2 倍、そして、
割れが生じている場合は、割れ深さの1.2 倍として、第
2 表中に示した。 ( 比較例6 〜11)比較例6 〜8 は、実施例1 〜5 と同一
原料を用いアセトンで調製したが、それぞれ体積率を70
% を超えた場合( 比較例6)、焼結条件が不適で相対密度
が99% を下回った場合( 比較例7)、分散粒子径が10μm
を超えた場合( 比較例8)である。また、比較例9 、10
は、特開平9-278523号公報と同様のTi-Hf-B 固溶体粒子
を分散させたものであり、比較例9 は、非水系の分散媒
としてアセトンを用い、比較例10は、水を分散媒に用い
た例である。比較例11は、粒子分散を行っていない炭化
珪素焼結体である。これらを併せて第1 表に示す。ま
た、これら比較例の材料も、実施例1 〜5 と同様の条件
で通材試験を行い、その結果を第2 表に示した。
Table 2 shows the properties of each of the obtained sintered bodies together with the particle size, volume fraction, x value, and relative density of the Ti-Zr-B solid solution. In the rolling test, ordinary steel was used as the material to be rolled, and the initial billet shape was about 120 mm □ × about 18 m in length and about 2 tons in weight, the wire temperature during rolling was about 1000 ° C, and the passing speed was about 60 m /
Rolling was performed under the conditions of seconds to produce a wire rod having a shape of φ5.5 mm and a length of about 12 km after rolling. As a guide roller before the final rolling roll, one set of two for each grade is arranged,
After passing a total of 160 tons (2 tons of billet x 80), the depth of the wear mark generated on the roller caliber part h
Was measured with a surface roughness meter. In addition, the presence or absence of damage around the wear mark, the chipping depth, and the crack depth were evaluated by fluorescence inspection and optical microscope observation of the polished cross-section surface. The required amount of grinding of the roller caliber surface during reuse is 1.2 times the wear mark depth h if no cracking or chipping damage is observed around the wear mark, and 1.2 times the chipping depth if chipping has occurred. Double and
If cracks have occurred, the crack depth shall be 1.2 times the crack depth.
2 Shown in the table. (Comparative Examples 6 to 11) Comparative Examples 6 to 8 were prepared with acetone using the same raw materials as in Examples 1 to 5, but each had a volume ratio of 70.
% (Comparative Example 6), when the sintering conditions were inappropriate and the relative density was less than 99% (Comparative Example 7), the dispersed particle diameter was 10 μm.
(Comparative Example 8). Comparative Examples 9 and 10
Is obtained by dispersing the same Ti-Hf-B solid solution particles as in JP-A-9-278523, Comparative Example 9 uses acetone as a non-aqueous dispersion medium, and Comparative Example 10 disperses water. This is an example in which the medium is used. Comparative Example 11 is a silicon carbide sintered body without particle dispersion. These are also shown in Table 1. The materials of these comparative examples were also subjected to a passing test under the same conditions as in Examples 1 to 5, and the results are shown in Table 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】第2 表に示すように、本発明の実施例によ
るものは、摩耗痕跡深さが、何れも線材160 トン通材後
で40μm 以下と非常に少なく、かつ、摩耗痕跡周囲に
は、割れ・チッピングの欠損が何れの場合も認められ
ず、耐摩耗性、耐欠損性共に優れるが、比較例の各ロー
ラーは、本発明の実施例に比べて、摩耗痕跡深さが大き
いか、もしくは少なくとも割れ・チッピングが発生して
おり、耐摩耗性、耐欠損性の両立が図られていないこと
が確認された。比較例10に示したように、Ti-Hf-B固溶
体を分散させる系の水調製は、調製中にHfB2層の表面に
酸化物が形成され、焼成中に酸化物が分解・揮発し、焼
成割れを起こすことになった。
As shown in Table 2, according to the embodiments of the present invention, the wear trace depth was very small, 40 μm or less after passing 160 tons of wire, and the wear trace depth was around the wear trace. No crack or chipping loss is observed in any case, and the wear resistance and the chipping resistance are both excellent.However, each roller of the comparative example has a larger wear mark depth than the examples of the present invention, or It was confirmed that at least cracking and chipping occurred, and both abrasion resistance and chipping resistance were not achieved. As shown in Comparative Example 10, in the water preparation of a system in which the Ti-Hf-B solid solution is dispersed, an oxide is formed on the surface of the HfB 2 layer during the preparation, and the oxide is decomposed and volatilized during firing, Fire cracking was caused.

【0030】また、ガイドローラを繰り返し再利用する
に当たってのローラーカリバー面の必要研削量も、本発
明によるものは48μm 未満と小さいのに対し、比較例の
各ローラーでは、発生した割れ・チッピング領域の除去
のために必要な研削量が87μm 以上と大きい。再研削時
の加工費、繰り返し利用を含めた製品の総寿命を考慮す
ると、本発明の焼結体によるガイドローラーは有利であ
ることが確認された。
Further, the required amount of grinding of the roller caliber surface when the guide roller is repeatedly reused is less than 48 μm according to the present invention, whereas each roller according to the comparative example has a smaller cracking / chipping area. The amount of grinding required for removal is as large as 87 μm or more. Considering the processing cost at the time of re-grinding and the total life of the product including repeated use, it was confirmed that the guide roller made of the sintered body of the present invention was advantageous.

【0031】[0031]

【発明の効果】本発明で使用するZrC やZrB2は、特開平
9-278523号公報で開示されるセラミックス原料であるHf
B2に比べて、1/10程度の安価な原料であり、粒子分散炭
化珪素系全体の原料コストを1/2 以下に抑えることが可
能になる。また、粉体調製時のコストや危険性を大幅に
軽減できる水系の調製が可能になり、より一層製造コス
トを軽減出来る。
ZrC and ZrB 2 to be used in the present invention exhibits, JP
Hf which is a ceramic raw material disclosed in JP-A-9-278523
Compared to B 2, inexpensive raw material of about 1/10, it becomes possible to suppress the material cost of the whole particles dispersed silicon carbide to less than 1/2. Further, it becomes possible to prepare an aqueous system which can significantly reduce the cost and danger at the time of preparing the powder, and the production cost can be further reduced.

【0032】本発明により得られた粒子分散炭化珪素質
焼結体からなる線材圧延ガイドローラーは、高硬度、高
靭性、高耐熱衝撃性、高耐酸化性を有し、上記の如く高
い耐摩耗性を維持しつつ、耐欠損性をより優れたものと
することが可能となった。このことにより、長時間信頼
性の非常に優れた線材圧延ガイドローラーの作製が、安
価に可能となり、その工業的有用性は非常に大きい。
The wire rolling guide roller made of the particle-dispersed silicon carbide sintered body obtained by the present invention has high hardness, high toughness, high thermal shock resistance, and high oxidation resistance, and has high wear resistance as described above. It has become possible to improve the fracture resistance while maintaining the properties. This makes it possible to produce a wire rolling guide roller having extremely excellent long-term reliability at low cost, and its industrial utility is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧延試験に用いた線材圧延ガイドローラーの組
み付け側面図である。
FIG. 1 is an assembled side view of a wire rod guide roller used in a rolling test.

【符号の説明】[Explanation of symbols]

1 …線材圧延ガイドローラー 2 …被圧延材( 鉄などの金属線材) 3 …ローラーカリバー部の摩耗痕跡 4 …チッピング部 5 …割れ 1… Wire rolling guide roller 2… Material to be rolled (metal wire such as iron) 3… Abrasion trace of roller caliber 4… Tipping 5… Crack

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 敦司 岩手県釜石市鈴子町23−15 新日本製鐵株 式会社釜石製鐵所内 Fターム(参考) 4G001 BA22 BA23 BA26 BA44 BA45 BA60 BB22 BB43 BB44 BB45 BB60 BC12 BC13 BC43 BC56 BC57 BC73 BD04 BD12 BD16 BE11 BE22 BE33  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Atsushi Aoyama 23-15 Suzukocho, Kamaishi City, Iwate Prefecture F-term in Kamaishi Works, Nippon Steel Corporation (reference) 4G001 BA22 BA23 BA26 BA44 BA45 BA60 BB22 BB43 BB44 BB45 BB60 BC12 BC13 BC43 BC56 BC57 BC73 BD04 BD12 BD16 BE11 BE22 BE33

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素(SiC) 焼結体中に、平均径1 〜
10μm のTi1-x ZrxB2(0.02 ≦x ≦0.25) で表わされる
硼化チタン−硼化ジルコニウム固溶体粒子が、体積分率
20〜70% の範囲で分散し、かつ、相対密度が99% 以上で
あることを特徴とする粒子分散炭化珪素質焼結体。
1. The method of claim 1, wherein the silicon carbide (SiC) sintered body has an average diameter of 1 to
Titanium boride-zirconium boride solid solution particles represented by 10 μm Ti 1-x Zr x B 2 (0.02 ≦ x ≦ 0.25) have a volume fraction of
A particle-dispersed silicon carbide-based sintered body dispersed in a range of 20 to 70% and having a relative density of 99% or more.
【請求項2】 請求項1 記載の粒子分散炭化珪素質焼結
体を成形加工してなる線材圧延ガイドローラー。
2. A wire rolling guide roller formed by molding and processing the particle-dispersed silicon carbide-based sintered body according to claim 1.
JP16541899A 1999-06-11 1999-06-11 Particle-dispersed silicon carbide sintered body, method for producing the same, and wire rod rolling guide roller Expired - Fee Related JP4347949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16541899A JP4347949B2 (en) 1999-06-11 1999-06-11 Particle-dispersed silicon carbide sintered body, method for producing the same, and wire rod rolling guide roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16541899A JP4347949B2 (en) 1999-06-11 1999-06-11 Particle-dispersed silicon carbide sintered body, method for producing the same, and wire rod rolling guide roller

Publications (2)

Publication Number Publication Date
JP2000351671A true JP2000351671A (en) 2000-12-19
JP4347949B2 JP4347949B2 (en) 2009-10-21

Family

ID=15812053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16541899A Expired - Fee Related JP4347949B2 (en) 1999-06-11 1999-06-11 Particle-dispersed silicon carbide sintered body, method for producing the same, and wire rod rolling guide roller

Country Status (1)

Country Link
JP (1) JP4347949B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211981A (en) * 2001-01-09 2002-07-31 Nippon Steel Corp Shift side guide roll
JP2016132607A (en) * 2015-01-21 2016-07-25 新日鐵住金株式会社 Ceramic composite material and manufacturing method therefor
JP2019156684A (en) * 2018-03-14 2019-09-19 美濃窯業株式会社 Composite ceramic member and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617763B2 (en) 2003-09-03 2011-01-26 ソニー株式会社 Device authentication system, device authentication server, terminal device, device authentication method, and device authentication program
US7647498B2 (en) 2004-04-30 2010-01-12 Research In Motion Limited Device authentication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211981A (en) * 2001-01-09 2002-07-31 Nippon Steel Corp Shift side guide roll
JP4690553B2 (en) * 2001-01-09 2011-06-01 新日本製鐵株式会社 Mating ring for shift side guide roll
JP2016132607A (en) * 2015-01-21 2016-07-25 新日鐵住金株式会社 Ceramic composite material and manufacturing method therefor
JP2019156684A (en) * 2018-03-14 2019-09-19 美濃窯業株式会社 Composite ceramic member and manufacturing method therefor

Also Published As

Publication number Publication date
JP4347949B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP4795588B2 (en) Wear resistant parts made of silicon nitride
AU2010279557B2 (en) Tough coated hard particles consolidated in a tough matrix material
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
EP2537819B1 (en) Wear-resistant member and method for producing same
WO2014069268A1 (en) Silicon nitride sintered body and wear resistant member using same
EP1696047B1 (en) Roll for molten metal plating bath
JP4347949B2 (en) Particle-dispersed silicon carbide sintered body, method for producing the same, and wire rod rolling guide roller
JP6037218B2 (en) Silicon nitride sintered body and sliding member using the same
JP2010235351A (en) Alumina-based ceramic sintered compact, cutting insert and cutting tool
US20230093291A1 (en) Silicon nitride sintered body, wear-resistant member using the same, and method for producing silicon nitride sintered body
Liu et al. Microstructure and mechanical properties of TiB 2-Al 2 O 3 composites
JP3563870B2 (en) Wire rod guide roller made of particle-dispersed silicon carbide sintered body
JP4820840B2 (en) Method for producing wear-resistant member made of silicon nitride
JP2001181776A (en) Cemented carbide sintered alloy and producing method therefor
KR101017928B1 (en) Titanium diboride sintered body with metal as asintering aid and method for manufacture thereof
Attia et al. Hot Pressed Si 3 N 4 Ceramics Using MgO–Al 2 O 3 as Sintering Additive for Vehicle Engine Parts
JP4050858B2 (en) Bar Smasher Roll
JP4690553B2 (en) Mating ring for shift side guide roll
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture
JPH09278529A (en) Wire rolling guide roller consisting of particle-dispersed silicon nitride-based baked body
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
Xiangming et al. Cermet
JPH09155415A (en) Ceramic roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees