JP3563870B2 - Wire rod guide roller made of particle-dispersed silicon carbide sintered body - Google Patents

Wire rod guide roller made of particle-dispersed silicon carbide sintered body Download PDF

Info

Publication number
JP3563870B2
JP3563870B2 JP10645196A JP10645196A JP3563870B2 JP 3563870 B2 JP3563870 B2 JP 3563870B2 JP 10645196 A JP10645196 A JP 10645196A JP 10645196 A JP10645196 A JP 10645196A JP 3563870 B2 JP3563870 B2 JP 3563870B2
Authority
JP
Japan
Prior art keywords
guide roller
wire rod
silicon carbide
sintered body
rod guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10645196A
Other languages
Japanese (ja)
Other versions
JPH09278523A (en
Inventor
哲郎 野瀬
健治 中島
泰 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10645196A priority Critical patent/JP3563870B2/en
Publication of JPH09278523A publication Critical patent/JPH09278523A/en
Application granted granted Critical
Publication of JP3563870B2 publication Critical patent/JP3563870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄などの金属線材を熱間圧延で製造する際に使用する耐摩耗性、耐欠損性に優れるガイドローラーに関するものである。
【0002】
【従来の技術】
熱間線材圧延ラインは、一般に1000℃以上の高温に熱した太い角柱状ビレットを多数のロールスタンド間を連続的に通過させて減面し、所定の形状、寸法に仕上げるもので、各ロールスタンド間には、圧延中の線材を圧延ロールの所定の位置に誘導するための多数のガイド部材が用いられている。
【0003】
このガイド部材は、通常、高温かつ高速の線材の確実な誘導を実現するため回転可能なローラーとすることが多い。圧延ラインの中で、特に最終スタンドである仕上圧延機の入側に用いられるガイドローラーは、線材の減面化に従い通材速度が60m/sec以上と高速になっているうえ、線材の誘導性を高めるため圧延ロールに近づける必要性から直径の小さいローラーを用いることが要求されるなど使用環境は極めて厳しいものとなっている。
【0004】
従来、これら鉄などの金属線材の圧延機のガイドローラーとしては、高硬度炭素鋼製、もしくは炭化タングステン(WC)等の超硬合金製のものが用いられてきた。
【0005】
超硬合金製のローラーは、熱間で被圧延材と反応しにくく、かつ高硬度炭素鋼製のものに比べて耐摩耗性に優れるため、最終スタンド入側に用いた場合でも摩耗によるローラー交換は少なくてすむが、一方で、WC粒の脱落、チッピング、巨視的な割れ等が、線材と接触するローラーカリバー部で生じる場合があり、被圧延材であるところの線材表面の肌荒れや摩耗傷の原因となっていた。
【0006】
また、脱落したWC含有の硬質粒が圧延中に線材表面に付着・圧入され、後工程での更なる線材伸線化、細線化の際に断線の原因となる場合があった。
【0007】
ガイドローラーは通常摩耗領域を研削して再利用するが、残存き裂が再利用時のチッピングの原因となるため、チッピングと割れが生じている領域を完全に削除しておく必要がある。
【0008】
チッピング・割れが生じると、その研削量としては、割れの深さも含めると一般に摩耗深さの3倍程度必要となり、追加工コストが高くなる一方で、ローラーとしての繰返し利用寿命が短くなるなど、経済性の面で不利となっていた。
【0009】
さらに、WC等の超硬合金は一般に比重が大きくローラーの重量が重くなるため圧延時のローラーの回転が加速されるまでの間に激しい摩耗を受け、本来の高い耐摩耗性が十分に発揮されていない場合があった。
【0010】
一方、超硬合金に比べて低比重でかつ高硬度であるため耐摩耗性の改善が期待される炭化珪素セラミックスをガイドローラーに適用する試みもなされてきており、特開平01―130807号公報では、線材と接触する部分を炭化珪素セラミックスで形成し、耐摩耗性と線材表面性状の改善を試みている。
【0011】
【発明が解決しようとする課題】
ところが従来の炭化珪素セラミックス製ガイドローラーは、ローラーの軽量化の面においては十分機能を発揮しかつ比較的高い耐摩耗性を有するものの摩耗部周囲に巨視的なチッピングや割れの発生が認められ、超硬合金製ローラーとほぼ同等の耐摩耗性を維持したまま耐欠損性を飛躍的に改善するには至っていないため、圧延ラインの最終圧延機入側のように高温の圧延鋼材が極めて高速で通過するような厳しい使用環境下においては信頼性に欠ける問題点があった。
【0012】
本発明は上記の如き課題を解決するために行われたものである。本発明の目的は、高い耐摩耗性と耐欠損性を両立する線材圧延ガイドローラーを提供することにある。
【0013】
【課題を解決するための手段】
本発明の線材圧延ガイドローラーは、次のとおりのものである。
(1)少なくとも無加圧焼結してなる炭化珪素(SiC)焼結体中に硼化チタン硼化ハフニウム固溶体粒子が分散した相対密度99%以上の粒子分散炭化珪素質焼結体からなることを特徴とする線材圧延ガイドローラー。
(2)前記硼化チタン硼化ハフニウム固溶体粒子がTi 1-x Hf x 2 (xの範囲0.02〜0.25)で表される(1)記載の線材圧延ガイドローラー。
(3)前記固溶体粒子の平均径が1〜10μmである(1)記載の線材圧延ガイドローラー。
(4)前記固溶体粒子の体積分率が20〜70%の範囲である(1)記載の線材圧延ガイドローラー。
(5)前記粒子分散炭化珪素質焼結体のビッカース硬さ(HV10)が3100以上である(1)記載の線材圧延ガイドローラー。
(6)前記粒子分散炭化珪素質焼結体の耐熱衝撃温度差(ΔT)が850℃以上である(1)記載の線材圧延ガイドローラー。
(7)無加圧焼結を真空中で行う(1)記載の線材圧延ガイドローラー。
(8)無加圧焼結後、さらにアルゴンガス雰囲気中にて熱間静水圧プレス焼結してなる(1)記載の線材圧延ガイドローラー。
【0014】
本発明者らは種々の研究の結果、セラミックス製線材圧延ガイドローラーの摩耗は高速で通過する線材との摺動により生じ、また摩耗部周囲のチッピングや割れ等の欠損は主に線材先端部分がローラーへ突入する際の機械的衝撃、および1000〜1200℃の高温の線材との接触による加熱と周囲からの水冷による熱衝撃により生成・進展するものであり、これら摩耗と欠損はローラーの材質が低硬度、低靭性、低耐熱衝撃性の場合に顕著であることを見出した。
【0015】
従って、耐摩耗性と耐欠損性を同時に改善し本課題を達成するためには、ローラー材質の高硬度化、高靭性化、高耐熱衝撃性化が必要不可欠である。
【0016】
これらの特性を同時に向上させる方法としては、充分緻密な焼結体において硬質の粒子を分散させることが効果的であり、特に硬質のTi―Hf―B固溶体粒子を炭化珪素中に分散させることにより、従来のモノリシック炭化珪素製ガイドローラーに比べて、耐摩耗性を高めつつ、さらに耐チッピング、耐割れ等の耐欠損性を著しく向上させる効果を付与することが可能であることを見出した。
【0017】
Ti―Hf―B固溶体は、hcp構造をもつ硬質の高融点化合物であり、焼結後に炭化珪素焼結体中に分散粒子として残留し、焼結体全体の硬度を向上させる効果をもつ。
【0018】
そして炭化珪素相、固溶体相の熱膨張係数差、ヤング率の相異等により、分散粒子近傍に残留応力を発生させ、破壊の際の破壊エネルギーを向上させる効果を持ち、靭性を著しく向上させつつ耐熱衝撃性を向上させる作用をもつ。
【0019】
本発明のガイドローラーに用いられるTi―Hf―B固溶体は、Ti1−XHfで表すことができ、Xの範囲としては、0.02〜0.25であることが好ましい。
【0020】
TiB相にHfB相を所定量固溶させるとTiB相単身の場合に比べて硬さを著しく向上させることができるが、Xが0.02より少ない場合、十分な高硬度化がはかれず、また0.25を超えると炭化珪素との複合材料を焼結する際に99%以上の相対密度が得られにくい。
【0021】
本発明の焼結体ではTi1−XHf固溶体相を20〜70体積%含むが、70体積%より多く添加すると高温での耐酸化性が低下しかつ十分な靭性が得られず耐欠損性が低下する。
【0022】
また20体積%より少ないと硬さ、靭性、耐熱衝撃性の向上に充分寄与が認められない。また、分散させるTi1−XHf固溶体相の粒子径としては、平均結晶粒径の範囲が、1〜10μmであることが好ましい。
【0023】
1μmより小さいと靭性への寄与が得られ難く、また、10μmより大きいと硬さ、耐熱衝撃性の低下を招く。
【0024】
さらに、本発明では焼結体の相対密度としては99%以上であるが、99%未満では、Ti1−XHf固溶体相粒子の分散による焼結体中への残留応力の付与が不十分であるため好ましくない。
【0025】
炭化珪素(SiC)は共有結合性の強い物質であり単味では焼結が困難であるため、緻密化に際しては種々の添加物を加えてもかまわない。
【0026】
焼結助剤としては炭化硼素、金属硼素、炭素、窒化アルミニウム、酸化アルミニウム、希土類酸化物等を用いることができる。
【0027】
焼結方法としては、少なくとも無加圧焼結法い、更にガス圧焼結法、熱間静水圧プレス焼結法、ホットプレス法の一種もしくは複数の焼結法を組み合わせることも可能である。
【0028】
無加圧焼結は真空中にて行うと緻密な焼結体が得られやすい。複雑形状品であるガイドローラーにおいて高密度を達成するためには、無加圧焼結後、さらにアルゴンガス雰囲気中にて熱間静水圧プレス焼結を行うことが好ましい。
【0029】
焼結温度の範囲としては、1950〜2200℃であることが好ましく、保持時間は4時間以上であることが望ましい。1950℃未満では充分高い密度が得られずTi1−XHf固溶体相粒子近傍に高い残留応力を発生させることが困難で高い靭性が得られない。また、2200℃より高い温度では、SiCが昇華・分解する。
【0030】
焼結時の保持時間としては、原料として用いたTiB粉末とHfB粉末が反応し安定なTi1−XHf固溶体相を生成するのに上記焼結温度の範囲にて4時間以上の保持が必要である。
【0031】
【作用】
本発明の粒子分散炭化珪素質焼結体からなる線材圧延ガイドローラーは、炭化珪素(SiC)焼結体中に平均径1〜10μmのTi1−XHf(Xの範囲0.02〜0.25)で表せる硼化チタン硼化ハフニウム固溶体粒子が体積分率20〜70%の範囲で分散した相対密度99%以上の粒子分散炭化珪素質焼結体からなるが、これらの組み合わせにより、得られたガイドローラーは、高硬度、高靭性、高耐熱衝撃性を有し、耐摩耗性、耐欠損性が高く、長時間信頼性が高い。
【0032】
次に本発明の実施例を比較例と共に説明する。
【0033】
【実施例】
炭化珪素(SiC)粉末(β型、平均粒径0.3μm)に、硼化チタン(TiB)粉末(平均粒径1μm)、硼化ハフニウム(HfB)粉末(平均粒径2μm)、炭化硼素(BC)粉末(平均粒径0.8μm)、及び炭素(C)粉末(平均粒径0.05μm)を第1表に示す所定量(重量%)添加し、溶媒としてアセトンを用いて炭化珪素製ボールミルで24時間混練した。
【0034】
次いで得られた混合粉末を、成形後焼結した。成形条件としては冷間静水圧による加圧150MPaとし、外径φ70mm、穴径φ30mm、厚さ35mmのドーナツ状成形体を得た。
【0035】
焼結としては、真空中にて、第1表中に示す温度で4時間保持の無加圧焼結後、同じく第1表中に示す温度、高圧アルゴンガス雰囲気中にて2時間保持の熱間静水圧プレス焼結を行った。
【0036】
得られた焼結体から、外径約φ56mm、内径約φ28mm、厚さ約25mm、カリバー面角度142度、内側に外径φ35mmのボールベアリングを2個配置可能な所定の形状のガイドローラーを研削加工し、圧延試験に供した。
【0037】
得られた焼結体から各種形状の試験片を切り出し、機械的特性を評価した。硬さは、押込荷重10kgにてビッカース硬さとして測定した。
【0038】
靭性についてはJIS R1607のSEPB法により室温にて破壊靭性値KICを測定した。また、耐熱衝撃性としては、曲げ試験片を大気中にて所定の温度に加熱後、水中急冷し、抗折強さの劣化がはじまる急冷温度差ΔTで評価した。焼結体密度は、アルキメデス法により相対密度として測定した。
【0039】
Ti―Hf―B固溶体粒の粒径および体積分率は、焼結体の鏡面研磨面を撮影した光学顕微鏡像(拡大率500倍)より30個以上の粒子径および撮影面中の粒子面積分率として測定し、その平均値として表した。
【0040】
また、Ti1−XHf(hcp構造)のX値はX線回折法を用いて、固溶体相の格子定数、TiB(hcp構造)の格子定数(a=3.026Å、c=3.213Å)、およびHfB(hcp構造)の格子定数(a=3.141Å、c=3.470Å)の値の比から算出した。
【0041】
得られた各焼結体の諸特性を焼結助剤の添加量、焼結条件、焼結体密度、Ti―Hf―B固溶体の粒径、体積分率、X値と共に第1表に示す。
【0042】
圧延試験としては、被圧延材として普通鋼を用い、初期ビレット形状約120mm角・長さ約18m・重さ約2トン、圧延後線材形状φ5.5mm・長さ約11km、圧延時線材温度約1000℃、通材速度約60m/secの条件にて最終圧延ロール手前のガイドローラーとして各材種ごとに2個一組を配置し、合計160トン(ビレット80本)を通材させた後、ローラーカリバー部に発生した摩耗痕の深さhを表面粗さ計にて測定した。
【0043】
また摩耗痕周囲の損傷有無、チッピング深さ、および割れ深さを蛍光探傷法および断面研磨面の光学顕微鏡観察により評価した。
【0044】
再利用に当たってのローラーカリバー面の必要研削量は、摩耗痕周囲に割れ・チッピングの損傷が観察されない場合は摩耗痕深さhの1.2倍、チッピングが生じている場合はチッピング深さの1.2倍、そして割れが発生している場合は割れの深さの1.2倍として第1表中に示した。
【0045】
比較例として、Ti―Hf―B固溶体粒子を添加していない炭化珪素製ローラー、および超硬合金製ローラーの結果も併せて第1表に示す。
【0046】
第1表に示すように、本発明の実施例によるものは、摩耗痕深さが何れも線材160トン通材後で80μm以下と少なくかつ摩耗痕周囲には割れ・チッピングの欠損が何れの場合も認められず、耐摩耗性、耐欠損性共に優れるが、比較例に該当するローラーでは本発明の実施例と比べて、摩耗痕深さが大きいか、もしくは少なくとも割れ、チッピングの何れかが発生しており、耐摩耗性、耐欠損性の両立が図られていないことが確認された。
【0047】
また、ガイドローラーを繰返し再利用するに当たってのカリバー面の必要研削量も、本発明によるものは100μm未満と小さいのに対し、比較例に該当するローラーでは発生した割れ・チッピング領域の除去のために必要研削量が180μm以上と大きく、再研削時の加工費、繰返し利用を含めた製品の総寿命を考慮すると経済的に不利であることが確認された。
【0048】
【表1】

Figure 0003563870
【0049】
【表2】
Figure 0003563870
【0050】
【発明の効果】
本発明によれば、本発明により得られた粒子分散炭化珪素質焼結体からなる線材圧延ガイドローラーは、高硬度、高靭性、高耐熱衝撃性を有し、上記の如く高い耐摩耗性を維持しつつ、耐欠損性をより優れたものとすることが可能となった。
【0051】
このことにより長時間信頼性の非常に優れた線材圧延ガイドローラーの作製が可能となり、その工業的有用性は非常に大きい。
【図面の簡単な説明】
【図1】本発明の実施例による線材圧延ガイドローラーの側面図である。
【符号の説明】
1 線材圧延ガイドローラー
2 被圧延線材
3 ローラーカリバー部摩耗痕
4 チッピング
5 割れ[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a guide roller having excellent abrasion resistance and fracture resistance used when a metal wire such as iron is manufactured by hot rolling.
[0002]
[Prior art]
A hot wire rolling line is a process in which a thick prismatic billet generally heated to a high temperature of 1000 ° C. or higher is continuously passed between a number of roll stands to reduce the surface area and finish to a predetermined shape and dimensions. Many guide members are used between the rolling rolls to guide the wire being rolled to a predetermined position on the rolling roll.
[0003]
This guide member is usually a rotatable roller in order to realize a high-temperature and high-speed wire guide. In the rolling line, particularly, the guide roller used on the entrance side of the finishing mill, which is the final stand, has a high threading speed of 60 m / sec or more in accordance with the reduction in the surface area of the wire rod, and also has an inductive property of the wire rod. The use environment is extremely severe, for example, it is required to use a roller having a small diameter because of the necessity of approaching a rolling roll in order to increase the pressure.
[0004]
Conventionally, as a guide roller of a rolling machine for metal wires such as iron, a roller made of high-hardness carbon steel or a cemented carbide such as tungsten carbide (WC) has been used.
[0005]
Rollers made of cemented carbide are less likely to react with the material to be rolled hot and have higher abrasion resistance than those made of high-hardness carbon steel. On the other hand, WC grains may fall off, chipping, macroscopic cracks, etc. may occur at the roller caliber that comes in contact with the wire, and the surface of the wire, which is the material to be rolled, has a rough surface or abrasions. Was the cause.
[0006]
In addition, the dropped WC-containing hard particles are attached and pressed into the surface of the wire during rolling, which may cause disconnection when the wire is further drawn and thinned in a subsequent process.
[0007]
The guide roller is usually reused by grinding the worn area. However, since the remaining cracks cause chipping at the time of reuse, it is necessary to completely remove the area where chipping and cracking occur.
[0008]
When chipping or cracking occurs, the grinding amount is generally required to be about three times the abrasion depth including the crack depth, which increases the additional work cost and shortens the life of repeated use as a roller. It was disadvantageous in terms of economy.
[0009]
In addition, cemented carbides such as WC generally have a high specific gravity and a heavy weight of the roller, so they undergo severe abrasion before the rotation of the roller during acceleration is accelerated, and the original high wear resistance is sufficiently exhibited. There was no case.
[0010]
On the other hand, attempts have been made to apply silicon carbide ceramics, which are expected to have improved wear resistance due to their lower specific gravity and higher hardness as compared with cemented carbides, as guide rollers, and Japanese Patent Application Laid-Open No. 01-130807 discloses a technique. Attempts have been made to improve the wear resistance and the surface properties of the wire by forming the portion in contact with the wire with silicon carbide ceramics.
[0011]
[Problems to be solved by the invention]
However, conventional silicon carbide ceramics guide rollers have sufficient functions in terms of reducing the weight of the rollers and have relatively high abrasion resistance, but macro chipping and cracking are observed around worn parts, Since the fracture resistance has not been improved dramatically while maintaining the wear resistance almost the same as that of cemented carbide rollers, high-temperature rolled steel at extremely high speeds, such as at the entrance to the final rolling mill in the rolling line, has not been developed. There is a problem of lack of reliability under a severe use environment such as passing.
[0012]
The present invention has been made to solve the above problems. An object of the present invention is to provide a wire rolling guide roller that achieves both high wear resistance and chipping resistance.
[0013]
[Means for Solving the Problems]
The wire rod guide roller of the present invention is as follows.
(1) consisting of at least pressureless sintering to become silicon carbide (SiC) boric titanium boride, hafnium solid solution particles in the sintered body is distributed a relative density of 99% or more of the particles dispersed silicon carbide sintered body A wire rod rolling guide roller characterized by the above-mentioned .
(2) the titanium boride boride, hafnium solid solution particles is represented by Ti 1-x Hf x B 2 ( range x 0.02 to 0.25) (1) wire rolling guide rollers according.
(3) The wire rod rolling guide roller according to (1), wherein the solid solution particles have an average diameter of 1 to 10 μm.
(4) The wire rod guide roller according to (1), wherein a volume fraction of the solid solution particles is in a range of 20 to 70%.
(5) The wire rod guide roller according to (1), wherein the particle-dispersed silicon carbide sintered body has a Vickers hardness (HV10) of 3100 or more.
(6) The wire rod guide roller according to (1), wherein the particle-dispersed silicon carbide sintered body has a thermal shock temperature difference (ΔT) of 850 ° C. or more.
(7) The wire rod guide roller according to (1), wherein the pressureless sintering is performed in a vacuum.
(8) The wire rod guide roller according to (1), further comprising hot isostatic press sintering in an argon gas atmosphere after pressureless sintering.
[0014]
As a result of various studies, the present inventors have found that the wear of the ceramic wire rod guide roller is caused by sliding with the wire passing at high speed, and the chipping and cracking around the worn portion is mainly caused by the loss of the tip of the wire. The mechanical shock when entering the roller, and the heat generated by contact with a high-temperature wire rod of 1000 to 1200 ° C and the thermal shock caused by water cooling from the surroundings, are generated and propagated. It was found to be remarkable in the case of low hardness, low toughness, and low thermal shock resistance.
[0015]
Therefore, in order to simultaneously improve the wear resistance and the fracture resistance and achieve the object, it is essential to increase the hardness, toughness and thermal shock resistance of the roller material.
[0016]
As a method of simultaneously improving these properties, it is effective to disperse hard particles in a sufficiently dense sintered body, and particularly by dispersing hard Ti—Hf—B solid solution particles in silicon carbide. It has been found that, compared to a conventional monolithic silicon carbide guide roller, it is possible to impart an effect of significantly improving chipping resistance, cracking resistance, and other chipping resistance while improving wear resistance.
[0017]
The Ti—Hf—B solid solution is a hard high-melting compound having an hcp structure, remains as dispersed particles in the silicon carbide sintered body after sintering, and has an effect of improving the hardness of the entire sintered body.
[0018]
And, due to the difference in thermal expansion coefficient between the silicon carbide phase and the solid solution phase, the difference in Young's modulus, etc., a residual stress is generated in the vicinity of the dispersed particles, and has the effect of improving the breaking energy at the time of breaking, while significantly improving the toughness. Has the function of improving thermal shock resistance.
[0019]
Ti-Hf-B solid solution used in the guide rollers of the present invention, Ti 1-X Hf can be represented by X B 2, as the range of X, is preferably 0.02 to 0.25.
[0020]
Can be significantly improved hardness as compared with the case when the predetermined amount of solid solution of HfB 2 phases TiB 2 phase of TiB 2 phase alone, if X is less than 0.02, sufficiently high hardness is the If it exceeds 0.25, it is difficult to obtain a relative density of 99% or more when sintering the composite material with silicon carbide.
[0021]
Although the sintered body of the present invention containing Ti 1-X Hf X B 2 solid solution phase 20 to 70% by volume, can not be obtained oxidation resistance is lowered and sufficient toughness at high temperatures is added more than 70 vol% The fracture resistance decreases.
[0022]
On the other hand, if it is less than 20% by volume, sufficient contribution to improvement in hardness, toughness and thermal shock resistance cannot be recognized. As the particle size of the Ti 1-X Hf X B 2 solid solution phase to be dispersed, the range of the average crystal grain size is preferably 1 to 10 [mu] m.
[0023]
If it is less than 1 μm, it is difficult to contribute to toughness, and if it is more than 10 μm, hardness and thermal shock resistance are reduced.
[0024]
Further, in the present invention, the relative density of the sintered body is not less than 99%, but if the relative density is less than 99%, the residual stress in the sintered body due to the dispersion of the Ti 1-X Hf X B 2 solid solution phase particles may not be provided. It is not preferable because it is insufficient.
[0025]
Since silicon carbide (SiC) is a substance having a strong covalent bond and is difficult to sinter simply, various additives may be added at the time of densification.
[0026]
As the sintering aid, boron carbide, metallic boron, carbon, aluminum nitride, aluminum oxide, rare earth oxide, and the like can be used.
[0027]
As a sintering method, have use at least pressureless sintering method, further gas pressure sintering method, a hot isostatic pressing sintering method, it is also possible to combine one or more sintering method of hot pressing is there.
[0028]
When pressureless sintering is performed in a vacuum, a dense sintered body is easily obtained. In order to achieve high density in the guide roller having a complicated shape, it is preferable to perform hot isostatic press sintering in an argon gas atmosphere after sintering without pressure.
[0029]
The sintering temperature is preferably in the range of 1950 to 2200 ° C., and the holding time is preferably 4 hours or more. Not obtained difficult and high toughness that sufficiently high density to generate a high residual stresses in the vicinity of Ti 1-X Hf X B 2 solid solution phase particles not obtained at less than 1950 ° C.. At a temperature higher than 2200 ° C., sublimation and decomposition of SiC occur.
[0030]
The holding time during sintering, 4 hours range the sintering temperature to TiB 2 powder and HfB 2 powder used as the raw material react to produce stable Ti 1-X Hf X B 2 solid solution phase The above holding is necessary.
[0031]
[Action]
Wire rolling guide rollers consisting of particles dispersed silicon carbide sintered body of the present invention, Ti 1-X Hf average diameter 1~10μm in the silicon carbide (SiC) sintered body X B 2 (range X 0.02 -0.25) is a particle-dispersed silicon carbide-based sintered body having a relative density of 99% or more in which titanium boride hafnium boride solid solution particles represented by the following formulas are dispersed in a volume fraction range of 20 to 70%. The obtained guide roller has high hardness, high toughness, high thermal shock resistance, high wear resistance, high chipping resistance, and high long-term reliability.
[0032]
Next, examples of the present invention will be described together with comparative examples.
[0033]
【Example】
Silicon carbide (SiC) powder (β type, average particle size 0.3 μm), titanium boride (TiB 2 ) powder (average particle size 1 μm), hafnium boride (HfB 2 ) powder (average particle size 2 μm), carbonized Boron (B 4 C) powder (average particle diameter 0.8 μm) and carbon (C) powder (average particle diameter 0.05 μm) were added in predetermined amounts (% by weight) shown in Table 1, and acetone was used as a solvent. And kneaded with a silicon carbide ball mill for 24 hours.
[0034]
Next, the obtained mixed powder was sintered after molding. The molding conditions were pressurization by cold isostatic pressure of 150 MPa, and a donut shaped body having an outer diameter of 70 mm, a hole diameter of 30 mm, and a thickness of 35 mm was obtained.
[0035]
The sintering was performed under pressure-free sintering at a temperature shown in Table 1 for 4 hours in a vacuum, and then for 2 hours at a temperature shown in Table 1 in a high-pressure argon gas atmosphere. Isostatic press sintering was performed.
[0036]
From the obtained sintered body, a guide roller of a predetermined shape capable of arranging two ball bearings having an outer diameter of about 56 mm, an inner diameter of about 28 mm, a thickness of about 25 mm, a caliber surface angle of 142 degrees, and an inner diameter of 35 mm inside is ground. It was processed and subjected to a rolling test.
[0037]
Test pieces of various shapes were cut out from the obtained sintered body, and the mechanical properties were evaluated. Hardness was measured as Vickers hardness at an indentation load of 10 kg.
[0038]
Regarding toughness, the fracture toughness value K IC was measured at room temperature by the SEPB method of JIS R1607. The thermal shock resistance was evaluated by a quenching temperature difference ΔT at which the bending test piece was heated to a predetermined temperature in the atmosphere, then rapidly cooled in water, and the bending strength began to deteriorate. The sintered body density was measured as a relative density by the Archimedes method.
[0039]
The particle diameter and the volume fraction of the Ti—Hf—B solid solution particles were determined by using an optical microscope image (magnification: 500 times) of a mirror-polished surface of the sintered body, with a particle diameter of 30 or more and a particle area in the photographed surface. The ratio was measured and expressed as the average value.
[0040]
Further, Ti 1-X X value of Hf X B 2 (hcp structure) using X-ray diffraction method, the lattice constant of the solid solution phase, TiB 2 lattice constant of (hcp structure) (a = 3.026Å, c = 3.213 °) and the lattice constant (a = 3.141 °, c = 3.470 °) of HfB 2 (hcp structure).
[0041]
Table 1 shows the characteristics of each of the obtained sintered bodies together with the amount of the sintering aid added, the sintering conditions, the sintered body density, the particle diameter of the Ti—Hf—B solid solution, the volume fraction, and the X value. .
[0042]
As the rolling test, ordinary steel was used as the material to be rolled, the initial billet shape was about 120 mm square, the length was about 18 m, the weight was about 2 tons, the wire shape after rolling was 5.5 mm, the length was about 11 km, and the wire temperature during rolling was about 11 km. At a temperature of 1000 ° C. and a threading speed of about 60 m / sec, a pair of two rollers is arranged for each material as a guide roller before the final rolling roll, and a total of 160 tons (80 billets) are passed. The depth h of the wear mark generated in the roller caliber was measured by a surface roughness meter.
[0043]
The presence or absence of damage around the wear mark, the chipping depth, and the crack depth were evaluated by fluorescence inspection and optical microscope observation of the polished surface of the cross section.
[0044]
The required amount of grinding of the roller caliber surface during reuse is 1.2 times the depth h of the wear mark when no cracking or chipping damage is observed around the wear mark, and 1 times the chipping depth when chipping occurs. The results are shown in Table 1 as .2 times, and 1.2 times the crack depth when cracks occurred.
[0045]
As a comparative example, Table 1 also shows the results of a roller made of silicon carbide and a roller made of cemented carbide to which Ti-Hf-B solid solution particles were not added.
[0046]
As shown in Table 1, in the case of the embodiment of the present invention, the wear scar depth was as small as 80 μm or less after passing 160 tons of wire and the cracks and chipping defects were lost around the wear scar. No wear was observed, and both abrasion resistance and chipping resistance were excellent.However, in the roller corresponding to the comparative example, as compared with the example of the present invention, the wear scar depth was large, or at least one of cracking and chipping occurred. It was confirmed that both abrasion resistance and chipping resistance were not achieved.
[0047]
In addition, while the required amount of grinding of the caliber surface when repeatedly reusing the guide roller is less than 100 μm according to the present invention, the roller corresponding to the comparative example is used for removing cracks and chipping regions generated. The required grinding amount was as large as 180 μm or more, and it was confirmed that it was economically disadvantageous in consideration of the processing cost at the time of re-grinding and the total life of the product including repeated use.
[0048]
[Table 1]
Figure 0003563870
[0049]
[Table 2]
Figure 0003563870
[0050]
【The invention's effect】
According to the present invention, the wire rolling guide roller made of the particle-dispersed silicon carbide-based sintered body obtained by the present invention has high hardness, high toughness, high thermal shock resistance, and has high wear resistance as described above. It has become possible to improve the fracture resistance while maintaining the same.
[0051]
This makes it possible to produce a wire rolling guide roller having extremely excellent long-term reliability, and its industrial utility is very large.
[Brief description of the drawings]
FIG. 1 is a side view of a wire rolling guide roller according to an embodiment of the present invention.
[Explanation of symbols]
1 Wire Rolling Guide Roller 2 Rolled Wire 3 Roller Caliber Wear Mark 4 Chipping 5 Crack

Claims (8)

少なくとも無加圧焼結してなる炭化珪素(SiC)焼結体中に硼化チタン硼化ハフニウム固溶体粒子が分散した相対密度99%以上の粒子分散炭化珪素質焼結体からなることを特徴とする線材圧延ガイドローラー。It is characterized by comprising a particle-dispersed silicon carbide-based sintered body having a relative density of 99% or more in which solid solution particles of titanium boride and hafnium boride are dispersed in a silicon carbide (SiC) sintered body sintered at least without pressure. Wire rod guide roller. 前記硼化チタン硼化ハフニウム固溶体粒子がTi1-xHfx2(xの範囲0.02〜0.25)で表される請求項1記載の線材圧延ガイドローラー。The titanium boride boride, hafnium solid solution particles Ti 1-x Hf x B 2 wire rolling guide roller according to claim 1, which is represented by (x ranging from 0.02 to 0.25 in). 前記固溶体粒子の平均径が1〜10μmである請求項1記載の線材圧延ガイドローラー。The wire rod guide roller according to claim 1, wherein the solid solution particles have an average diameter of 1 to 10 μm. 前記固溶体粒子の体積分率が20〜70%の範囲である請求項1記載の線材圧延ガイドローラー。The wire rod guide roller according to claim 1, wherein a volume fraction of the solid solution particles is in a range of 20 to 70%. 前記粒子分散炭化珪素質焼結体のビッカース硬さ(HV10)が3100以上である請求項1記載の線材圧延ガイドローラー。The wire rod guide roller according to claim 1, wherein the particle-dispersed silicon carbide sintered body has a Vickers hardness (HV10) of 3100 or more. 前記粒子分散炭化珪素質焼結体の耐熱衝撃温度差(ΔT)が850℃以上である請求項1記載の線材圧延ガイドローラー。The wire rod guide roller according to claim 1, wherein a thermal shock temperature difference (ΔT) of the particle-dispersed silicon carbide sintered body is 850 ° C or more. 無加圧焼結を真空中で行う請求項1記載の線材圧延ガイドローラー。The wire rod guide roller according to claim 1, wherein pressureless sintering is performed in a vacuum. 無加圧焼結後、さらにアルゴンガス雰囲気中にて熱間静水圧プレス焼結してなる請求項1記載の線材圧延ガイドローラー。2. The wire rod guide roller according to claim 1, further comprising hot isostatic press sintering in an argon gas atmosphere after pressureless sintering.
JP10645196A 1996-04-04 1996-04-04 Wire rod guide roller made of particle-dispersed silicon carbide sintered body Expired - Lifetime JP3563870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10645196A JP3563870B2 (en) 1996-04-04 1996-04-04 Wire rod guide roller made of particle-dispersed silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10645196A JP3563870B2 (en) 1996-04-04 1996-04-04 Wire rod guide roller made of particle-dispersed silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH09278523A JPH09278523A (en) 1997-10-28
JP3563870B2 true JP3563870B2 (en) 2004-09-08

Family

ID=14433978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10645196A Expired - Lifetime JP3563870B2 (en) 1996-04-04 1996-04-04 Wire rod guide roller made of particle-dispersed silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP3563870B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690553B2 (en) * 2001-01-09 2011-06-01 新日本製鐵株式会社 Mating ring for shift side guide roll
JP5131289B2 (en) * 2010-01-18 2013-01-30 新日鐵住金株式会社 Immersion member for molten metal plating bath
JP2019156684A (en) * 2018-03-14 2019-09-19 美濃窯業株式会社 Composite ceramic member and manufacturing method therefor

Also Published As

Publication number Publication date
JPH09278523A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
US6784131B2 (en) Silicon nitride wear resistant member and method of manufacturing the member
Klimczyk et al. Al2O3–cBN composites sintered by SPS and HPHT methods
EP2462083B1 (en) Tough coated hard particles consolidated in a tough matrix material
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
Nisar et al. Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems
Ciudad et al. Effect of intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered α-SiC
EP1148962B1 (en) Metal-ceramic laminar-band composite
JP7131572B2 (en) Cemented Carbide and Cemented Carbide Composite Rolls for Rolling
JP3563870B2 (en) Wire rod guide roller made of particle-dispersed silicon carbide sintered body
JP4347949B2 (en) Particle-dispersed silicon carbide sintered body, method for producing the same, and wire rod rolling guide roller
JP5989602B2 (en) Silicon nitride sintered body, manufacturing method thereof, and rolling element for bearing
Alexandre et al. Mechanical properties of hot isostatically pressed zirconium nitride materials
Zamora et al. Spark plasma sintering and dry sliding-wear of ZrC-16.7 vol.% Co cemented carbides
Rodríguez-Rojas et al. Effect of the degree of densification on the unlubricated sliding-wear behaviour of monolithic B4C ceramics
Smirnov et al. Dry reciprocating sliding wear behaviour of alumina–silicon carbide nanocomposite fabricated by ceramic injection molding
JP2008273829A (en) Method of manufacturing wear-resistant member made of silicon nitride
JPH09278529A (en) Wire rolling guide roller consisting of particle-dispersed silicon nitride-based baked body
JP2000313670A (en) Silicon nitride sintered compact and sputtering target made of the same
Liu et al. Microstructure of a bearing-grade silicon nitride
JP4050858B2 (en) Bar Smasher Roll
JP2001172085A (en) Silicon nitride sintered compact, production process therefor, and silicon nitride abrasion-resistant material using the same
JP4690553B2 (en) Mating ring for shift side guide roll
Jones et al. Sialon/TiB2 ceramic composites: synthesis, properties, and tribology
JP4052789B2 (en) Fiber reinforced metal, composite material using the same, and method for producing the same
KR970008043B1 (en) Method of guide roller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term