JP2000346473A - Heat pump - Google Patents

Heat pump

Info

Publication number
JP2000346473A
JP2000346473A JP11163294A JP16329499A JP2000346473A JP 2000346473 A JP2000346473 A JP 2000346473A JP 11163294 A JP11163294 A JP 11163294A JP 16329499 A JP16329499 A JP 16329499A JP 2000346473 A JP2000346473 A JP 2000346473A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
compressor
indoor
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11163294A
Other languages
Japanese (ja)
Inventor
Michiyoshi Kusaka
道美 日下
Kazuo Nakatani
和生 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP11163294A priority Critical patent/JP2000346473A/en
Priority to EP00911399A priority patent/EP1094285A1/en
Priority to CN00800748A priority patent/CN1302365A/en
Priority to PCT/JP2000/001885 priority patent/WO2000060288A1/en
Priority to KR1020007013577A priority patent/KR20010052480A/en
Publication of JP2000346473A publication Critical patent/JP2000346473A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a heat pump in which a sufficient compositional separation width can be ensured for both cooling and heating conditions through simple arrangement and control and the capacity can be controlled depending on the load by enlarging the capacity control width through regulation of the quantity of refrigerant in a main circuit and compositional control. SOLUTION: Delivery piping of a compressor 11 is coupled through a sub- throttle 20 and a first on/off valve 21 with the column bottom section of a rectifier/separator 17 having column top section coupled with a cooler and a storage unit annularly. The column bottom section of the rectifier/separator 17 is coupled through a sub-throttle 22 with the cooler 18 coupled with the suction piping of the compressor. Further, the piping coupling an outdoor main throttle 20 and an indoor main restrictor 22 is coupled through an on/off valve 23 with the bottom section of the storage unit 19 and non-azeotropic mixed refrigerant is encapsulated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用い、冷媒精留分離器により低沸点冷媒を貯留し、主回
路を流れる冷媒組成を変化させ、負荷に対応した能力を
発生させることができるヒートポンプ装置の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a non-azeotropic mixed refrigerant, stores a low-boiling refrigerant by a refrigerant rectification separator, changes the refrigerant composition flowing through a main circuit, and generates a capacity corresponding to a load. The present invention relates to an improvement in a heat pump device that can perform the heat treatment.

【0002】[0002]

【従来の技術】非共沸混合冷媒を用い、組成分離により
低沸点冷媒を貯留して主回路組成を可変するヒートポン
プ装置として、特公平5−44582号公報に示されて
いるものがある。
2. Description of the Related Art Japanese Patent Publication No. 5-44582 discloses a heat pump device which uses a non-azeotropic refrigerant mixture and stores a low-boiling refrigerant by composition separation to vary the main circuit composition.

【0003】以下、図面を参照しながら上記従来のヒー
トポンプ装置を説明する。
Hereinafter, the conventional heat pump device will be described with reference to the drawings.

【0004】図5は、従来のヒートポンプ装置を示す冷
凍サイクルの構成図である。図5において、圧縮機1、
四方弁2、室外熱交換器3、主回路減圧装置4、室内熱
交換器5が直列に接続されている。また、凝縮器3と主
回路減圧装置4との中間より減圧器6を連結し、精留分
離器7の塔底部に接続されている。精留分離器7の塔頂
部には冷却器8を配設し、圧縮機1と四方弁2との間の
配管が貫通し、熱交換可能なように配設されている。こ
の冷却器8は精留分離器7の塔頂部と接続され、冷媒の
貯留器を兼ねている。
FIG. 5 is a configuration diagram of a refrigeration cycle showing a conventional heat pump device. In FIG. 5, the compressor 1,
The four-way valve 2, the outdoor heat exchanger 3, the main circuit pressure reducing device 4, and the indoor heat exchanger 5 are connected in series. Further, a decompressor 6 is connected to the middle of the condenser 3 and the main circuit decompression device 4, and is connected to the bottom of the rectifying separator 7. A cooler 8 is provided at the top of the rectifying separator 7, and a pipe between the compressor 1 and the four-way valve 2 penetrates therethrough so that heat can be exchanged. The cooler 8 is connected to the top of the fractionator 7 and also serves as a refrigerant storage.

【0005】また、冷却器8の下部は、精留分離器7の
塔頂部と接続され、精留分離器7に流入した気相冷媒
は、貯留器を兼ねる冷却器8で液化され、冷媒の気相、
液相の比重差により貫流する。
[0005] The lower part of the cooler 8 is connected to the top of the rectifier separator 7, and the gas-phase refrigerant flowing into the rectifier separator 7 is liquefied by the cooler 8 also serving as a reservoir, and the refrigerant is cooled. gas phase,
It flows through due to the specific gravity difference of the liquid phase.

【0006】さらに、精留分離器7の塔底部より冷却器
8で液化した冷媒を主回路に流出させるために、精留分
離器7の塔底部を減圧器9を介して、主回路減圧装置4
と室内熱交換器5の中間に連結している。
Further, in order to allow the refrigerant liquefied in the cooler 8 to flow out from the bottom of the rectifying separator 7 to the main circuit, the bottom of the rectifying separator 7 is passed through the decompressor 9 to the main circuit pressure reducing device. 4
And the indoor heat exchanger 5.

【0007】このような構成からなる回路において、暖
房時には圧縮機1から吐出した冷媒は、四方弁2、室内
熱交換器5に高温冷媒が流れ、利用側熱交換器となり部
屋等を暖房する。さらに、室内熱交換器5で放熱した冷
媒は液化し、減圧器9を通過する精留回路と、主回路減
圧装置4を通過する主回路に分流される。
In the circuit having such a configuration, the refrigerant discharged from the compressor 1 at the time of heating flows into the four-way valve 2 and the indoor heat exchanger 5, and becomes a use side heat exchanger to heat a room or the like. Further, the refrigerant radiated in the indoor heat exchanger 5 is liquefied and divided into a rectification circuit passing through the pressure reducer 9 and a main circuit passing through the main circuit pressure reducing device 4.

【0008】主回路減圧装置4を通過する冷媒は室外熱
交換器3で蒸発し、四方弁2を通って再び圧縮機2に吸
入される。
The refrigerant passing through the main circuit pressure reducing device 4 evaporates in the outdoor heat exchanger 3, passes through the four-way valve 2, and is sucked into the compressor 2 again.

【0009】また、精留回路に分岐した冷媒は減圧装置
9により冷媒は減圧される。
The refrigerant branched to the rectification circuit is depressurized by the decompression device 9.

【0010】一方、精留分離器7に流入する冷媒の状態
は、室内熱交換器5の能力の大小変化により、液領域、
二相領域と変化し、液領域で精留分離器7に流入すれば
前述のような冷媒の組成分離は行われず、低沸点成分の
富んだ冷媒が循環し、能力が増大する。一方、二相領域
の冷媒で精留分離器7に流入すれば、気相が精留分離器
7を上昇し、冷却器8により冷却され液化し貯留され、
精留作用により冷却器8には低沸点成分に富んだ冷媒が
貯留され、主回路には高沸点成分に富んだ冷媒が循環
し、能力を減少させることができるものである。
[0010] On the other hand, the state of the refrigerant flowing into the rectifying separator 7 depends on the change in the capacity of the indoor heat exchanger 5, the liquid region,
If it changes to a two-phase region and flows into the rectification separator 7 in the liquid region, the compositional separation of the refrigerant as described above is not performed, and the refrigerant rich in low-boiling components circulates, and the capacity increases. On the other hand, if the refrigerant in the two-phase region flows into the rectifier 7, the gas phase rises in the rectifier 7, is cooled and liquefied by the cooler 8, and is stored.
Due to the rectification operation, a refrigerant rich in low-boiling components is stored in the cooler 8, and a refrigerant rich in high-boiling components circulates in the main circuit, so that the capacity can be reduced.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のヒートポンプ装置では、冷媒、暖房いずれの
場合にも分離を行わせようとすると、減圧器6,9を同
等の絞り開度とする必要があり、そのため、精留分離器
7の圧力は主回路の中間圧となり、精留分離もこの圧力
で動作することになる。したがって、精留分離器7の塔
頂部の温度は低沸点成分が多くなるため、上昇する気相
を液化させるための飽和温度はより低くなる。
However, in such a conventional heat pump device, if the separation is to be performed in both the refrigerant and the heating, it is necessary to set the decompressors 6 and 9 to the same throttle opening. Therefore, the pressure of the rectification separator 7 becomes the intermediate pressure of the main circuit, and the rectification separation also operates at this pressure. Accordingly, the temperature at the top of the fractionator 7 has a large amount of low-boiling components, and the saturation temperature for liquefying the rising gas phase becomes lower.

【0012】一方、冷却器8の冷却源として圧縮機1と
四方弁2の間の吸入配管を用いているために、圧縮機1
の吸入過熱度が大きい場合には冷却源の冷媒温度が上昇
するため、前述の塔頂部の気相を液化させるための温度
としては不十分となり、冷却熱量が不足し、そのため、
比較的沸点差の大きい非共沸混合冷媒を分離する場合に
は、分離幅が小さくなり、能力制御幅が少ない状況とな
っていた。
On the other hand, since the suction pipe between the compressor 1 and the four-way valve 2 is used as a cooling source of the cooler 8, the compressor 1
If the suction superheat degree is large, the refrigerant temperature of the cooling source rises, so that the temperature for liquefying the gas phase at the top of the tower becomes insufficient, and the amount of cooling heat is insufficient.
In the case of separating a non-azeotropic mixed refrigerant having a relatively large difference in boiling point, the separation width is small and the capacity control width is small.

【0013】また、減圧装置6,9は常に開放の状態と
なっており、冷却器8には冷媒が常に貯留された状態と
なり、冷媒量の調整はできないため、冷媒量による能力
制御はできなかった。
Further, since the decompression devices 6 and 9 are always in an open state, the refrigerant is always stored in the cooler 8 and the refrigerant amount cannot be adjusted, so that the capacity cannot be controlled by the refrigerant amount. Was.

【0014】本発明は従来の課題を解決するもので、冷
房暖房いずれの運転条件においても、また、沸点差の大
きな非共沸混合冷媒においても、十分な組成分離幅を得
ることができ、また、短時間での主回路の冷媒量調整に
よる能力制御を可能として、能力制御幅をより拡大する
ことができるヒートポンプ装置を提供することを目的と
する。
The present invention has been made to solve the conventional problems, and it is possible to obtain a sufficient composition separation width under any operating condition of cooling and heating, and also in a non-azeotropic mixed refrigerant having a large boiling point difference. It is another object of the present invention to provide a heat pump device capable of controlling the capacity of the main circuit by adjusting the amount of refrigerant in a short time, thereby expanding the capacity control range.

【0015】[0015]

【課題を解決するための手段】この目的を達成するため
本発明は、主回路の吐出配管と精留分離器塔の塔底部と
を副絞り装置と開閉弁を介して接続し、塔頂側の冷媒源
として塔底から流出する液冷媒の潜熱を利用したので、
冷却器を小型にできるのみならず、十分な低温および冷
却熱量で精留分離器の気相部を液化することができ、沸
点差の大きな非共沸混合冷媒においても低沸点成分の多
い冷媒を保留して分離幅を大きくとることができる。
In order to achieve this object, the present invention relates to a method in which a discharge pipe of a main circuit and a bottom of a rectifying separator tower are connected to a sub-throttle device via an on-off valve, and the top side Using the latent heat of the liquid refrigerant flowing out of the bottom as a refrigerant source for
Not only can the cooler be reduced in size, but it is also possible to liquefy the gas phase of the rectifier at a sufficiently low temperature and cooling heat, and to use a refrigerant with a large amount of low-boiling components even in a non-azeotropic mixed refrigerant having a large boiling point difference. The separation width can be reserved to increase the separation width.

【0016】また、貯留器内の冷媒を貯留あるいは空に
制御して、主回路の冷媒量を調整することができるの
で、冷媒量による能力制御と、冷媒組成による能力制御
により、幅広い能力制御が可能となる。
Further, since the amount of refrigerant in the main circuit can be adjusted by controlling the refrigerant in the reservoir to be stored or empty, a wide range of capacity control can be performed by controlling the capacity based on the refrigerant amount and controlling the capacity based on the refrigerant composition. It becomes possible.

【0017】また、室外主絞り装置と室内主絞り装置と
を接続する液配管と貯留器の底部とを開閉弁を介して接
続しているので、開閉弁を開閉操作することで短時間で
貯留器へ冷媒を流入出させることができ、冷媒量調整に
よる能力制御を短時間で行うことができる。
Further, since the liquid pipe connecting the outdoor main throttle device and the indoor main throttle device and the bottom of the reservoir are connected via the on-off valve, the opening and closing operation of the on-off valve allows the storage in a short time. The refrigerant can flow into and out of the vessel, and the capacity control by adjusting the refrigerant amount can be performed in a short time.

【0018】また、本発明は、室内機の吸い込み空気温
度を検知し、設定温度との差が一定値以下、すなわち、
室内の負荷に比べ冷暖房能力が過剰となった場合、貯留
器の底部と液配管との間の開閉弁を開放し、精留分離器
の塔底部と圧縮機吐出配管との間の開閉弁を閉止すると
いう簡単な制御で、短時間で貯留器に冷媒を貯留して主
回路の冷媒量を減少させ、その後、貯留器の底部と液配
管との間の開閉弁を閉止し、精留分離器の塔底部と圧縮
機吐出配管との間の開閉弁を開放するという簡単な制御
で精留分離を行わせることにより低沸点成分を貯留器に
貯留し、主回路冷媒組成を高沸点側に変化させて能力セ
ーブを行うことができ、また、設定温度との差が一定値
以上、すなわち、室内の負荷に比べ冷暖房能力が不足と
なった場合、精留分離器の塔底部と圧縮機吐出配管との
間の開閉弁と貯留器底部と液配管との間の開閉弁を開放
するという簡単な制御のみで、貯留器の冷媒量をほとん
ど空にし、主回路の冷媒量を増加させ、冷媒組成を元の
充填組成に戻すことにより能力向上を行うことができ
る。
Also, the present invention detects the temperature of the intake air of the indoor unit and determines that the difference from the set temperature is equal to or less than a predetermined value, that is,
If the cooling and heating capacity becomes excessive compared to the indoor load, open the on-off valve between the bottom of the reservoir and the liquid pipe, and open the on-off valve between the tower bottom of the rectification separator and the compressor discharge pipe. With a simple control of closing, the refrigerant is stored in the reservoir in a short time to reduce the amount of refrigerant in the main circuit, then the on-off valve between the bottom of the reservoir and the liquid pipe is closed, and rectification separation The low-boiling components are stored in the reservoir by performing rectification and separation by simple control of opening the on-off valve between the bottom of the vessel and the compressor discharge pipe, and the main circuit refrigerant composition is shifted to the high-boiling side. When the difference between the set temperature and the set temperature is more than a certain value, that is, when the cooling and heating capacity is insufficient compared with the indoor load, the tower bottom of the rectifying separator and the compressor discharge can be changed. Simple opening and closing valves between the piping and the bottom of the reservoir and the liquid piping In your only, to almost empty the refrigerant quantity in the reservoir, to increase the refrigerant amount of the main circuit, it is possible to perform the capacity improved by returning the refrigerant composition on the basis of the fill composition.

【0019】また、本発明は、主回路の吐出配管と精留
分離器塔塔底部とを副絞り装置と開閉弁を介して接続
し、塔頂側の冷却源として塔底から流出する液冷媒の潜
熱を利用したので、冷却器を小型にできるのみならず、
十分な低温および冷却熱量で精留分離器の気相部を液化
することができ、沸点差の大きな非共沸混合冷媒におい
ても低沸点成分の多い冷媒を貯留して分離幅を大きくと
ることができる。
Further, according to the present invention, there is provided a liquid refrigerant flowing out of the bottom as a cooling source on the top side by connecting the discharge pipe of the main circuit and the bottom of the tower of the rectifying separator via an on-off valve. The use of the latent heat of not only makes the cooler smaller,
The gas phase of the rectifier can be liquefied at a sufficiently low temperature and heat of cooling, and even a non-azeotropic mixed refrigerant with a large difference in boiling point can store a large amount of low-boiling-point components to increase the separation width. it can.

【0020】また、貯留器内の冷媒を貯留あるいは空に
制御して、主回路の冷媒量を調整することができるの
で、冷媒量による能力制御と、冷媒組成による能力制御
により、幅広い能力制御が可能となる。
Further, since the amount of refrigerant in the main circuit can be adjusted by controlling the refrigerant in the reservoir to be stored or empty, a wide range of capacity control can be achieved by controlling the capacity based on the amount of refrigerant and controlling the capacity based on the composition of the refrigerant. It becomes possible.

【0021】また、室外主絞り装置と室内主絞り装置と
を接続する液配管と貯留器底部とを開閉弁を介して接続
しているので、開閉弁を開閉操作することで短時間で貯
留器へ冷媒流入出させることができ、冷媒量調整による
能力制御を短時間で行うことができる。
Further, since the liquid pipe connecting the outdoor main throttle device and the indoor main throttle device and the bottom of the reservoir are connected via the on-off valve, opening and closing the on-off valve allows the reservoir to be operated in a short time. The refrigerant can be made to flow into and out of the refrigerant, and the capacity control by adjusting the refrigerant amount can be performed in a short time.

【0022】また、全閉可能な室内外主絞り装置を用い
ているため、精留分離作用中に圧縮機が停止した場合で
も主絞り装置を全閉して主回路を高圧側と低圧側に分離
することで、圧縮機吐出ガスを精留分離器へ供給するこ
とが可能となり、圧縮機停止中でも、主回路内の圧力が
均衡するまで分離運転を継続することができる。
Further, since the indoor / outdoor main throttle device which can be fully closed is used, even when the compressor is stopped during the rectification separation operation, the main throttle device is fully closed and the main circuit is shifted to the high pressure side and the low pressure side. By separating, the gas discharged from the compressor can be supplied to the rectification separator, and the separation operation can be continued even when the compressor is stopped until the pressure in the main circuit is balanced.

【0023】また、本発明は、室内機の吸い込み空気温
度を検知し、設定温度との差が一定値以下、すなわち、
室内の負荷に比べ冷暖房能力が過剰となった場合、貯留
器底部と液配管との間の開閉弁を開放し、精留分離器の
塔底部と圧縮機吐出配管との間の開閉弁を閉止するとい
う簡単な制御で、短時間で貯留器に冷媒を貯留して主回
路の冷媒量を減少させ、その後、貯留器底部と液配管と
の間の開閉弁を閉止し、精留分離器の塔底部と圧縮機吐
出配管との間の開閉弁を開放するという簡単な制御で精
留分離を行わせることにより低沸点成分を貯留器に貯留
し、主回路冷媒組成を高沸点側に変化させて能力セーブ
を行うことができ、また、設定温度との差が一定値以
上、すなわち、室内の負荷に比べ冷暖房能力が不足とな
った場合、精留分離器の塔底部と圧縮機吐出配管との間
の開閉弁と貯留器底部と液配管との間の開閉弁を開放す
るという簡単な制御のみで、貯留器の冷媒量をほとんど
空にし、主回路の冷媒量を増加させ、冷媒組成を元の充
填組成に戻すことにより能力向上を行うことができる。
Also, the present invention detects the temperature of the intake air of the indoor unit and determines that the difference from the set temperature is equal to or less than a predetermined value, that is,
If the cooling / heating capacity is excessive compared to the indoor load, open the on-off valve between the bottom of the reservoir and the liquid pipe, and close the on-off valve between the bottom of the rectifying separator and the compressor discharge pipe. With a simple control, the refrigerant is stored in the reservoir in a short time to reduce the amount of refrigerant in the main circuit, and then the on-off valve between the reservoir bottom and the liquid pipe is closed, and the rectification separator The simple control of opening and closing the on-off valve between the bottom of the tower and the discharge pipe of the compressor allows rectification and separation to be performed, thereby storing low-boiling components in the storage tank and changing the main circuit refrigerant composition to the high-boiling side. If the difference between the set temperature and the set temperature is more than a certain value, that is, if the cooling and heating capacity is insufficient compared with the indoor load, the tower bottom of the rectification separator and the compressor discharge pipe Simple control of opening the on-off valve between the reservoir and the on-off valve between the reservoir bottom and the liquid pipe In body, the almost empty amount of the refrigerant reservoir, to increase the refrigerant amount of the main circuit, it is possible to perform the capacity improved by returning the refrigerant composition on the basis of the fill composition.

【0024】また、分離運転中に圧縮機が停止した場
合、主絞り装置を全閉するという簡単な制御のみで圧縮
機停止中でも、主回路内の圧力が均衡するまで分離運転
を継続することができる。
Further, when the compressor is stopped during the separation operation, the separation operation can be continued until the pressures in the main circuit are balanced even when the compressor is stopped by only simple control of completely closing the main throttle device. it can.

【0025】[0025]

【発明の実施の形態】本発明の請求項1に記載の発明
は、圧縮機、四方弁、室外熱交換器、室外主絞り装置、
室内主絞り装置、室内熱交換器を配管接続して冷凍サイ
クルの主回路を構成し、前記圧縮機の吐出配管と塔頂部
に冷却器および貯留器を環状に接続した回路を有する精
留分離器の塔底部とを第一の副絞り装置および第一の開
閉弁を介して接続し、同じく前記精留分離器の塔底部と
前記冷却器とを第二の副絞り装置を介して接続し、また
前記冷却器と前記圧縮機の吸入配管とを接続し、さら
に、前記室外主絞り装置と前記室内主絞り装置とを接続
する配管と前記貯留器の底部とを第二の開閉弁を介して
接続し、非共沸混合冷媒を封入したことを特徴とするヒ
ートポンプ装置であり、冷暖房能力の必要な負荷の大き
い場合には、短時間で貯留器を空とし主回路冷媒量を増
加でき、また、精留分離作用は行なわず主回路は充填組
成のままの冷媒量の多い状態で運転することにより、負
荷に見合った高能力な運転を行うことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a compressor, a four-way valve, an outdoor heat exchanger, an outdoor main throttle device,
A rectification separator having a circuit in which an indoor main throttle device and an indoor heat exchanger are connected by piping to form a main circuit of a refrigerating cycle, and a discharge pipe of the compressor and a circuit in which a cooler and a storage device are connected in a ring at a tower top. The bottom of the rectifier is connected via a first sub-throttling device and a first on-off valve, and the bottom of the rectifying separator and the cooler are connected via a second sub-throttling device, Further, the cooler and the suction pipe of the compressor are connected, and further, the pipe connecting the outdoor main throttle device and the indoor main throttle device and the bottom of the reservoir are connected through a second on-off valve. This is a heat pump device characterized by connecting and enclosing a non-azeotropic mixed refrigerant.If the load required for cooling and heating capacity is large, the reservoir can be emptied in a short time to increase the amount of main circuit refrigerant, and The rectification is not performed and the main circuit is By operating in the stomach condition, it is possible to perform high-capacity operation commensurate with the load.

【0026】また、冷暖房能力をあまり必要としない負
荷の小さい場合には、短時間で貯留器に冷媒を保留する
ことにより主回路冷媒量を減少させ、また、精留分離を
行なって貯留冷媒を低沸点成分に富んだ冷媒組成とし、
主回路は高沸点成分に富んだ冷媒量の少ない状態で運転
することにより、負荷に見合った能力セーブを行なうこ
とができる。
When the load which does not require much cooling and heating capacity is small, the amount of refrigerant in the main circuit is reduced by holding the refrigerant in the reservoir in a short time, and the stored refrigerant is removed by performing rectification and separation. With a refrigerant composition rich in low boiling point components,
By operating the main circuit in a state in which the amount of the refrigerant rich in the high boiling point component is small, the capacity can be saved according to the load.

【0027】本発明の請求項2に記載の発明は、請求項
1に記載の発明において、室内機に吸い込み空気温度を
検知する室内温度センサーを設け、あらかじめ設定した
設定空気温度と前記室内温度センサーで検知した吸い込
み空気温度との温度差が一定値以下になった場合に、前
記第一の開閉弁は閉止したまま前記第二の開閉弁を一定
時間開放した後、前記第一の開閉弁を開放して前記第二
の開閉弁を閉止し、また前記設定空気温度と前記吸い込
み空気温度との温度差が一定値以上になった場合に、前
記第一の開閉弁と前記第二の開閉弁を開放することを特
徴とするヒートポンプ装置の運転制御方法であり、簡単
なセンシングで負荷の大小を判断でき、また開閉弁の開
閉動作という簡単な構成で主回路冷媒量と主回路組成を
可変して、負荷に応じた能力制御を行うことができる。
According to a second aspect of the present invention, in the first aspect of the present invention, an indoor temperature sensor for detecting an intake air temperature in the indoor unit is provided, and a preset set air temperature and the indoor temperature sensor are provided. When the temperature difference with the suction air temperature detected in the below becomes a certain value or less, after opening the second on-off valve for a certain period of time while the first on-off valve is closed, the first on-off valve Opening and closing the second on-off valve, and when the temperature difference between the set air temperature and the suction air temperature becomes a certain value or more, the first on-off valve and the second on-off valve This is a method for controlling the operation of a heat pump device, characterized in that the load can be determined by simple sensing, and the amount of main circuit refrigerant and the main circuit composition can be varied with a simple configuration of opening and closing an open / close valve. And load Flip capacity control can be carried out.

【0028】本発明の請求項3に記載の発明は、圧縮
機、四方弁、室外熱交換器、全閉可能な室外主絞り装
置、全閉可能な室内主絞り装置、室内熱交換器を配管接
続して冷凍サイクルの主回路を構成し、前記圧縮機の吐
出配管と塔頂部に冷却器および貯留器を環状に接続した
回路を有する精留分離器の塔頂部とを第一の副絞り装置
および第一の開閉弁を介して接続し、同じく前記精留分
離器の塔底部と前記冷却器とを第二の副絞り装置を介し
て接続し、また前記冷却器と前記圧縮機の吸入配管とを
接続し、さらに、前記全閉可能な室外主絞り装置と前記
全閉可能な室内主絞り装置とを接続する配管と前記貯留
器の底部とを第二の開閉弁を介して接続し、非共沸混合
冷媒を封入したことを特徴とするヒートポンプ装置であ
り、請求項1と同様な作用により、短時間での冷媒量制
御による能力制御と精留分離作用により負荷に見合った
能力セーブを行なうことができる。
According to a third aspect of the present invention, a compressor, a four-way valve, an outdoor heat exchanger, an outdoor main throttle device that can be fully closed, an indoor main throttle device that can be fully closed, and an indoor heat exchanger are piped. The first sub-throttling device is connected to form a main circuit of a refrigeration cycle, and a discharge pipe of the compressor and a tower top of a rectifying separator having a circuit in which a cooler and a reservoir are connected in a ring at the tower top. And a first on-off valve, and also connects the tower bottom of the rectifying separator and the cooler via a second sub-throttling device, and also connects the cooler and the suction pipe of the compressor. And further, a pipe connecting the fully-closeable outdoor main throttle device and the fully-closeable indoor main throttle device and the bottom of the reservoir are connected via a second on-off valve, A heat pump device in which a non-azeotropic mixed refrigerant is sealed. The use, it is possible to perform the capabilities save commensurate with the load by capability control and rectification separation action by the refrigerant amount control in a short time.

【0029】また、精留分離作用中に圧縮機が停止した
場合でも、室外主絞り装置、室内主絞り装置を全閉する
ことにより、主回路を高圧側と低圧側に分離でき、回路
内圧力が均衡するまで精留分離運転を継続でき、分離に
要する時間を短縮できる。
Further, even when the compressor is stopped during the rectification separation operation, the main circuit can be separated into the high pressure side and the low pressure side by fully closing the outdoor main throttle device and the indoor main throttle device. Rectification and separation operation can be continued until the equilibrium is satisfied, and the time required for separation can be reduced.

【0030】本発明の請求項4に記載の発明は、請求項
3に記載の発明において、室内機に吸い込み空気温度を
検知する室内温度センサーを設け、あらかじめ設定した
設定空気温度と前記室内温度センサーで検知した吸い込
み空気温度との温度差が一定値以下になった場合に、前
記第一の開閉弁は閉止したまま前記第二の開閉弁を一定
時間開放した後、前記第一の開閉弁を開放して前記第二
の開閉弁を閉止し、また前記設定空気温度と前記吸い込
み空気温度との温度差が一定値以上になった場合に、前
記第一の開閉弁と前記第二の開閉弁を開放し、さらに前
記第一の開閉弁を開放し前記第二の開閉弁を閉止した状
態で前記圧縮機が停止した場合、前記室外主絞り装置お
よび前記室内主絞り装置を全閉することを特徴とするヒ
ートポンプ装置の運転制御方法であり、簡単なセンシン
グで負荷の大小を判断でき、また開閉弁動作という簡単
な構成で主回路冷媒量と主回路組成を可変して、負荷に
応じた能力制御を行うことができる。
According to a fourth aspect of the present invention, in accordance with the third aspect of the present invention, there is provided an indoor temperature sensor for detecting an intake air temperature in the indoor unit, and a preset set air temperature and the indoor temperature sensor are provided. When the temperature difference with the suction air temperature detected in the below becomes a certain value or less, after opening the second on-off valve for a certain period of time while the first on-off valve is closed, the first on-off valve Opening and closing the second on-off valve, and when the temperature difference between the set air temperature and the suction air temperature becomes a certain value or more, the first on-off valve and the second on-off valve When the compressor is stopped in a state where the first on-off valve is opened and the second on-off valve is closed, the outdoor main throttle device and the indoor main throttle device are fully closed. Features of heat pump equipment It is a method of controlling the load, and it is possible to judge the magnitude of the load with simple sensing, and it is possible to control the capacity according to the load by changing the amount of main circuit refrigerant and the main circuit composition with a simple configuration called open / close valve operation .

【0031】また、精留分離作用中に圧縮機が停止した
場合でも、主絞り装置の全閉操作という簡単な構成で精
留分離運転を継続することができる。
Further, even if the compressor is stopped during the rectifying / separating operation, the rectifying / separating operation can be continued with a simple structure of fully closing the main expansion device.

【0032】[0032]

【実施例】以下、本発明になるヒートポンプ装置の一実
施例を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the heat pump device according to the present invention will be described below with reference to the drawings.

【0033】(実施例1)図1は本発明の実施例1にお
けるヒートポンプ装置のシステム構成図であり、非共沸
混合冷媒が封入され、圧縮機11、四方弁12、室外熱
交換器13、室外主絞り装置14、室内主絞り装置1
5、室内熱交換器16が直列に接続されて冷凍サイクル
の主回路を構成している。
Embodiment 1 FIG. 1 is a system configuration diagram of a heat pump apparatus according to Embodiment 1 of the present invention, in which a non-azeotropic mixed refrigerant is sealed, a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, Outdoor main throttle device 14, indoor main throttle device 1
5. The indoor heat exchanger 16 is connected in series to form a main circuit of the refrigeration cycle.

【0034】また、17は精留分離器であり、内部に充
填材(図示せず)が充填された直管で構成されている。
精留分離器17の塔頂部は冷却器18と貯留器19を直
列に接続して再び精留分離器17の塔頂部へ帰還する回
路を構成し、また、精留分離器17の塔底部は副絞り装
置20と開閉弁21を介して圧縮機11の吐出配管に接
続している。また、同じく精留分離器17の塔底部は、
副絞り装置22を介して冷却器18に接続し、ここで精
留分離器17の塔頂部の回路と間接的に熱交換するよう
に構成され、さらに圧縮機11と四方弁12の間の吸入
配管に接続されている。また、貯留器19の底部は開閉
弁23を介して室外主絞り装置14と室内主絞り装置1
5の間の液配管に接続されている。
Reference numeral 17 denotes a rectification separator, which is constituted by a straight pipe filled with a filler (not shown).
The tower top of the rectifier 17 constitutes a circuit that connects the cooler 18 and the reservoir 19 in series and returns to the tower top of the rectifier 17 again. It is connected to the discharge pipe of the compressor 11 via the sub-throttle device 20 and the on-off valve 21. Similarly, the bottom of the rectifier 17 is
It is connected to the cooler 18 via the sub-throttling device 22, where it is configured to indirectly exchange heat with the circuit at the top of the rectifying separator 17, and furthermore, the suction between the compressor 11 and the four-way valve 12. Connected to piping. In addition, the bottom of the reservoir 19 is connected to the outdoor main throttle device 14 and the indoor main throttle device 1 through an on-off valve 23.
5 is connected to the liquid pipe.

【0035】24は室内熱交換器16などからなる室内
機であり、室内の空気温度(すなわち室内機24の吸い
込み空気温度)を検知する温度センサー25を備えてい
る。また、26はあらかじめ設定された設定空気温度と
温度センサー25で検知した空気温度とを比較し演算を
行う演算装置であり、27は演算装置26の演算結果を
受信し開閉弁の開閉を制御する開閉弁制御装置である。
An indoor unit 24 includes the indoor heat exchanger 16 and the like. The indoor unit 24 includes a temperature sensor 25 for detecting the indoor air temperature (that is, the temperature of the intake air of the indoor unit 24). Reference numeral 26 denotes an arithmetic unit for comparing the preset air temperature with the air temperature detected by the temperature sensor 25 to perform an arithmetic operation, and 27 receives the arithmetic result of the arithmetic unit 26 and controls the opening and closing of the on-off valve. An on-off valve control device.

【0036】次に、このような構成からなる冷凍サイク
ルにおいて、図2を参照しながらその動作を説明する。
図2は、本発明の実施例1におけるヒートポンプ装置の
制御フローチャートを示す。
Next, the operation of the refrigeration cycle having such a configuration will be described with reference to FIG.
FIG. 2 is a control flowchart of the heat pump device according to the first embodiment of the present invention.

【0037】冷房時、圧縮機11の起動直後など冷房能
力を必要としている場合、開閉弁21および開閉弁23
は閉止する(STEP1)。この状態で圧縮機11から
吐出した高圧ガス冷媒は、四方弁12を通過し、室外熱
交換器13に流入し凝縮され高圧液冷媒となり室外主絞
り装置14により吐出圧力と吸入圧力の中間の圧力まで
減圧された後、室内主絞り装置15でさらに吸入圧力付
近の低圧二相冷媒まで減圧された後、室内熱交換器16
で蒸発ガス化され四方弁12を介して圧縮機11に再び
吸入される。
When cooling performance is required, such as immediately after the compressor 11 is started during cooling, the on-off valves 21 and 23
Is closed (STEP 1). The high-pressure gas refrigerant discharged from the compressor 11 in this state passes through the four-way valve 12, flows into the outdoor heat exchanger 13 and is condensed to become a high-pressure liquid refrigerant, and the intermediate pressure between the discharge pressure and the suction pressure by the outdoor main throttle device 14. After being reduced to a low-pressure two-phase refrigerant near the suction pressure by the indoor main expansion device 15, the indoor heat exchanger 16
And is sucked into the compressor 11 again through the four-way valve 12.

【0038】このような冷凍サイクルにおいて、負荷判
定を行い(STEP2)、温度センサー25で検知され
た室内機24の吸い込み空気温度と演算装置26に設定
されている設定空気温度との差が一定値tより大きい場
合、すなわち冷房負荷が大きい場合には、開閉弁21お
よび開閉弁23の閉止信号が開閉弁制御装置27から送
信され開閉弁21および開閉弁23は閉止された状態が
保持される(STEP1)。すなわち、圧縮機11から
吐出された冷媒は主回路のみを循環する。
In such a refrigeration cycle, the load is determined (STEP 2), and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature set in the arithmetic unit 26 is a constant value. If it is larger than t, that is, if the cooling load is large, a closing signal of the on-off valve 21 and the on-off valve 23 is transmitted from the on-off valve control device 27, and the on-off valve 21 and the on-off valve 23 are kept closed ( (STEP 1). That is, the refrigerant discharged from the compressor 11 circulates only in the main circuit.

【0039】一方、精留分離器17、冷却器18、貯留
器19は開閉弁21および開閉弁23が閉止され、圧縮
機11の吸入配管に接続されているため低圧ガスとなり
冷媒の貯留はほとんどない。
On the other hand, since the on-off valve 21 and the on-off valve 23 of the rectifying separator 17, the cooler 18, and the reservoir 19 are closed and connected to the suction pipe of the compressor 11, low-pressure gas is generated and almost no refrigerant is stored. Absent.

【0040】こうすることにより、主回路の冷媒は充填
組成のままの混合された非共沸混合冷媒で、かつ冷媒量
の多い状態で運転され、負荷に適した能力の大きい運転
ができる。
In this way, the refrigerant in the main circuit is a non-azeotropic mixed refrigerant mixed with the filling composition as it is, and is operated with a large amount of refrigerant.

【0041】次に、負荷判定を行い(STEP2)、温
度センサー25で検知された室内機24の吸い込み空気
温度と演算装置26で演算された設定空気温度との差が
一定値tより小さい場合、すなわち冷房負荷が小さい場
合には、開閉弁21を閉止し、開閉弁23を開放する信
号が開閉弁制御装置27から送信され、開閉弁21を閉
止し、開閉弁23を開放し(STEP3)、この状態を
一定時間保持する(STEP4)。こうすることによ
り、密度の大きい液あるいは二相冷媒を直接貯留器へ貯
留することができ主回路では冷媒量の少ない状態で運転
され、能力セーブが短時間で行える。
Next, a load determination is made (STEP 2). If the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the arithmetic unit 26 is smaller than a certain value t, That is, when the cooling load is small, a signal for closing the on-off valve 21 and opening the on-off valve 23 is transmitted from the on-off valve control device 27, and the on-off valve 21 is closed and the on-off valve 23 is opened (STEP 3). This state is maintained for a certain period of time (STEP 4). By doing so, a liquid or a two-phase refrigerant having a high density can be stored directly in the storage device, and the main circuit is operated with a small amount of the refrigerant, and the capacity can be saved in a short time.

【0042】その後、開閉弁21を開放し、開閉弁23
を閉止する信号を開閉弁制御手段27から送信され、開
閉弁21が開放され、開閉弁23が閉止される(STE
P5)。これにより圧縮機11の吐出配管から高圧ガス
の一部が分流され開閉弁21を通過し、副絞り装置20
により減圧されたガス冷媒が精留分離器17の塔底部へ
流入して精留分離器17内を上昇する。
Thereafter, the on-off valve 21 is opened and the on-off valve 23 is opened.
Is transmitted from the on-off valve control means 27, the on-off valve 21 is opened, and the on-off valve 23 is closed (STE).
P5). As a result, a part of the high-pressure gas is diverted from the discharge pipe of the compressor 11 and passes through the on-off valve 21, and the sub-throttling device 20
The gas refrigerant depressurized by the above flows into the bottom of the rectifier 17 and rises inside the rectifier 17.

【0043】その後、冷却器18に流入し、冷却器18
で凝縮液化された液冷媒が貯留器19に貯留され、それ
より先に貯留されている液冷媒が貯留器19の底部より
精留分離器17の塔頂部へ帰還し、精留分離器17内を
下降し、精留分離器17の塔底部から副絞り装置22に
流入し、減圧された二相冷媒が冷却器18を通過して圧
縮機11と四方弁12の間の吸入配管に流入する。この
とき、冷却器18では、副絞り装置22により減圧され
た低温の二相冷媒と精留分離器17の塔頂部から冷却器
18に流入したガス冷媒とが間接的に熱交換する。
After that, it flows into the cooler 18 and
The liquid refrigerant condensed and liquefied in is stored in the storage device 19, and the liquid refrigerant stored earlier is returned from the bottom of the storage device 19 to the top of the rectification separator 17, where And flows into the sub-throttle device 22 from the bottom of the fractionator 17, and the decompressed two-phase refrigerant passes through the cooler 18 and flows into the suction pipe between the compressor 11 and the four-way valve 12. . At this time, the cooler 18 indirectly exchanges heat between the low-temperature two-phase refrigerant depressurized by the sub-throttle device 22 and the gas refrigerant flowing into the cooler 18 from the top of the fractionator 17.

【0044】ここで、冷却器18の冷却源として、サイ
クル中で最もエンタルピの低い低温低圧の二相冷媒を利
用しているため潜熱を有効に利用でき、冷却器18を小
型にできるのみならず、精留分離器17の塔頂部のガス
を確実に液化できる。
Here, since a low-temperature, low-pressure two-phase refrigerant having the lowest enthalpy in the cycle is used as a cooling source of the cooler 18, the latent heat can be effectively used, and the cooler 18 can be reduced in size. The gas at the top of the fractionator 17 can be reliably liquefied.

【0045】このようにして、精留分離器17の塔底よ
り流入したガス冷媒は冷却器18で冷却されて液化し、
貯留器19に貯留されて、再び精留分離器17の塔頂部
に帰還して精留分離器17を下降するようになる。この
状態が連続的に起こると、精留分離器17を上昇するガ
ス冷媒と下降する液冷媒とが精留分離器17内で気液接
触により精留作用が起こり、貯留器19には徐々に低沸
点に富んだ冷媒組成が貯留され、精留分離器17を下降
し副絞り装置22を通過する冷媒は徐々に高沸点に富ん
だ組成となって、冷却器18を介して圧縮機11に吸入
される。
Thus, the gas refrigerant flowing from the bottom of the fractionator 17 is cooled by the cooler 18 and liquefied.
It is stored in the storage device 19 and returns to the top of the rectifying separator 17 again to descend the rectifying separator 17. When this state occurs continuously, the gas refrigerant ascending in the rectifier 17 and the liquid refrigerant ascending rise in the rectifier 17 due to gas-liquid contact in the rectifier 17, and a rectification action occurs in the reservoir 19 gradually. The refrigerant composition having a low boiling point is stored, and the refrigerant passing down the rectifying separator 17 and passing through the sub-throttling device 22 gradually becomes a composition having a high boiling point, and is supplied to the compressor 11 via the cooler 18. Inhaled.

【0046】このようにして、主回路は徐々に高沸点に
富んだ冷媒組成となり、能力をセーブすることができ
る。また、貯留器19に低沸点冷媒が貯留されているた
め、主回路冷媒量を少なくすることができ、冷媒量減少
の効果も加えることにより、さらに能力セーブに寄与
し、負荷に適した低能力の運転ができるものである。
In this manner, the main circuit gradually becomes a refrigerant composition having a high boiling point, and the capacity can be saved. Further, since the low-boiling-point refrigerant is stored in the storage device 19, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is also added, thereby further contributing to capacity saving and having a low capacity suitable for the load. Can be driven.

【0047】この状態で、負荷判定を行い(STEP
6)、冷房負荷が大きくなり、温度センサー25で検知
された室内機24の吸い込み空気温度と演算装置26で
演算された設定空気温度との差が一定値tより大きくな
った場合、開閉弁23の開放信号が開閉弁制御装置27
から送信され開閉弁23を再び開放し(STEP7)、
この状態を一定時間保持する(STEP8)。これによ
り貯留器19に貯留されていた冷媒が主回路側へ流出
し、その後、開閉弁21と開閉弁23の閉止信号が開閉
弁制御装置27から送信され開閉弁21および開閉弁2
3は閉止される(STEP1)。これにより、短時間で
主回路の冷媒量は増加するとともに高能力な充填組成に
戻り、負荷に見合った能力の大きい運転が再開できる。
In this state, the load is determined (STEP
6) When the cooling load increases and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the calculation device 26 becomes larger than a certain value t, the on-off valve 23 Opening signal of the open / close valve controller 27
And the on-off valve 23 is opened again (STEP 7).
This state is maintained for a predetermined time (STEP 8). As a result, the refrigerant stored in the reservoir 19 flows out to the main circuit side, and thereafter, a closing signal of the on-off valve 21 and the on-off valve 23 is transmitted from the on-off valve control device 27 and the on-off valve 21 and the on-off valve 2
3 is closed (STEP 1). As a result, the amount of refrigerant in the main circuit increases in a short time and returns to the high-capacity filling composition, so that operation with a large capacity corresponding to the load can be resumed.

【0048】このように、負荷の大小を室内機24の吸
い込み空気温度と設定空気温度との差で検知して、開閉
弁21および開閉弁23を開閉するという簡単な操作の
みで、主回路の冷媒量と冷媒組成を負荷に見合った状態
に可変することにより、能力制御を行うことができるも
のである。
As described above, the magnitude of the load is detected based on the difference between the intake air temperature of the indoor unit 24 and the set air temperature, and only the simple operation of opening and closing the on-off valves 21 and 23 opens and closes the main circuit. The capacity control can be performed by changing the refrigerant amount and the refrigerant composition to a state corresponding to the load.

【0049】次に、暖房運転時には、冷媒流れ方向が主
回路において逆方向となるのみで、その動作は同様であ
る。
Next, at the time of the heating operation, the operation is the same except that the refrigerant flow direction is only the reverse direction in the main circuit.

【0050】すなわち、圧縮機11の起動直後など暖房
能力を必要としている場合、開閉弁21および開閉弁2
3は閉止する(STEP1)。この状態で圧縮機11か
ら吐出した高圧ガス冷媒は、四方弁12を通過し、室内
熱交換器16に流入し凝縮され高圧液冷媒となり主絞り
装置15により吐出圧力と吸入圧力の中間の圧力まで減
圧された後、室内主絞り装置14でさらに吸入圧力付近
の低圧二相冷媒まで減圧された後、室外熱交換器13で
蒸発ガス化され四方弁12を介して圧縮機11に再び吸
入される。
That is, when heating capacity is required, for example, immediately after the compressor 11 is started, the on-off valve 21 and the on-off valve 2
3 is closed (STEP 1). The high-pressure gas refrigerant discharged from the compressor 11 in this state passes through the four-way valve 12, flows into the indoor heat exchanger 16 and is condensed to become a high-pressure liquid refrigerant, and the main throttle device 15 increases the pressure to an intermediate pressure between the discharge pressure and the suction pressure. After the pressure is reduced, the pressure is further reduced to a low-pressure two-phase refrigerant near the suction pressure by the indoor main expansion device 14, and then is vaporized and gasified by the outdoor heat exchanger 13 and is sucked into the compressor 11 again through the four-way valve 12. .

【0051】このような冷凍サイクルにおいて、負荷判
定を行い(STEP2)、温度センサー25で検知され
た室内機24の吸い込み空気温度と演算装置26に設定
されている設定空気温度との差が一定値tより大きい場
合、すなわち暖房負荷が大きい場合には、開閉弁21お
よび開閉弁23の閉止信号が開閉弁制御装置27から送
信され開閉弁21および開閉弁23は閉止された状態が
保持される(STEP1)。すなわち、圧縮機11から
吐出された冷媒は主回路のみを循環する。
In such a refrigeration cycle, load determination is performed (STEP 2), and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature set in the arithmetic unit 26 is a constant value. When it is larger than t, that is, when the heating load is large, a closing signal of the on-off valve 21 and the on-off valve 23 is transmitted from the on-off valve control device 27, and the on-off valve 21 and the on-off valve 23 are kept closed. (STEP 1). That is, the refrigerant discharged from the compressor 11 circulates only in the main circuit.

【0052】一方、精留分離器17、冷却器18、貯留
器19は開閉弁21および開閉弁23が閉止され、圧縮
機11の吸入配管に接続されているため低圧ガスとなり
冷媒の貯留はほとんどない。
On the other hand, since the on-off valve 21 and the on-off valve 23 of the rectifying separator 17, the cooler 18, and the reservoir 19 are closed and connected to the suction pipe of the compressor 11, low-pressure gas is generated and almost no refrigerant is stored. Absent.

【0053】こうすることにより、主回路の冷媒は充填
組成のままの混合された非共沸混合冷媒で、かつ冷媒量
の多い状態で運転され、負荷に適した能力の大きい運転
ができる。
By doing so, the refrigerant in the main circuit is a non-azeotropic mixed refrigerant mixed with the filling composition as it is, and is operated with a large amount of refrigerant.

【0054】次に負荷判定を行い(STEP2)、温度
センサー25で検知された室内機24の吸い込み空気温
度と演算装置26で演算された設定空気温度との差が一
定値tより小さい場合、すなわち暖房負荷が小さい場合
には、開閉弁21を閉止し、開閉弁23を開放する信号
が開閉弁制御装置27から送信され、開閉弁21を閉止
し、開閉弁23を開放し(STEP3)、この状態を一
定時間保持する(STEP4)。こうすることにより、
密度の大きい液あるいは二相冷媒を直接貯留器19へ貯
留することができ主回路では冷媒量の少ない状態で運転
され、能力セーブを短時間で行える。
Next, a load determination is made (STEP 2), and when the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the arithmetic unit 26 is smaller than a fixed value t, that is, When the heating load is small, a signal for closing the on-off valve 21 and opening the on-off valve 23 is transmitted from the on-off valve control device 27, closing the on-off valve 21 and opening the on-off valve 23 (STEP 3). The state is maintained for a certain period of time (STEP 4). By doing this,
A high-density liquid or two-phase refrigerant can be stored directly in the storage device 19, and the main circuit is operated with a small amount of refrigerant, so that the capacity can be saved in a short time.

【0055】その後、開閉弁21を開放し、開閉弁23
を閉止する信号を開閉弁制御装置27から送信され、開
閉弁21が開放され、開閉弁23が閉止される(STE
P5)。これにより、圧縮機11の吐出配管から高圧ガ
スの一部が分流され開閉弁21を通過し、副絞り装置2
0により減圧されたガス冷媒が精留分離器17の塔底部
へ流入して精留分離器17内を上昇する。
Thereafter, the on-off valve 21 is opened, and the on-off valve 23 is opened.
Is transmitted from the on-off valve control device 27, the on-off valve 21 is opened, and the on-off valve 23 is closed (STE).
P5). As a result, a part of the high-pressure gas is diverted from the discharge pipe of the compressor 11 and passes through the on-off valve 21 so that the sub-throttling device 2
The gas refrigerant decompressed by 0 flows into the bottom of the rectifier 17 and rises in the rectifier 17.

【0056】その後、冷却器18に流入し、冷却器18
で凝縮液化された液冷媒が貯留器19に貯留され、それ
より先に貯留されている液冷媒が貯留器19の底部より
精留分離器17の塔頂部へ帰還し、精留分離器17内を
下降し、精留分離器17の塔底部から副絞り装置22に
流入し、減圧され二相冷媒が冷却器18を通過して圧縮
機11と四方弁12の間の吸入配管に流入する。このと
き、冷却器18では、副絞り装置22により減圧された
低温の二相冷媒と精留分離器17の塔頂部から冷却器1
8に流入したガス冷媒とが間接的に熱交換する。
After that, it flows into the cooler 18 and
The liquid refrigerant condensed and liquefied in is stored in the storage device 19, and the liquid refrigerant stored earlier is returned from the bottom of the storage device 19 to the top of the rectification separator 17, where And flows into the sub-throttling device 22 from the bottom of the fractionator 17, where the pressure is reduced and the two-phase refrigerant passes through the cooler 18 and flows into the suction pipe between the compressor 11 and the four-way valve 12. At this time, in the cooler 18, the low-temperature two-phase refrigerant depressurized by the sub-throttling device 22 and the cooler 1
Heat exchange is indirectly performed with the gas refrigerant flowing into the gas refrigerant 8.

【0057】ここで、冷却器18の冷却源として、サイ
クル中で最もエンタルピの低い低温低圧の二相冷媒を利
用しているため潜熱を有効に利用でき、冷却器18を小
型にできるのみならず、精留分離器17の塔頂部のガス
冷媒を確実に液化できる。
Here, since a low-temperature, low-pressure two-phase refrigerant having the lowest enthalpy in the cycle is used as a cooling source of the cooler 18, the latent heat can be effectively used, and the cooler 18 can be reduced in size. Thus, the gas refrigerant at the top of the fractionator 17 can be reliably liquefied.

【0058】このようにして、精留分離器17の塔底よ
り流入した冷媒は冷却器18で冷却されて液化し、貯留
器19に貯留されて、徐々に貯留量が増加し、再び精留
分離器17の塔頂部に帰還して精留分離器17を下降す
るようになる。この状態が連続的に起こると、精留分離
器17を上昇するガス冷媒と下降する液冷媒とが精留分
離器17内で気液接触により精留作用が起こり、貯留器
19には徐々に低沸点に富んだ冷媒組成が貯留され、精
留分離器17を下降し副絞り装置22を通過する冷媒は
徐々に高沸点に富んだ組成となって、冷却器18を介し
て圧縮機11に吸入される。
In this way, the refrigerant flowing from the bottom of the rectifying separator 17 is cooled by the cooler 18 to be liquefied, stored in the storage 19, and the storage amount is gradually increased. It returns to the top of the separator 17 and descends the rectifier 17. When this state occurs continuously, the gas refrigerant ascending in the rectifier 17 and the liquid refrigerant ascending rise in the rectifier 17 due to gas-liquid contact in the rectifier 17, and a rectification action occurs in the reservoir 19 gradually. The refrigerant composition having a low boiling point is stored, and the refrigerant passing down the rectifying separator 17 and passing through the sub-throttling device 22 gradually becomes a composition having a high boiling point, and is supplied to the compressor 11 via the cooler 18. Inhaled.

【0059】このようにして、主回路は徐々に高沸点に
富んだ冷媒組成となり、能力をセーブすることができ
る。また、貯留器19に低沸点冷媒が貯留されているた
め、主回路冷媒量を少なくすることができ、冷媒量減少
の効果も加えることにより、さらに能力セーブに寄与
し、負荷に適した低能力の運転ができるものである。
In this way, the main circuit gradually becomes a refrigerant composition having a high boiling point, and the capacity can be saved. Further, since the low-boiling-point refrigerant is stored in the storage device 19, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is also added, thereby further contributing to capacity saving and having a low capacity suitable for the load. Can be driven.

【0060】この状態で、負荷判定を行い(STEP
6)、暖房負荷が大きくなり、温度センサー25で検知
された室内機24の吸い込み空気温度と演算装置26で
演算された設定空気温度との差が一定値tより大きくな
った場合、開閉弁23の開放信号が開閉弁制御装置27
から送信され開閉弁23を再び開放し(STEP7)、
この状態を一定時間保持する(STEP8)。これによ
り、貯留器19に貯留されていた冷媒が主回路側へ流出
し、その後、開閉弁21と開閉弁23の閉止信号が開閉
弁制御装置27から送信され開閉弁21および開閉弁2
3は閉止される(STEP1)。これにより、短時間で
主回路の冷媒量は増加するとともに高能力な充填組成に
戻り、負荷に見合った能力の大きい運転が再開できる。
In this state, load determination is performed (STEP
6) When the heating load increases and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the calculation device 26 becomes larger than a certain value t, the on-off valve 23 Opening signal of the open / close valve controller 27
And the on-off valve 23 is opened again (STEP 7).
This state is maintained for a predetermined time (STEP 8). As a result, the refrigerant stored in the reservoir 19 flows out to the main circuit side, and thereafter, a closing signal of the on-off valve 21 and the on-off valve 23 is transmitted from the on-off valve control device 27 and the on-off valve 21 and the on-off valve 2
3 is closed (STEP 1). As a result, the amount of refrigerant in the main circuit increases in a short time and returns to the high-capacity filling composition, so that operation with a large capacity corresponding to the load can be resumed.

【0061】このように、負荷の大小を室内機24の吸
い込み空気温度と設定空気温度との差で検知して、開閉
弁21および開閉弁23を開閉するという簡単な操作の
みで、主回路の冷媒量と冷媒組成を負荷に見合った状態
に可変することにより、能力制御を行うことができるも
のである。
As described above, the magnitude of the load is detected based on the difference between the intake air temperature of the indoor unit 24 and the set air temperature, and only the simple operation of opening and closing the on-off valves 21 and 23 opens and closes the main circuit. The capacity control can be performed by changing the refrigerant amount and the refrigerant composition to a state corresponding to the load.

【0062】(実施例2)図3は本発明の実施例2によ
るヒートポンプ装置のシステム構成図であり、実施例1
と同様の構成で同様の機能を有するものについては同一
の符号を記してあり、説明は省略する。
(Embodiment 2) FIG. 3 is a system configuration diagram of a heat pump apparatus according to Embodiment 2 of the present invention.
Components having the same configuration and the same function as those described above are denoted by the same reference numerals, and description thereof will be omitted.

【0063】ここでは、非共沸混合冷媒が封入され、室
外熱交換器13と室内熱交換器16の間に全閉可能な室
外主絞り装置28と全閉可能な室内主絞り装置29が直
列に設置されている。
Here, a non-azeotropic refrigerant mixture is sealed, and an outdoor main throttle device 28 that can be fully closed and an indoor main throttle device 29 that can be fully closed are connected in series between the outdoor heat exchanger 13 and the indoor heat exchanger 16. It is installed in.

【0064】次に、このような構成からなる冷凍サイク
ルにおいて、図4を参照しながら、その動作を説明す
る。図4は、本発明の実施例2におけるヒートポンプ装
置の制御フローチャートを示す。
Next, the operation of the refrigeration cycle having such a configuration will be described with reference to FIG. FIG. 4 is a control flowchart of the heat pump device according to the second embodiment of the present invention.

【0065】冷房時、圧縮機11の起動直後など冷房能
力を必要としている場合、開閉弁21および開閉弁23
は閉止した状態で圧縮機11から吐出した高圧ガス冷媒
は、四方弁12を通過し、室外熱交換器13に流入し凝
縮され高圧液冷媒となり室外主絞り装置28により吐出
圧力と吸入圧力の中間の圧力まで減圧された後、室内主
絞り装置29でさらに吸入圧力付近の低圧二相冷媒まで
減圧された後、室内熱交換器16で蒸発ガス化され四方
弁12を介して圧縮機11に再び吸入される。
When cooling performance is required, for example, immediately after the compressor 11 is started during cooling, the on-off valve 21 and the on-off valve 23
The high-pressure gas refrigerant discharged from the compressor 11 in the closed state passes through the four-way valve 12 and flows into the outdoor heat exchanger 13 to be condensed to become a high-pressure liquid refrigerant, which is intermediate between the discharge pressure and the suction pressure by the outdoor main throttle device 28. After the pressure is reduced to a low-pressure two-phase refrigerant near the suction pressure by the indoor main expansion device 29, the refrigerant is vaporized and gasified by the indoor heat exchanger 16 and returned to the compressor 11 via the four-way valve 12. Inhaled.

【0066】このような冷凍サイクルにおいて、負荷判
定を行い(STEP2)、温度センサー25で検知され
た室内機24の吸い込み空気温度と演算装置30に設定
されている設定空気温度との差が一定値tより大きい場
合、すなわち冷房負荷が大きい場合には、開閉弁21お
よび開閉弁23の閉止信号が駆動弁制御装置31から送
信され開閉弁21および開閉弁23は閉止された状態が
保持される(STEP1)。すなわち、圧縮機11から
吐出された冷媒は主回路のみを循環する。
In such a refrigeration cycle, the load is determined (STEP 2), and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature set in the arithmetic unit 30 is a constant value. When it is larger than t, that is, when the cooling load is large, a closing signal of the on-off valve 21 and the on-off valve 23 is transmitted from the drive valve control device 31, and the on-off valve 21 and the on-off valve 23 are kept closed ( (STEP 1). That is, the refrigerant discharged from the compressor 11 circulates only in the main circuit.

【0067】一方、精留分離器17、冷却器18、貯留
器19は開閉弁21および開閉弁23が閉止され、圧縮
機11の吸入配管に接続されているため低圧ガスとなり
冷媒の貯留はほとんどない。
On the other hand, since the on-off valve 21 and the on-off valve 23 are closed and connected to the suction pipe of the compressor 11, the rectification separator 17, the cooler 18, and the storage device 19 become low-pressure gas, and almost no refrigerant is stored. Absent.

【0068】こうすることにより、主回路の冷媒は充填
組成のままの混合された非共沸混合冷媒で、かつ冷媒量
の多い状態で運転され、負荷に適した能力の大きい運転
ができる。
In this way, the refrigerant in the main circuit is a non-azeotropic mixed refrigerant mixed with the filling composition as it is, and is operated in a state of a large amount of refrigerant, so that operation with a large capacity suitable for the load can be performed.

【0069】次に、負荷判定を行い(STEP2)、温
度センサー25で検知された室内機24の吸い込み空気
温度と演算装置31で演算された設定空気温度との差が
一定値tより小さい場合、すなわち冷房負荷が小さい場
合には、開閉弁21を閉止し、開閉弁23を開放する信
号が駆動弁制御装置31から送信され、開閉弁21を閉
止し、開閉弁23を開放し(STEP3)、この状態を
一定時間保持する(STEP4)。こうすることによ
り、密度の大きい液あるいは二相冷媒を直接貯留器へ貯
留することができ主回路では冷媒量の少ない状態で運転
され、能力セーブが短時間で行える。
Next, a load determination is made (STEP 2). If the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the arithmetic unit 31 is smaller than a certain value t, That is, when the cooling load is small, a signal for closing the on-off valve 21 and opening the on-off valve 23 is transmitted from the drive valve control device 31 to close the on-off valve 21 and open the on-off valve 23 (STEP 3). This state is maintained for a certain period of time (STEP 4). By doing so, a liquid or a two-phase refrigerant having a high density can be stored directly in the storage device, and the main circuit is operated with a small amount of the refrigerant, and the capacity can be saved in a short time.

【0070】その後、開閉弁21を開放し、開閉弁23
を閉止する信号が駆動弁制御装置31から送信され、開
閉弁21が開放され、開閉弁23が閉止される(STE
P5)。これにより、圧縮機11の吐出配管から高圧ガ
スの一部が分流され開閉弁21を通過し、副絞り装置2
0により減圧されたガス冷媒が精留分離器17の塔底部
へ流入して精留分離器17内を上昇する。
Thereafter, the on-off valve 21 is opened and the on-off valve 23 is opened.
Is transmitted from the drive valve control device 31, the on-off valve 21 is opened, and the on-off valve 23 is closed (STE).
P5). As a result, a part of the high-pressure gas is diverted from the discharge pipe of the compressor 11 and passes through the on-off valve 21 so that the sub-throttling device 2
The gas refrigerant decompressed by 0 flows into the bottom of the rectifier 17 and rises in the rectifier 17.

【0071】その後、冷却器18に流入し、冷却器18
で凝縮液化された液冷媒が貯留器19に貯留され、それ
より先に貯留されている液冷媒が貯留器19の底部より
精留分離器17の塔頂部へ帰還し、精留分離器17内を
下降し、精留分離器17の塔底部から副絞り装置22に
流入し、減圧された二相冷媒が冷却器18を通過して圧
縮機11と四方弁12の間の吸入配管に流入する。
After that, it flows into the cooler 18 and
The liquid refrigerant condensed and liquefied in is stored in the storage device 19, and the liquid refrigerant stored earlier is returned from the bottom of the storage device 19 to the top of the rectification separator 17, where And flows into the sub-throttle device 22 from the bottom of the fractionator 17, and the decompressed two-phase refrigerant passes through the cooler 18 and flows into the suction pipe between the compressor 11 and the four-way valve 12. .

【0072】また、開閉弁21が開放され、開閉弁23
が閉止された状態で、すなわち、精留分離作用中に圧縮
機11の停止を検知し(STEP6)、主絞り装置2
8、29が全閉でないことを検知した場合(STEP
7)、演算装置30から圧縮機11の停止信号が駆動弁
制御装置31に送信され、室外主絞り装置28および室
内主絞り装置29を全閉する信号が送信され、室外主絞
り装置28および室内主絞り装置29が全閉される(S
TEP8)。これにより、主回路は、高圧側と低圧側に
分離され、高圧側の冷媒は、開閉弁21を通過し、副絞
り装置20により減圧されたガス冷媒が精留分離器17
の塔底部へ流入して精留分離器17内を上昇する。
The on-off valve 21 is opened and the on-off valve 23 is opened.
Is closed, that is, during the rectification separation operation, the stop of the compressor 11 is detected (STEP 6), and the main throttle device 2 is detected.
8 and 29 are not fully closed (STEP
7), a stop signal of the compressor 11 is transmitted from the arithmetic unit 30 to the drive valve control device 31, a signal for completely closing the outdoor main throttle device 28 and the indoor main throttle device 29 is transmitted, and the outdoor main throttle device 28 and the indoor The main throttle device 29 is fully closed (S
TEP8). As a result, the main circuit is separated into a high pressure side and a low pressure side. The high pressure side refrigerant passes through the on-off valve 21, and the gas refrigerant depressurized by the sub-throttle device 20 is separated by the rectification separator 17.
And rises inside the rectifier 17.

【0073】その後、冷却器18に流入し、冷却器18
で凝縮液化された液冷媒が貯留器19に貯留され、それ
より先に貯留されている液冷媒が貯留器19の底部より
精留分離器17の塔頂部へ帰還し、精留分離器17を下
降し、精留分離器17の塔底部から副絞り装置22に流
入し、減圧された二相冷媒が低圧側圧力と高圧側圧力が
均衡するまで冷却器18を通過して圧縮機11と四方弁
12の間の吸入配管に流出する。このとき、冷却器18
では、副絞り装置22により減圧された低温の二相冷媒
と精留分離器17の塔頂部から冷却器18に流入したガ
ス冷媒とが間接的に熱交換する。
After that, it flows into the cooler 18 and
The liquid refrigerant condensed and liquefied in is stored in the storage device 19, and the liquid refrigerant stored earlier is returned from the bottom of the storage device 19 to the tower top of the rectification separator 17, and the rectification separator 17 It descends, flows into the sub-throttling device 22 from the bottom of the fractionator 17, and the decompressed two-phase refrigerant passes through the cooler 18 until the low-pressure side pressure and the high-pressure side pressure are balanced. It flows out to the suction pipe between the valves 12. At this time, the cooler 18
In this case, the low-temperature two-phase refrigerant decompressed by the sub-throttling device 22 and the gas refrigerant flowing into the cooler 18 from the top of the fractionator 17 indirectly exchange heat.

【0074】ここで、冷却器18の冷却源として、サイ
クル中で最もエンタルピの低い低温低圧の二相冷媒を利
用しているため潜熱を有効に利用でき、冷却器18を小
型にできるのみならず、精留分離器17の塔頂部のガス
を確実に液化できる。
Here, since a low-temperature, low-pressure two-phase refrigerant having the lowest enthalpy in the cycle is used as a cooling source of the cooler 18, the latent heat can be effectively used, and the cooler 18 can be reduced in size. The gas at the top of the fractionator 17 can be reliably liquefied.

【0075】このようにして、精留分離器17の塔底よ
り流入したガス冷媒は冷却器18で冷却されて液化し、
貯留器19に貯留されて、再び精留分離器17の塔頂部
に帰還して精留分離器17を下降するようになる。この
状態が連続的に起こると、精留分離器17を上昇するガ
ス冷媒と下降する液冷媒とが精留分離器17内で気液接
触により精留作用が起こり、貯留器19には徐々に低沸
点に富んだ冷媒組成が貯留され、精留分離器17を下降
し副絞り装置22を通過する冷媒は徐々に高沸点に富ん
だ組成となって、冷却器18を介して圧縮機11に吸入
される。
As described above, the gas refrigerant flowing from the bottom of the fractionator 17 is cooled by the cooler 18 and liquefied.
It is stored in the storage device 19 and returns to the top of the rectifying separator 17 again to descend the rectifying separator 17. When this state occurs continuously, the gas refrigerant ascending in the rectifier 17 and the liquid refrigerant ascending rise in the rectifier 17 due to gas-liquid contact in the rectifier 17, and a rectification action occurs in the reservoir 19 gradually. The refrigerant composition having a low boiling point is stored, and the refrigerant passing down the rectifying separator 17 and passing through the sub-throttling device 22 gradually becomes a composition having a high boiling point, and is supplied to the compressor 11 via the cooler 18. Inhaled.

【0076】このようにして、主回路は徐々に高沸点に
富んだ冷媒組成となり、能力をセーブすることができ
る。また、貯留器19に低沸点冷媒が貯留されているた
め、主回路冷媒量を少なくすることができ、冷媒量減少
の効果も加えることにより、さらに能力セーブに寄与
し、負荷に適した低能力の運転ができる。また、精留分
離作用中に圧縮機が停止した場合でもサイクル内圧力が
均衡するまで精留分離作用を継続できる。
In this way, the main circuit gradually becomes a refrigerant composition having a high boiling point, and the capacity can be saved. Further, since the low-boiling-point refrigerant is stored in the storage device 19, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is also added, thereby further contributing to capacity saving and having a low capacity suitable for the load. Can be driven. Further, even when the compressor is stopped during the rectification separation operation, the rectification separation operation can be continued until the pressure in the cycle is balanced.

【0077】この状態で、負荷判定を行い(STEP
9)冷房負荷が大きくなり、温度センサー25で検知さ
れた室内機24の吸い込み空気温度と演算装置30で演
算された設定空気温度との差が一定値tより大きくなっ
た場合、開閉弁23の開放信号が駆動弁制御装置31か
ら送信され開閉弁23は再び開放される(STEP1
2)。このとき、負荷判定(STEP9)後、圧縮機運
転判定(STEP10)を行い、圧縮機の停止を検知し
た場合は、主絞り装置28、29の開度設定を行い(S
TEP11)、その後、STEP12へ移行する。
In this state, the load is determined (STEP
9) When the cooling load increases and the difference between the suction air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the calculation device 30 becomes larger than a certain value t, the on-off valve 23 An opening signal is transmitted from the drive valve control device 31 and the on-off valve 23 is opened again (STEP 1).
2). At this time, after the load determination (STEP 9), the compressor operation determination (STEP 10) is performed. When the stop of the compressor is detected, the opening degree of the main throttle devices 28 and 29 is set (S9).
(TEP11), and thereafter, proceed to STEP12.

【0078】これにより、貯留器19に貯留されていた
冷媒が主回路側へ流出し、その後、開閉弁21と開閉弁
23の閉止信号が駆動弁制御装置31から送信され開閉
弁21および開閉弁23は閉止され、短時間で主回路の
冷媒量は増加するとともに高能力な充填組成に戻り、負
荷に見合った能力の大きい運転が再開できる。
As a result, the refrigerant stored in the storage device 19 flows out to the main circuit side, and thereafter, a signal for closing the on-off valves 21 and 23 is transmitted from the drive valve control device 31 and the on-off valves 21 and 23 is closed, the amount of refrigerant in the main circuit increases in a short time and returns to a high-capacity filling composition, and operation with a large capacity corresponding to the load can be resumed.

【0079】このように、負荷の大小を室内機24の吸
い込み空気温度と設定空気温度との差で検知して、開閉
弁21および開閉弁23を開閉するという簡単な操作の
みで、主回路の冷媒量と冷媒組成を負荷に見合った状態
に可変することにより、能力制御を行うことができるも
のである。
As described above, the magnitude of the load is detected by the difference between the intake air temperature of the indoor unit 24 and the set air temperature, and only the simple operation of opening and closing the on-off valves 21 and 23 opens and closes the main circuit. The capacity control can be performed by changing the refrigerant amount and the refrigerant composition to a state corresponding to the load.

【0080】次に、暖房運転時には、冷媒流れ方向が主
回路において逆方向となるのみで、その動作は同様であ
る。
Next, during the heating operation, the operation is the same except that the flow direction of the refrigerant in the main circuit is only the opposite direction.

【0081】すなわち、圧縮機11の起動直後など暖房
能力を必要としている場合、開閉弁21および開閉弁2
3は閉止した状態で圧縮機11から吐出した高圧ガス冷
媒は、四方弁12を通過し、室内熱交換器16に流入し
凝縮され高圧液冷媒となり室内主絞り装置29により吐
出圧力と吸入圧力の中間の圧力まで減圧された後、室外
主絞り装置28でさらに吸入圧力付近の低圧二相冷媒ま
で減圧された後、室外熱交換器13で蒸発ガス化され四
方弁12を介して圧縮機11に再び吸入される。
That is, when the heating capacity is required, for example, immediately after the compressor 11 is started, the on-off valve 21 and the on-off valve 2
Reference numeral 3 denotes a high-pressure gas refrigerant discharged from the compressor 11 in a closed state, passes through the four-way valve 12, flows into the indoor heat exchanger 16 and is condensed to become a high-pressure liquid refrigerant, and the discharge pressure and suction pressure of the indoor main throttle device 29 are reduced. After the pressure is reduced to the intermediate pressure, the pressure is further reduced to a low-pressure two-phase refrigerant near the suction pressure by the outdoor main throttle device 28, and the refrigerant is evaporated and gasified by the outdoor heat exchanger 13 to the compressor 11 via the four-way valve 12. It is inhaled again.

【0082】このような冷凍サイクルにおいて、負荷判
定を行い(STEP1)、温度センサー25で検知され
た室内機24の吸い込み空気温度と演算装置30に設定
されている設定空気温度との差が一定値tより大きい場
合、すなわち暖房負荷が大きい場合には、開閉弁21お
よび開閉弁23の閉止信号が駆動弁制御装置31から送
信され開閉弁21および開閉弁23は閉止された状態が
保持される(STEP1)。すなわち、圧縮機11から
吐出された冷媒は主回路のみを循環する。
In such a refrigeration cycle, load determination is performed (STEP 1), and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature set in the arithmetic unit 30 is a constant value. When it is larger than t, that is, when the heating load is large, a closing signal of the on-off valve 21 and the on-off valve 23 is transmitted from the drive valve control device 31, and the on-off valve 21 and the on-off valve 23 are kept in a closed state ( (STEP 1). That is, the refrigerant discharged from the compressor 11 circulates only in the main circuit.

【0083】一方、精留分離器17、冷却器18、貯留
器19は開閉弁21および開閉弁23が閉止され、圧縮
機11の吸入配管に接続されているため低圧ガスとなり
冷媒の貯留はほとんどない。
On the other hand, since the on-off valve 21 and the on-off valve 23 of the rectifying separator 17, the cooler 18, and the reservoir 19 are closed and connected to the suction pipe of the compressor 11, low-pressure gas is generated and almost no refrigerant is stored. Absent.

【0084】こうすることにより、主回路の冷媒は充填
組成のままの混合された非共沸混合冷媒で、かつ冷媒量
の多い状態で運転され、負荷に適した能力の大きい運転
ができる。
In this way, the refrigerant in the main circuit is a mixed non-azeotropic refrigerant mixed with the filling composition as it is, and is operated with a large amount of refrigerant, so that operation with a large capacity suitable for the load can be performed.

【0085】次に、負荷判定を行い(STEP2)、温
度センサー25で検知された室内機24の吸い込み空気
温度と演算装置30で演算された設定空気温度との差が
一定値tより小さい場合、すなわち暖房負荷が小さい場
合には、開閉弁21を閉止し、開閉弁23を開放する信
号が駆動弁制御装置31から送信され、開閉弁21を閉
止し、開閉弁23を開放し(STEP3)、この状態を
一定時間保持する(STEP4)。こうすることによ
り、密度の大きい液あるいは二相冷媒を直接貯留器19
へ貯留することができ主回路では冷媒量の少ない状態で
運転され、能力セーブを短時間で行える。
Next, a load determination is made (STEP 2). If the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the arithmetic unit 30 is smaller than a predetermined value t, That is, when the heating load is small, a signal for closing the on-off valve 21 and opening the on-off valve 23 is transmitted from the drive valve control device 31, closing the on-off valve 21 and opening the on-off valve 23 (STEP 3). This state is maintained for a certain period of time (STEP 4). In this way, the liquid or the two-phase refrigerant having a high density can be directly stored in the reservoir 19.
And the main circuit is operated with a small amount of refrigerant, so that the capacity can be saved in a short time.

【0086】その後、開閉弁21を開放し、開閉弁23
を閉止する信号を駆動弁制御装置31から送信され、開
閉弁21が開放され、開閉弁23が閉止される(STE
P5)。これにより、圧縮機11の吐出配管から高圧ガ
スの一部が分流され開閉弁21を通過し、副絞り装置2
0により減圧されたガス冷媒が精留分離器17の塔底部
へ流入して精留分離器17内を上昇する。
Thereafter, the on-off valve 21 is opened, and the on-off valve 23 is opened.
Is transmitted from the drive valve control device 31, the on-off valve 21 is opened, and the on-off valve 23 is closed (STE).
P5). As a result, a part of the high-pressure gas is diverted from the discharge pipe of the compressor 11 and passes through the on-off valve 21 so that the sub-throttling device 2
The gas refrigerant decompressed by 0 flows into the bottom of the rectifier 17 and rises in the rectifier 17.

【0087】その後、冷却器18に流入し、冷却器18
で凝縮液化された液冷媒が貯留器19に貯留され、それ
より先に貯留されている液冷媒が貯留器19の底部より
精留分離器17の塔頂部へ帰還し、精留分離器17内を
下降し、精留分離器17の塔底部から副絞り装置22に
流入し、減圧され二相冷媒が冷却器18を通過して圧縮
機11と四方弁12の間の吸入配管に流入する。
After that, it flows into the cooler 18 and
The liquid refrigerant condensed and liquefied in is stored in the storage device 19, and the liquid refrigerant stored earlier is returned from the bottom of the storage device 19 to the top of the rectification separator 17, where And flows into the sub-throttling device 22 from the bottom of the fractionator 17, where the pressure is reduced and the two-phase refrigerant passes through the cooler 18 and flows into the suction pipe between the compressor 11 and the four-way valve 12.

【0088】また、開閉弁21が開放され、開閉弁23
が閉止された状態、すなわち、精留分離作用中に圧縮機
11の停止を検知し(STEP6)、主絞り装置28、
29が全閉でないことを検知した場合(STEP7)、
演算装置30から圧縮機11の停止信号が駆動弁制御装
置31に送信され、室外主絞り装置28および室内主絞
り装置29を全閉する信号が送信され、室外主絞り装置
28および室内主絞り装置29が全閉される(STEP
8)。
The on-off valve 21 is opened and the on-off valve 23 is opened.
Is closed, that is, the stop of the compressor 11 is detected during the rectification separation operation (STEP 6), and the main throttle device 28,
When it is detected that 29 is not fully closed (STEP 7),
A signal for stopping the compressor 11 is transmitted from the arithmetic unit 30 to the drive valve control device 31, a signal for fully closing the outdoor main throttle device 28 and the indoor main throttle device 29 is transmitted, and the outdoor main throttle device 28 and the indoor main throttle device are transmitted. 29 is fully closed (STEP
8).

【0089】これにより、主回路は、高圧側と低圧側に
分離され、高圧側の冷媒は、開閉弁21を通過し、副絞
り装置20により減圧されたガス冷媒が精留分離器17
の塔底部へ流入して精留分離器17内を上昇する。
As a result, the main circuit is separated into a high-pressure side and a low-pressure side. The high-pressure side refrigerant passes through the on-off valve 21, and the gas refrigerant decompressed by the sub-throttle device 20 is supplied to the rectification separator 17.
And rises inside the rectifier 17.

【0090】その後、冷却器18に流入し、冷却器18
で凝縮液化された液冷媒が貯留器19に貯留され、それ
より先に貯留されている液冷媒が貯留器19の底部より
精留分離器17の塔頂部へ帰還し、精留分離器17内を
下降し、精留分離器17の塔底部から副絞り装置22に
流入し、減圧された二相冷媒が低圧側圧力と高圧側圧力
が均衡するまで冷却器18を通過して圧縮機11と四方
弁12の間の吸入配管に流出する。このとき、冷却器1
8では、副絞り装置22により減圧された低温の二相冷
媒と精留分離器17の塔頂部から冷却器18に流入した
ガス冷媒とが間接的に熱交換する。
After that, it flows into the cooler 18 and
The liquid refrigerant condensed and liquefied in is stored in the storage device 19, and the liquid refrigerant stored earlier is returned from the bottom of the storage device 19 to the top of the rectification separator 17, where And flows into the sub-throttle device 22 from the bottom of the fractionator 17 and the reduced-pressure two-phase refrigerant passes through the cooler 18 until the low-pressure side pressure and the high-pressure side pressure are balanced. It flows out to the suction pipe between the four-way valves 12. At this time, the cooler 1
At 8, the low-temperature two-phase refrigerant depressurized by the sub-throttling device 22 and the gas refrigerant flowing into the cooler 18 from the top of the fractionator 17 indirectly exchange heat.

【0091】ここで、冷却器18の冷却源として、サイ
クル中で最もエンタルピの低い低温低圧の二相冷媒を利
用しているため潜熱を有効に利用でき、冷却器18を小
型にできるのみならず、精留分離器17の塔頂部のガス
冷媒を確実に液化できる。
Here, since a low-temperature and low-pressure two-phase refrigerant having the lowest enthalpy in the cycle is used as a cooling source of the cooler 18, the latent heat can be effectively used, and the cooler 18 can be reduced in size. Thus, the gas refrigerant at the top of the fractionator 17 can be reliably liquefied.

【0092】このようにして、精留分離器17の塔底よ
り流入した冷媒は冷却器18で冷却されて液化し、貯留
器19に貯留されて、徐々に貯留量が増加し、再び精留
分離器17の塔頂部に帰還して精留分離器17を下降す
るようにする。この状態が連続的に起こると、精留分離
器17を上昇するガス冷媒と下降する液冷媒とが精留分
離器17内で気液接触により精留作用が起こり、貯留器
19は徐々に低沸点に富んだ冷媒組成が貯留され、精留
分離器17を下降し副絞り装置22を通過する冷媒は徐
々に高沸点に富んだ組成となって、冷却器18を介して
圧縮機11に吸入される。
In this way, the refrigerant flowing from the bottom of the rectifying separator 17 is cooled by the cooler 18 to be liquefied, stored in the storage unit 19, and the storage amount is gradually increased. The rectifier 17 is returned to the top of the separator 17 to descend. When this state occurs continuously, the gas refrigerant rising in the rectifying separator 17 and the liquid refrigerant descending in the rectifying separator 17 cause gas-liquid contact in the rectifying separator 17 to perform a rectifying action, and the reservoir 19 is gradually lowered. The refrigerant composition having a high boiling point is stored, and the refrigerant passing down the rectifying separator 17 and passing through the sub-throttle device 22 gradually becomes a composition having a high boiling point, and is sucked into the compressor 11 via the cooler 18. Is done.

【0093】このようにして、主回路は徐々に高沸点に
富んだ冷媒組成となり、能力をセーブすることができ
る。また、貯留器19に低沸点冷媒が貯留されているた
め、主回路冷媒量を少なくすることができ、冷媒量減少
の効果も加えることにより、さらに能力セーブに寄与
し、負荷に適した低能力の運転ができる。また、精留分
離作用中に圧縮機が停止した場合でもサイクル内圧が均
衡するまで精留分離作用を継続できる。
In this manner, the main circuit gradually becomes a refrigerant composition having a high boiling point, and the capacity can be saved. Further, since the low-boiling-point refrigerant is stored in the storage device 19, the amount of refrigerant in the main circuit can be reduced, and the effect of reducing the amount of refrigerant is also added, thereby further contributing to capacity saving and having a low capacity suitable for the load. Can be driven. In addition, even when the compressor is stopped during the rectifying operation, the rectifying operation can be continued until the cycle internal pressure is balanced.

【0094】この状態で、負荷判定を行い(STEP
9)、暖房負荷が大きくなり、温度センサー25で検知
された室内機24の吸い込み空気温度と演算装置30で
演算された設定空気温度との差が一定値tより大きくな
った場合、開閉弁23の開放信号が駆動弁制御装置31
から送信され開閉弁23は再び開放される(STEP1
2)。このとき、負荷判定(STEP9)後、圧縮機運
転判定(STEP10)を行い、圧縮機の停止を検知し
た場合は、主絞り装置28、29の開度設定を行い(S
TEP11)、その後、STEP12へ移行する。これ
により、貯留器19に貯留されていた冷媒が主回路側へ
流出し、その後、開閉弁21と開閉弁23の閉止信号が
駆動弁制御装置31から送信され開閉弁21および開閉
弁23は閉止され、短時間で主回路の冷媒量は増加する
とともに高能力な充填組成に戻り、負荷に見合った能力
の大きい運転が再開できる。
In this state, load determination is performed (STEP
9) When the heating load increases and the difference between the intake air temperature of the indoor unit 24 detected by the temperature sensor 25 and the set air temperature calculated by the calculation device 30 becomes larger than a certain value t, the on-off valve 23 Release signal of the drive valve controller 31
And the on-off valve 23 is opened again (STEP 1).
2). At this time, after the load determination (STEP 9), the compressor operation determination (STEP 10) is performed, and when the stop of the compressor is detected, the opening degree of the main throttle devices 28 and 29 is set (S9).
(TEP11), and thereafter, proceed to STEP12. As a result, the refrigerant stored in the reservoir 19 flows out to the main circuit side, and thereafter, a closing signal of the on-off valve 21 and the on-off valve 23 is transmitted from the drive valve control device 31, and the on-off valve 21 and the on-off valve 23 are closed. As a result, the amount of refrigerant in the main circuit increases in a short time and returns to a high-capacity filling composition, so that operation with a large capacity corresponding to the load can be resumed.

【0095】このように、負荷の大小を室内機24の吸
い込み空気温度と設定空気温度との差で検知して、開閉
弁21および開閉弁23を開閉するという簡単な操作の
みで、主回路の冷媒量と冷媒組成を負荷に見合った状態
に可変することにより、能力制御を行うことができるも
のである。
As described above, the magnitude of the load is detected based on the difference between the intake air temperature of the indoor unit 24 and the set air temperature, and only the simple operation of opening and closing the on-off valves 21 and 23 opens and closes the main circuit. The capacity control can be performed by changing the refrigerant amount and the refrigerant composition to a state corresponding to the load.

【0096】なお、圧縮機については実施例では述べな
かったが、一定速圧縮機のみばかりでなく、極変圧縮機
やシリンダーバイパス等の能力制御手段を有するもの、
あるいはインバータによる可変速圧縮機を使用すること
もでき、これらを用いる場合も本発明に含まれる。
Although the compressor is not described in the embodiment, it is not limited to a constant speed compressor, but has a capacity control means such as a pole change compressor or a cylinder bypass.
Alternatively, a variable speed compressor using an inverter can be used, and the case where these are used is also included in the present invention.

【0097】また、開閉弁についても、冷媒流れを遮断
できる電子式膨張弁や手動弁なども考えられ、これらを
用いる場合も本発明に含まれるものである。
Also, as the on-off valve, an electronic expansion valve or a manual valve which can shut off the flow of the refrigerant can be considered, and the use of these is also included in the present invention.

【0098】[0098]

【発明の効果】以上説明したように、請求項1に記載の
発明は、非共沸混合冷媒を封入し、圧縮機、四方弁、室
外熱交換器、室外主絞り装置、室内主絞り装置、室内熱
交換器を配管接続して冷凍サイクルの主回路を構成し、
圧縮機の吐出配管と塔頂部に冷却器および貯留器を環状
に接続した回路を有する精留分離器の塔底部とを第一の
副絞り装置および第一の開閉弁を介して接続し、同じく
精留分離器の塔底部と冷却器とを第二の副絞り装置を介
して接続し、また冷却器と圧縮機の吸入配管とを接続す
るため、塔頂側の冷却源として塔底から流出する液冷媒
の潜熱を利用でき、冷却器を小型にできるのみならず、
十分な低温および冷却熱量で精留分離器の気相部を液化
することができ、沸点差の大きな非共沸混合冷媒におい
ても低沸点成分の多い冷媒を貯留して分離幅を大きくと
ることができる。
As described above, according to the first aspect of the present invention, a non-azeotropic mixed refrigerant is charged, and a compressor, a four-way valve, an outdoor heat exchanger, an outdoor main throttle device, an indoor main throttle device, Connecting the indoor heat exchanger with piping to form the main circuit of the refrigeration cycle,
The discharge pipe of the compressor and the tower bottom of the rectifier having a circuit in which a cooler and a reservoir are connected in a ring at the top are connected via a first auxiliary throttle device and a first on-off valve, and Since the bottom of the rectifier and the cooler are connected via the second sub-throttling device, and the cooler is connected to the suction pipe of the compressor, it flows out of the bottom as a cooling source at the top of the tower. Not only the latent heat of the liquid refrigerant,
The gas phase of the rectifier can be liquefied at a sufficiently low temperature and heat of cooling, and even a non-azeotropic mixed refrigerant with a large difference in boiling point can store a large amount of low-boiling-point components to increase the separation width. it can.

【0099】また、貯留器内の冷媒を貯留あるいは空に
制御して、主回路の冷媒量を調整することができるの
で、冷媒量による能力制御と、冷媒組成による能力制御
により、幅広い能力制御が可能となる。また、室外主絞
り装置と室内主絞り装置とを接続する液配管と貯留器の
底部とを第二の開閉弁を介して接続しているので、第二
の開閉弁を開放することで短時間で貯留器へ液冷媒を貯
留することができ、冷媒量調整による能力制御を短時間
で行うことができる。
Further, since the amount of refrigerant in the main circuit can be adjusted by controlling the refrigerant in the reservoir to be stored or empty, a wide range of capacity control can be performed by controlling the capacity based on the refrigerant amount and controlling the capacity based on the refrigerant composition. It becomes possible. Also, since the liquid pipe connecting the outdoor main throttle device and the indoor main throttle device and the bottom of the reservoir are connected through the second on-off valve, opening the second on-off valve for a short time Thus, the liquid refrigerant can be stored in the storage device, and the capacity control by adjusting the refrigerant amount can be performed in a short time.

【0100】請求項2に記載の発明は、請求項1に記載
の発明において、あらかじめ設定した設定空気温度と室
内温度センサーで検知した吸い込み空気温度との温度差
が一定値以下になった場合に、第一の開閉弁は閉止した
まま第二の開閉弁を一定時間開放した後、第一の開閉弁
を開放して第二の開閉弁を閉止し、また設定空気温度と
吸い込み空気温度との温度差が一定値以上になった場合
に、第一の開閉弁と第二の開閉弁を開放するように制御
する構成としたもので、簡単なセンシングでの負荷の大
小を判断でき、また開閉弁動作という簡単な構成で主回
路の冷媒量を短時間で増減させ、また精留分離による主
回路組成を制御できるので、主回路冷媒量と主回路組成
を自動的に可変して、負荷に応じた能力制御を行うこと
ができる。
According to a second aspect of the present invention, in the first aspect of the present invention, when a temperature difference between a preset air temperature and a suction air temperature detected by an indoor temperature sensor becomes smaller than a predetermined value. After opening the second on-off valve for a certain period of time while the first on-off valve is closed, the first on-off valve is opened to close the second on-off valve, and the difference between the set air temperature and the suction air temperature. When the temperature difference exceeds a certain value, the first and second on-off valves are controlled so as to be opened. With a simple configuration called valve operation, the amount of refrigerant in the main circuit can be increased or decreased in a short time, and the main circuit composition by rectification separation can be controlled. Capability control can be performed accordingly.

【0101】請求項3に記載の発明は、非共沸混合冷媒
を封入し、圧縮機、四方弁、室外熱交換器、全閉可能な
室外主絞り装置、全閉可能な室内主絞り装置、室内熱交
換器を配管接続して冷凍サイクルの主回路を構成し、圧
縮機の吐出配管と塔頂部に冷却器および貯留器を環状に
接続した回路を有する精留分離器の塔底部とを第一の副
絞り装置および第一の開閉弁を介して接続し、同じく精
留分離器の塔底部と冷却器とを第二の副絞り装置を介し
て接続し、また冷却器と前記圧縮機の吸入配管とを接続
するため、塔頂側の冷却源として塔底から流出する液冷
媒の潜熱を利用でき、冷却器を小型にできるのみなら
ず、十分な低温および冷却熱量で精留分離器の気相部を
液化することができ、沸点差の大きな非共沸混合冷媒に
おいても低沸点成分の多い冷媒を貯留して分離幅を大き
くとることができる。また、貯留器内の冷媒を貯留ある
いは空に制御して、主回路の冷媒量を調整することがで
きるので、冷媒量による能力制御と、冷媒組成による能
力制御により、幅広い能力制御が可能となる。また、室
外主絞り装置と室内主絞り装置とを接続する液配管と貯
留器の底部とを第二の開閉弁を介して接続しているの
で、第二の開閉弁を開放することで短時間で貯留器へ液
冷媒を貯留することができ、冷媒量調整による能力制御
を短時間で行うことができる。
According to a third aspect of the present invention, a non-azeotropic mixed refrigerant is charged, and a compressor, a four-way valve, an outdoor heat exchanger, an outdoor main throttle device that can be fully closed, an indoor main throttle device that can be completely closed, The indoor heat exchanger is connected by piping to form a main circuit of the refrigeration cycle, and the discharge pipe of the compressor and the tower bottom of the rectification separator having a circuit in which a cooler and a reservoir are connected in a ring at the top of the tower are formed. One sub-throttle device and a first on-off valve are connected, the bottom of the rectifying separator and the cooler are also connected via a second sub-throttle device, and a cooler and the compressor are connected. Since it is connected to the suction pipe, the latent heat of the liquid refrigerant flowing out from the bottom of the tower can be used as a cooling source on the top of the tower. It can liquefy the gas phase and has low boiling point components even in non-azeotropic mixed refrigerants with a large boiling point difference. More refrigerant can be a a large separation width and stored. In addition, since the refrigerant in the reservoir can be stored or emptied and the amount of refrigerant in the main circuit can be adjusted, a wide range of capacity control is possible by controlling the amount of refrigerant and controlling the amount of refrigerant by the composition of the refrigerant. . Also, since the liquid pipe connecting the outdoor main throttle device and the indoor main throttle device and the bottom of the reservoir are connected through the second on-off valve, opening the second on-off valve for a short time Thus, the liquid refrigerant can be stored in the storage device, and the capacity control by adjusting the refrigerant amount can be performed in a short time.

【0102】また、全閉可能な室内外主絞り装置を用い
るため、精留分離作用中に圧縮機が停止した場合でも主
絞り装置を全閉して主回路を高圧側と低圧側に分離する
ことで、圧縮機吐出ガスを精留分離器へ供給することが
可能となり、圧縮機停止中でも、主回路内の圧力が均衡
するまで精留分離運転を継続することができる。
Further, since the indoor / outdoor main throttle device that can be fully closed is used, the main throttle device is fully closed to separate the main circuit into a high pressure side and a low pressure side even when the compressor is stopped during the rectification separation operation. Thus, the gas discharged from the compressor can be supplied to the rectifier and the rectification and separation operation can be continued even when the compressor is stopped until the pressure in the main circuit is balanced.

【0103】請求項4に記載の発明は、請求項3に記載
の発明において、また、あらかじめ設定した設定空気温
度と室内温度センサーで検知した吸い込み空気温度との
温度差が一定値以下になった場合に、第一の開閉弁は閉
止したまま第二の開閉弁を一定時間開放した後、第一の
開閉弁を開放して第二の開閉弁を閉止し、また設定空気
温度と吸い込み空気温度との温度差が一定値以上になっ
た場合に、第一の開閉弁と第二の開閉弁を開放するよう
に制御する構成としたもので、簡単なセンシングで負荷
の大小を判断でき、また開閉弁動作という簡単な構成で
主回路の冷媒量を短時間で増減させ、また精留分離によ
る主回路組成を制御できるので、主回路冷媒量と主回路
組成を自動的に可変して、負荷に応じた能力制御を行う
ことができる。また、精留分離作用中に圧縮機が停止し
た場合、主絞り装置を全閉するという簡単な制御のみで
圧縮機が停止中でも、主回路内の圧力が均衡するまで分
離運転を継続することができる。
According to a fourth aspect of the present invention, in the third aspect, a temperature difference between a preset air temperature and a suction air temperature detected by an indoor temperature sensor is equal to or less than a predetermined value. In this case, after opening the second on-off valve for a certain period of time while the first on-off valve is closed, open the first on-off valve and close the second on-off valve, and also set the air temperature and suction air temperature. When the temperature difference between the first and second on-off valves becomes equal to or more than a certain value, the first on-off valve and the second on-off valve are controlled to be opened. The simple configuration of the on-off valve operation allows the amount of refrigerant in the main circuit to be increased or decreased in a short time and the main circuit composition to be controlled by rectification and separation. Can be controlled according to the conditions. In addition, if the compressor stops during the rectification separation operation, the separation operation can be continued until the pressure in the main circuit is balanced even if the compressor is stopped by only simple control of fully closing the main throttle device. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるヒートポンプ装置の実施例1のシ
ステム構成図
FIG. 1 is a system configuration diagram of a first embodiment of a heat pump device according to the present invention.

【図2】同実施例の動作を示すフローチャートFIG. 2 is a flowchart showing the operation of the embodiment.

【図3】本発明によるヒートポンプ装置の実施例2のシ
ステム構成図
FIG. 3 is a system configuration diagram of a second embodiment of the heat pump device according to the present invention.

【図4】同実施例の動作を示すフローチャートFIG. 4 is a flowchart showing the operation of the embodiment.

【図5】従来のヒートポンプ装置のシステム構成図FIG. 5 is a system configuration diagram of a conventional heat pump device.

【符号の説明】[Explanation of symbols]

11 圧縮機 12 四方弁 13 室外熱交換器 14,28 室外主絞り装置 15,29 室内主絞り装置 16 室内熱交換器 17 精留分離器 18 冷却器 19 貯留器 20,22 副絞り装置 21,23 開閉弁 24 室内機 25 温度センサー 26,30 演算装置 27 開閉弁制御装置 31 駆動弁制御装置 Reference Signs List 11 compressor 12 four-way valve 13 outdoor heat exchanger 14, 28 outdoor main throttle device 15, 29 indoor main throttle device 16 indoor heat exchanger 17 rectifying separator 18 cooler 19 storage device 20, 22 sub-throttle device 21, 23 On-off valve 24 Indoor unit 25 Temperature sensor 26, 30 Arithmetic unit 27 On-off valve control unit 31 Drive valve control unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外熱交換器、室外主
絞り装置、室内主絞り装置、室内熱交換器を配管接続し
て冷凍サイクルの主回路を構成し、前記圧縮機の吐出配
管と塔頂部に冷却器および貯留器を環状に接続した回路
を有する精留分離器の塔底部とを第一の副絞り装置およ
び第一の開閉弁を介して接続し、同じく前記精留分離器
の塔底部と前記冷却器とを第二の副絞り装置を介して接
続し、また前記冷却器と前記圧縮機の吸入配管とを接続
し、さらに、前記室外主絞り装置と前記室内主絞り装置
とを接続する配管と前記貯留器の底部とを第二の開閉弁
を介して接続し、非共沸混合冷媒を封入したことを特徴
とするヒートポンプ装置。
A compressor, a four-way valve, an outdoor heat exchanger, an outdoor main throttle device, an indoor main throttle device, and an indoor heat exchanger are connected to form a main circuit of a refrigeration cycle, and a discharge pipe of the compressor is provided. And a tower bottom of a rectifying separator having a circuit in which a cooler and a reservoir are connected in a ring at the top, via a first auxiliary throttle device and a first on-off valve, and the rectifying separator And the cooler is connected via a second sub-throttling device, the cooler is connected to a suction pipe of the compressor, and the outdoor main throttle device and the indoor main throttle device are further connected. A heat pump device, wherein a pipe connecting the above and a bottom of the reservoir are connected via a second on-off valve, and a non-azeotropic mixed refrigerant is sealed.
【請求項2】 前記室内熱交換器を有する室内機の吸い
込み空気温度を検知する室内温度センサーを設け、あら
かじめ設定した設定空気温度と前記室内温度センサーで
検知した吸い込み空気温度との温度差が一定値以下にな
った場合に、前記第一の開閉弁は閉止したまま前記第二
の開閉弁を一定時間開放した後、前記第一の開閉弁を開
放して前記第二の開閉弁を閉止し、また前記設定空気温
度と前記吸い込み空気温度との温度差が一定値以上にな
った場合に、前記第一の開閉弁と前記第二の開閉弁を開
放することを特徴とする請求項1記載のヒートポンプ装
置の運転制御方法。
2. An indoor temperature sensor for detecting a suction air temperature of an indoor unit having the indoor heat exchanger, wherein a temperature difference between a preset air temperature and a suction air temperature detected by the indoor temperature sensor is constant. When the value becomes equal to or less than the value, after opening the second on-off valve for a certain period of time while the first on-off valve is closed, the first on-off valve is opened and the second on-off valve is closed. The first opening / closing valve and the second opening / closing valve are opened when a temperature difference between the set air temperature and the suction air temperature becomes equal to or more than a predetermined value. Operation control method of the heat pump device.
【請求項3】 圧縮機、四方弁、室外熱交換器、全閉可
能な室外主絞り装置、全閉可能な室内主絞り装置、室内
熱交換器を配管接続して冷凍サイクルの主回路を構成
し、前記圧縮機の吐出配管と塔頂部に冷却器および貯留
器を環状に接続した回路を有する精留分離器の塔底部と
を第一の副絞り装置および第一の開閉弁を介して接続
し、同じく前記精留分離器の塔底部と前記冷却器とを第
二の副絞り装置を介して接続し、また前記冷却器と前記
圧縮機の吸入配管とを接続し、さらに、前記全閉可能な
室外主絞り装置と前記全閉可能な室内主絞り装置とを接
続する配管と前記貯留器の底部とを第二の開閉弁を介し
て接続し、非共沸混合冷媒を封入したことを特徴とする
ヒートポンプ装置。
3. A main circuit of a refrigeration cycle is formed by connecting a compressor, a four-way valve, an outdoor heat exchanger, an outdoor main throttle device that can be fully closed, an indoor main throttle device that can be fully closed, and an indoor heat exchanger. Then, the discharge pipe of the compressor is connected to the tower bottom of a rectifier having a circuit in which a cooler and a reservoir are connected in a ring at the top of the tower via a first auxiliary throttle device and a first on-off valve. Similarly, the bottom of the fractionator and the cooler are connected via a second sub-throttling device, the cooler is connected to the suction pipe of the compressor, and The pipe connecting the possible outdoor main throttle device and the fully-closeable indoor main throttle device and the bottom of the reservoir are connected via a second on-off valve, and the non-azeotropic mixed refrigerant is sealed. Characteristic heat pump device.
【請求項4】 前記室内熱交換器を有する室内機の吸い
込み空気温度を検知する室内温度センサーを設け、あら
かじめ設定した設定空気温度と前記室内温度センサーで
検知した吸い込み空気温度との温度差が一定値以下にな
った場合に、前記第一の開閉弁は閉止したまま前記第二
の開閉弁を一定時間開放した後、前記第一の開閉弁を開
放して前記第二の開閉弁を閉止し、また前記設定空気温
度と前記吸い込み空気温度との温度差が一定値以上にな
った場合に、前記第一の開閉弁と前記第二の開閉弁を開
放し、さらに前記第一の開閉弁を開放し前記第二の開閉
弁を閉止した状態で前記圧縮機が停止した場合、前記室
外主絞り装置および前記室内主絞り装置を全閉すること
を特徴とする請求項3記載のヒートポンプ装置の運転制
御方法。
4. An indoor temperature sensor for detecting a suction air temperature of an indoor unit having the indoor heat exchanger, wherein a temperature difference between a preset air temperature and a suction air temperature detected by the indoor temperature sensor is constant. When the value becomes equal to or less than the value, after opening the second on-off valve for a certain period of time while the first on-off valve is closed, the first on-off valve is opened and the second on-off valve is closed. When the temperature difference between the set air temperature and the suction air temperature is equal to or more than a certain value, the first on-off valve and the second on-off valve are opened, and the first on-off valve is further opened. The operation of the heat pump device according to claim 3, wherein when the compressor is stopped in a state where the compressor is stopped while the second on-off valve is closed and the second on-off valve is closed, the outdoor main throttle device and the indoor main throttle device are fully closed. Control method.
JP11163294A 1999-04-02 1999-06-10 Heat pump Pending JP2000346473A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11163294A JP2000346473A (en) 1999-06-10 1999-06-10 Heat pump
EP00911399A EP1094285A1 (en) 1999-04-02 2000-03-27 Heat pump
CN00800748A CN1302365A (en) 1999-04-02 2000-03-27 Heat pump
PCT/JP2000/001885 WO2000060288A1 (en) 1999-04-02 2000-03-27 Heat pump
KR1020007013577A KR20010052480A (en) 1999-04-02 2000-03-27 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11163294A JP2000346473A (en) 1999-06-10 1999-06-10 Heat pump

Publications (1)

Publication Number Publication Date
JP2000346473A true JP2000346473A (en) 2000-12-15

Family

ID=15771103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11163294A Pending JP2000346473A (en) 1999-04-02 1999-06-10 Heat pump

Country Status (1)

Country Link
JP (1) JP2000346473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376850C (en) * 2006-03-27 2008-03-26 浙江大学 Hot pump system with variable capacity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376850C (en) * 2006-03-27 2008-03-26 浙江大学 Hot pump system with variable capacity

Similar Documents

Publication Publication Date Title
KR100964779B1 (en) Freezing device
JP4895883B2 (en) Air conditioner
JP2004183913A (en) Air conditioner
JP2002081767A (en) Air conditioner
JP2003279177A (en) Water heater, ejector for vapor compression type refrigerating cycle, and vapor compression type refrigerating cycle
KR930004384B1 (en) Heat-pump apparatus
JPH10267436A (en) Refrigerating air-conditioning device
JP2005214444A (en) Refrigerator
JP2003004316A (en) Method for controlling refrigeration unit
WO2017221300A1 (en) Air conditioner
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2004156823A (en) Cooling system
JP2007155143A (en) Refrigerating device
JP2000346473A (en) Heat pump
JP3749092B2 (en) Refrigerant sealing method and air conditioner
JP2001317828A (en) Heat pump apparatus
JP3140908B2 (en) Refrigerant circulation system
JP2001133059A (en) Heat pump system
JP2000346471A (en) Heat pump
JP2000292019A (en) Heat pump device
JP2000346477A (en) Heat pump device
JPH01302072A (en) Heat pump type air conditioner
JP2001317829A (en) Heat pump apparatus
KR940010584B1 (en) Refrigerator
JP2001091063A (en) Air conditioner