JP2000342000A - Equipment and method for controlling induction motor - Google Patents
Equipment and method for controlling induction motorInfo
- Publication number
- JP2000342000A JP2000342000A JP2000072287A JP2000072287A JP2000342000A JP 2000342000 A JP2000342000 A JP 2000342000A JP 2000072287 A JP2000072287 A JP 2000072287A JP 2000072287 A JP2000072287 A JP 2000072287A JP 2000342000 A JP2000342000 A JP 2000342000A
- Authority
- JP
- Japan
- Prior art keywords
- current
- command
- induction motor
- value
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は誘導電動機を停止し
たままの状態で、誘導電動機の抵抗及び漏れインダクタ
ンス及び相互インダクタンスを高精度にチューニング
し、高精度に誘導電動機を制御する誘導電動機の制御装
置とその制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control apparatus for an induction motor for controlling the induction motor with high precision by tuning the resistance, leakage inductance and mutual inductance of the induction motor with the induction motor stopped. And its control method.
【0002】[0002]
【従来の技術】従来技術として、誘導電動機を停止した
ままの状態で、誘導電動機の定数をチューニングする方
法として、単相交流を誘導電動機に供給し、d軸電流検
出値あるいはq軸電流検出値をフーリエ級数展開し、誘
導電動機の定数を求めていた。2. Description of the Related Art As a prior art, as a method of tuning the constant of an induction motor while the induction motor is stopped, a single-phase alternating current is supplied to the induction motor, and a d-axis current detection value or a q-axis current detection value is used. Was expanded to a Fourier series to determine the constant of the induction motor.
【0003】[0003]
【発明が解決しようとする課題】誘導電動機を高精度に
制御するためには、誘導電動機の定数を正確に知る必要
があるが、そのためには誘導電動機を回転させる必要が
あった。しかし、誘導電動機を停止させたままで、誘導
電動機の定数をチューニングする要求に答えるために
は、従来技術のように単相交流を印加し、フーリエ級数
展開を利用していた。ところがこの方法は、ソフトが複
雑になり、ソフトの処理時間が長くなり、ソフトに大き
な記憶容量を要するといった問題があった。さらにイン
バータ主回路素子のオン電圧降下量は、主回路素子自体
のばらつきがあるためこれまで簡単に補償できなかっ
た。例えば、インバータ主回路素子のオン電圧降下量は
IGBT使用時0.5〜2ボルトの値をもつがこの素子
のオン電圧降下量は従来考慮されておらず測定精度が悪
かった。特にセンサレスベクトル制御では、低速領域に
おいてこのオン電圧降下の影響が大きくなるため、誘導
電動機定数の測定精度が低くなっていたため、低速領域
での速度制御性能が悪かった。そこで本発明は誘導電動
機を停止状態で、インバータ主回路パワー素子のオン電
圧降下量を考慮して誘導電動機の定数を高精度にチュー
ニングし、その結果を利用して誘導電動機を高精度に駆
動制御する装置とその制御方法を提供することを目的と
する。In order to control the induction motor with high accuracy, it is necessary to know the constant of the induction motor accurately, but for that purpose, it was necessary to rotate the induction motor. However, in order to respond to a request for tuning the constant of the induction motor while the induction motor is stopped, a single-phase alternating current is applied and a Fourier series expansion is used as in the related art. However, this method has a problem that the software is complicated, the processing time of the software is long, and the software requires a large storage capacity. Furthermore, the amount of ON voltage drop of the inverter main circuit element has not been able to be easily compensated so far because of the variation of the main circuit element itself. For example, the ON voltage drop amount of the inverter main circuit element has a value of 0.5 to 2 volts when the IGBT is used, but the ON voltage drop amount of this element has not been considered in the past and the measurement accuracy was poor. In particular, in the sensorless vector control, the influence of the on-voltage drop becomes large in the low-speed region, and the measurement accuracy of the induction motor constant is reduced. Therefore, the speed control performance in the low-speed region is poor. Therefore, the present invention tunes the constant of the induction motor with high accuracy in consideration of the on-voltage drop of the inverter main circuit power element while the induction motor is stopped, and drives the induction motor with high accuracy using the result. And a control method thereof.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するた
め、本発明は直流を任意の周波数と電圧の交流に変換し
て誘導電動機に供給する電力変換器と、前記誘導電動機
に供給される1次電流を検出する電流検出回路と、前記
誘導電動機に供給される1次電流を励磁電流検出値とト
ルク電流検出値に変換して出力する座標変換回路と、与
えられた励磁電流指令値と与えられたトルク電流指令値
とから励磁電流方向電圧指令とトルク電流方向電圧指令
を演算する電圧指令演算回路と、前記励磁電流指令値と
前記励磁電流検出値とが一致するように励磁電流方向電
圧を制御する励磁電流制御回路と、前記トルク電流指令
値と前記トルク電流検出値とが一致するようにトルク電
流方向電圧を制御するトルク電流制御回路と、前記励磁
電流方向電圧指令を前記励磁電流制御回路の出力で補償
した値と前記トルク電流方向電圧指令を前記トルク電流
制御回路の出力で補償した値を入力し、電圧指令と電圧
位相指令を出力する電圧指令座標変換回路と、前記電圧
位相角指令と与えられた出力周波数指令を積分すること
により得られた位相角指令を加えた出力電圧位相角指令
を演算する出力電圧位相角指令演算回路と、前記出力電
圧位相角指令と前記電圧指令とを入力し、各相の出力電
圧指令に変換する2相3相変換回路と、前記各相の出力
電圧指令よりPWM信号を生成して前記電力変換器に供
給するPWM発生回路とを備えた誘導電動機の制御装置
において、前記誘導電動機を停止させたままの状態で、
前記出力電圧指令と前記1次電流検出値から前記誘導電
動機の抵抗及び主回路パワー素子のオン電圧降下量及び
漏れインダクタンス及び相互インダクタンスをチューニ
ングする電動機定数チューニング手段を有することを特
徴とするものである。また、前記電動機定数チューニン
グ手段によりチューニングされた誘導電動機の定数によ
り前記誘導電動機を制御することを特徴とするものであ
る。また、前記電動機定数チューニング手段は、前記誘
導電動機に少なくとも2種類以上の直流電流指令を与
え、その電流検出値が前記直流電流指令値に一致するよ
うな前記出力電圧指令値を求め、その直流電流に比例す
る成分を誘導電動機の1次抵抗、比例しない一定値を主
回路パワー素子のオン電圧降下量とする手段からなるこ
とを特徴とするものである。また、前記電動機定数チュ
ーニング手段は、回転停止状態の前記誘導電動機に停止
状態を維持するに十分な周波数からなる高周波の電圧を
印加し、前記誘導電動機を停止状態に維持し、前記電圧
指令値と前記電流検出値に基づいて2次抵抗及び漏れイ
ンダクタンスのチューニングをする手段からなることを
特徴とするものである。また、電力変換器主回路のパワ
ー素子のオン電圧降下量を前記パワー素子に流れる電流
Ifbに対して、前記電流に比例する成分と一定値V0と
に近似し、前記電流に比例する成分は誘導電動機の1次
抵抗r1に含め前記パワー素子のオン電圧降下量V0は電
流に比例しない一定値とし、トルク電流指令値Iqrefと
周波数指令frefを零に設定し、2種類の励磁電流指令値I
dref1、Idref2を与えたときの出力電圧指令値をそれぞ
れVref1、Vref2とし、前記誘導電動機の1次抵抗r1とパ
ワー素子のオン電圧降下量V0をぞれぞれ r1=(Vref1−Vref2)/{2(Idref1−Idref2 )} V0=(Vref1 Idref2−Vref2 Idref1)/(Idref2−Idr
ef1) として求めることを特徴とする制御方法である。また、
電力変換器主回路のパワー素子のオン電圧降下量を前記
パワー素子に流れる電流Ifbに対して、前記電流に比例
する成分と一定値V0とに近似し、前記電流に比例する
成分は誘導電動機の1次抵抗r1に含め前記パワー素子の
オン電圧降下量V0は電流に比例しない一定値とし、ト
ルク電流指令値Iqrefと周波数指令frefを零に設定し、
複数の励磁電流指令値Idref1、Idref2、...、IdrefN
(Nは3以上の整数)を与え、前記励磁電流指令値に対
応する出力電圧指令値Vref1、Vref2、...、VrefNを
求め、複数の前記励磁電流指令値と前記出力電圧指令値
に基づいて前記誘導電動機の1次抵抗r1とパワー素子の
オン電圧降下量V0を求めることを特徴とする誘導電動
機の制御方法である。また、トルク電流指令値Iqrefと
周波数指令frefを零、励磁電流指令値をIdref=Idref3
に設定し誘導電動機に印加し、しばらく経過した後に、
前記電圧指令値Vref3で出力電圧指令をリミットした状
態で前記周波数指令frefを前記誘導電動機が停止状態を
維持するに十分な周波数fref3に変更し、一定時間経過
後に前記出力電圧指令のリミットを外して電流制御を再
開し、この時の前記補償後励磁電流方向電圧指令値Vdcr
ef3及び前記補償後トルク電流方向電圧指令Vqcref3を求
め、前記誘導電動機の2次抵抗r2及び漏れインダクタン
スLを r2=Vdcref3/ Idref3- r1 L=Vqcref3/(Idref3×2πfref) として求めることを特徴とする制御方法である。また、
前記電動機定数チューニング手段は、前記誘導電動機に
直流励磁する為の電圧を印加し,前記誘導電動機を停止
状態に維持し、直流励磁した二次磁束を微少変化させる
信号を電圧指令あるいは電流指令に重畳し、電流検出値
と前記電圧指令または電圧検出値とに基づいて相互イン
ダクタンスを演算し、相互インダクタンスをチューニン
グするものである請求項1または2記載の誘導電動機の
制御装置である。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a power converter that converts a direct current into an alternating current of an arbitrary frequency and voltage and supplies the alternating current to an induction motor. A current detection circuit for detecting a secondary current, a coordinate conversion circuit for converting a primary current supplied to the induction motor into an excitation current detection value and a torque current detection value and outputting the same, and a given excitation current command value and a given excitation current command value. A voltage command calculation circuit that calculates an excitation current direction voltage command and a torque current direction voltage command from the received torque current command value, and an excitation current direction voltage such that the excitation current command value matches the excitation current detection value. An exciting current control circuit for controlling, a torque current control circuit for controlling a torque current direction voltage so that the torque current command value matches the torque current detection value, A voltage command coordinate conversion circuit that inputs a value compensated by the output of the exciting current control circuit and a value obtained by compensating the torque current direction voltage command with the output of the torque current control circuit, and outputs a voltage command and a voltage phase command, An output voltage phase angle command calculation circuit for calculating an output voltage phase angle command to which a phase angle command obtained by integrating the voltage phase angle command and a given output frequency command is added, and the output voltage phase angle command; A two-phase / three-phase conversion circuit that receives the voltage command and converts it into an output voltage command for each phase; a PWM generation circuit that generates a PWM signal from the output voltage command for each phase and supplies the signal to the power converter; In the induction motor control device provided with, while the induction motor is stopped,
Motor constant tuning means for tuning the resistance of the induction motor, the on-voltage drop of the main circuit power element, the leakage inductance, and the mutual inductance from the output voltage command and the primary current detection value. . Further, the induction motor is controlled by a constant of the induction motor tuned by the motor constant tuning means. Further, the motor constant tuning means gives at least two types of DC current commands to the induction motor, obtains the output voltage command value such that the current detection value matches the DC current command value, and obtains the DC current value. , And a constant value that is not proportional to the on-voltage drop amount of the main circuit power element. Further, the motor constant tuning means applies a high-frequency voltage having a frequency sufficient to maintain the stopped state to the induction motor in the rotation stopped state, maintains the induction motor in the stopped state, and sets the voltage command value and It is characterized by comprising means for tuning a secondary resistance and a leakage inductance based on the detected current value. Further, the amount of on-voltage drop of the power element of the power converter main circuit is approximated to a component proportional to the current and a constant value V 0 with respect to the current Ifb flowing through the power element, and a component proportional to the current is: on the voltage drop amount V 0 which the power device included in the primary resistance r 1 of the induction motor is a constant value proportional to the current, set the torque current command value Iqref and frequency command fref zero, two exciting current command Value I
The output voltage command values when dref 1 and Idref 2 are given are Vref 1 and Vref 2 , respectively, and the primary resistance r 1 of the induction motor and the on-voltage drop V 0 of the power element are r 1 = (Vref 1 −Vref 2 ) / {2 (Idref 1 −Idref 2 )} V 0 = (Vref 1 Idref 2 −Vref 2 Idref 1 ) / (Idref 2 −Idr
ef 1 ) This is a control method characterized by being obtained as Also,
The amount of on-voltage drop of the power element of the power converter main circuit is approximated to a component proportional to the current and a constant value V 0 with respect to the current Ifb flowing through the power element, and a component proportional to the current is an induction motor. on the voltage drop amount V 0 which the power device included in the primary resistance r 1 of the constant value which is not proportional to the current, set the torque current command value Iqref and frequency command fref to zero,
A plurality of excitation current command values Idref 1 , Idref 2 ,. . . , Idref N
(N is an integer of 3 or more), and output voltage command values Vref 1 , Vref 2 ,. . . , Vref N, and a primary resistance r 1 of the induction motor and an on-voltage drop V 0 of the power element based on the plurality of excitation current command values and the output voltage command values. Is a control method. Further, the torque current command value Iqref and the frequency command fref are set to zero, and the exciting current command value is set to Idref = Idref 3
And apply it to the induction motor, and after a while,
In a state where the output voltage command is limited by the voltage command value Vref 3 , the frequency command fref is changed to a frequency fref3 sufficient to maintain the stop state of the induction motor, and the limit of the output voltage command is removed after a predetermined time has elapsed. Current control is resumed, and at this time the post-compensation excitation current direction voltage command value Vdcr
ef 3 and the compensated torque current direction voltage command Vqcref 3 are obtained, and the secondary resistance r 2 and the leakage inductance L of the induction motor are calculated as r 2 = Vdcref 3 / Idref 3 -r 1 L = Vqcref 3 / (Idref 3 × 2πfref). Also,
The motor constant tuning means applies a voltage for DC excitation to the induction motor, maintains the induction motor in a stopped state, and superimposes a signal for slightly changing the DC-excited secondary magnetic flux on a voltage command or a current command. 3. The control device for an induction motor according to claim 1, wherein a mutual inductance is calculated based on a current detection value and the voltage command or the voltage detection value, and the mutual inductance is tuned.
【0005】[0005]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。図1は本発明における誘
導電動機の制御装置の実施形態の構成を示すブロック図
である。本実施形態における誘導電動機の制御装置は、
電力変換器1、誘導電動機2、電流検出器3、電流座標
変換回路4、電圧指令演算回路5、励磁電流制御回路
6、トルク電流制御回路7、電圧指令座標変換回路8、
出力電圧位相角指令演算回路9、2相3相座標変換回路
10、PWM発生回路11、誘導電動機の抵抗及びパワ
ー素子のオン電圧降下量及び漏れインダクタンス及び相
互インダクタンスをチューニングする電動機定数チュー
ニング手段12を備えている。電力変換器1は、与えら
れた直流電圧あるいはパワー素子により三相交流を変換
した直流電圧をPWM制御方式により任意の周波数と電
圧の交流に変換し、誘導電動機2に供給する。電流検出
器3は、誘導電動機2に供給される電流を検出する。電
流座標変換回路4は、前記電流検出器3で検出された電
流を励磁電流検出値Idfbとトルク電流検出値Iqfbに変換
して出力する。電圧指令演算回路5は、与えられた励磁
電流指令値Idrefと与えられたトルク電流指令値Iqrefと
から励磁電流方向電圧指令Vdrefとトルク電流方向電圧
指令Vqrefを演算する。励磁電流制御回路6は、前記励
磁電流指令値Idrefと前記励磁電流検出値Idfbとが一致
するように励磁電流方向電圧補償値Vdcを演算する。ト
ルク電流制御回路7は、前記トルク電流指令値Iqrefと
前記励磁電流検出値Iqfbとが一致するようにトルク電流
方向電圧補償値Vqcを演算する。電圧指令座標変換回路
8は、前記励磁電流方向電圧指令Vdrefを前記励磁電流
方向電圧補償値Vdcで補償した補償後励磁電流方向電圧
指令値Vdcrefと前記Vqcrefトルク電流方向電圧指令Vqre
fを前記トルク電流方向電圧補償値Vqcで補償した補償後
トルク電流方向電圧指令値を入力し、電圧指令Vrefと電
圧位相指令θvを出力する。出力電圧位相角指令演算回
路9は、前記電圧位相角指令θvと与えられた出力周波
数指令を積分することにより得られた位相角指令θfref
を加えた出力電圧位相角指令θrefを出力する。2相3
相座標変換回路10は、前記電圧指令Vrefを後記位相角
依存電圧補償回路の出力である電圧補償量で補償した出
力電圧指令V1refと前記出力電圧位相角指令θrefとを入
力し、各相の出力電圧指令に変換する。PWM発生回路
11は、前記2相3相座標変換回路から出力された各相
の出力電圧指令よりPWM信号を生成し、前記電力変換
器1を駆動する。誘導電動機の抵抗及びパワー素子のオ
ン電圧降下量及び漏れインダクタンスをチューニングす
る電動機定数チューニング手段12は、前記誘導電動機
が停止状態で、前記出力電圧指令と前記1次電流検出値
から前記誘導電動機の抵抗及びパワー素子のオン電圧降
下量及び漏れインダクタンス及び相互インダクタンスを
チューニングする。本チューニングは予め運転前に行う
か、運転指令が入力された直後に実施し、チューニング
した前記誘導電動機の定数を利用して、前記誘導電動機
は駆動される。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an embodiment of a control device for an induction motor according to the present invention. The control device of the induction motor according to the present embodiment includes:
Power converter 1, induction motor 2, current detector 3, current coordinate conversion circuit 4, voltage command calculation circuit 5, excitation current control circuit 6, torque current control circuit 7, voltage command coordinate conversion circuit 8,
An output voltage phase angle command calculation circuit 9, a two-phase three-phase coordinate conversion circuit 10, a PWM generation circuit 11, a motor constant tuning means 12 for tuning the resistance of the induction motor, the on-voltage drop of the power element, the leakage inductance and the mutual inductance. Have. The power converter 1 converts a given DC voltage or a DC voltage obtained by converting three-phase AC by a power element into an AC having an arbitrary frequency and voltage by a PWM control method, and supplies the AC to the induction motor 2. The current detector 3 detects a current supplied to the induction motor 2. The current coordinate conversion circuit 4 converts the current detected by the current detector 3 into an excitation current detection value Idfb and a torque current detection value Iqfb and outputs the same. The voltage command calculation circuit 5 calculates an excitation current direction voltage command Vdref and a torque current direction voltage command Vqref from the given excitation current command value Idref and the given torque current command value Iqref. The exciting current control circuit 6 calculates the exciting current direction voltage compensation value Vdc such that the exciting current command value Idref and the exciting current detection value Idfb match. The torque current control circuit 7 calculates the torque current direction voltage compensation value Vqc such that the torque current command value Iqref and the excitation current detection value Iqfb match. The voltage command coordinate conversion circuit 8 includes a compensated exciting current direction voltage command value Vdcref obtained by compensating the exciting current direction voltage command Vdref with the exciting current direction voltage compensation value Vdc, and the Vqcref torque current direction voltage command Vqre.
A compensated torque current direction voltage command value obtained by compensating f with the torque current direction voltage compensation value Vqc is input, and a voltage command Vref and a voltage phase command θv are output. The output voltage phase angle command calculation circuit 9 integrates the voltage phase angle command θv and a given output frequency command to obtain a phase angle command θfref.
And outputs the output voltage phase angle command θref. 2 phase 3
The phase coordinate conversion circuit 10 receives an output voltage command V1ref obtained by compensating the voltage command Vref with a voltage compensation amount which is an output of a phase angle dependent voltage compensation circuit described later and the output voltage phase angle command θref, and outputs the output of each phase. Convert to voltage command. The PWM generation circuit 11 generates a PWM signal from the output voltage command of each phase output from the two-phase / three-phase coordinate conversion circuit, and drives the power converter 1. The motor constant tuning means 12, which tunes the resistance of the induction motor and the amount of on-voltage drop and the leakage inductance of the power element, controls the resistance of the induction motor based on the output voltage command and the primary current detection value when the induction motor is stopped. In addition, the on-voltage drop amount, the leakage inductance and the mutual inductance of the power element are tuned. This tuning is performed before operation or immediately after an operation command is input, and the induction motor is driven using the tuned constant of the induction motor.
【0006】次に本発明の一つである停止した状態での
前記誘導電動機の抵抗及びパワー素子のオン電圧降下量
及び漏れインダクタンス及び相互インダクタンスをチュ
ーニングする方法について説明する。まず、前記誘導電
動機の1次抵抗及びパワー素子のオン電圧降下量の測定
方法について説明する。ここで、電力変換器のパワー素
子のオン電圧降下量は通常使う領域ではパワー素子に流
れる電流Ifbに対して、電流に比例する成分と一定値に
近似することができる。このため、電流に比例する成分
は誘導電動機の1次抵抗r1に含め、電力変換器のパワー
素子のオン電圧降下量V0は電流に比例しない一定値と
する。この関係を表すと(1)式となる。Next, a method of tuning the resistance of the induction motor, the amount of on-voltage drop of the power element, the leakage inductance, and the mutual inductance in the stopped state, which is one of the present invention, will be described. First, a method of measuring the primary resistance of the induction motor and the amount of on-voltage drop of the power element will be described. Here, the amount of ON voltage drop of the power element of the power converter can be approximated to a constant value and a component proportional to the current Ifb flowing through the power element in a normally used region. Thus, components proportional to the current, including the primary resistance r 1 of the induction motor, on-state voltage drop V 0 which the power element of the power converter is a constant value proportional to the current. This relationship is expressed by equation (1).
【0007】 V=r1 Ifb + V0 (1)V = r 1 Ifb + V 0 (1)
【0008】そして、トルク電流指令値Iqref=0、周波
数指令fref=0に設定し、2種類または2種類以上の励磁電
流指令値Idrefを設定し、前記誘導電動機に直流電流を
流し、出力電圧指令Vrefの関係を求める。ここでは例と
して、2種類の励磁電流指令値Idref1、Idref2を与えた
場合について説明する。このとき前記出力電圧指令値が
それぞれVref1、Vref2になったとすると、前記誘導電動
機の1次抵抗r1及びパワー素子のオン電圧降下量V0は
ぞれぞれ(2)、(3)式より求められる。Then, a torque current command value Iqref = 0 and a frequency command fref = 0 are set, two or more types of excitation current command values Idref are set, a DC current is supplied to the induction motor, and an output voltage command Find the relationship of Vref. Here, as an example, a case where two types of excitation current command values Idref 1 and Idref 2 are given will be described. At this time, assuming that the output voltage command values become Vref 1 and Vref 2 respectively, the primary resistance r 1 of the induction motor and the on-voltage drop V 0 of the power element are (2) and (3), respectively. Obtained from the formula.
【0009】 r1=(Vref1−Vref2)/{2(Idref1−Idref2 )} (2 ) V0=(Vref1 Idref2−Vref2 Idref1)/(Idref2−Idref1) ( 3)R 1 = (Vref 1 −Vref 2 ) / {2 (Idref 1 −Idref 2 )} (2) V 0 = (Vref 1 Idref 2 −Vref 2 Idref 1 ) / (Idref 2 −Idref 1 ) ( 3)
【0010】と求められる。ここでは、2種類の励磁電
流指令値について説明したが、3種類以上でも同様にし
て求められる。すなわちトルク電流指令値Iqrefと周波
数指令frefを零に設定し、複数の励磁電流指令値Idre
f1、Idref2、...、IdrefN(Nは3以上の整数)を与
え、前記励磁電流指令値に対応する出力電圧指令値Vref
1、Vref2、...、VrefNを求め、複数の前記励磁電流
指令値と前記出力電圧指令値に基づいて前記誘導電動機
の1次抵抗r1とパワー素子のオン電圧降下量V0を最小
自乗法等で演算し、求めることができる。また、本方法
は直流電流指令を与えて前記誘導電動機の抵抗r1及び
パワー素子のオン電圧降下量を測定するため、前記励磁
電流指令値や前記トルク電流指令値を任意に設定するこ
とで、直流電流指令値としてもよい。次に誘導電動機の
2次抵抗と漏れインダクタンスのチューニング方法につ
いて説明する。トルク電流指令値Iqref=0、周波数指令f
ref=0、励磁電流指令値Idref= Idref3を設定し、誘導電
動機に印加する。しばらく経過した後に、この時の電圧
指令値Vref3で出力電圧指令をリミットした状態で、周
波数指令frefを高周波数であるfref3に変更する。この
操作により前記誘導電動機は脱調状態になり、3相交流
を印加しているにもかかわらず、前記誘導電動機を停止
状態にすることができる。そして、出力電圧指令のリミ
ットを外して、電流制御を再開する。この時の前記補償
後励磁電流方向電圧指令値Vdcref3及び前記補償後トル
ク電流方向電圧指令Vqcref3を求める。ここで、前記補
償御励磁電流方向電圧指令値、前記補償後トルク電流方
向電圧指令値はそれぞれ誘導電動機の抵抗による電圧降
下、漏れインダクタンスによる電圧降下に相当する。そ
こで、前記誘導電動機の2次抵抗r2及び漏れインダクタ
ンスLはIs required. Here, two types of excitation current command values have been described, but three or more types can be similarly obtained. That is, the torque current command value Iqref and the frequency command fref are set to zero, and a plurality of excitation current command values Idre
f 1 , Idref 2 ,. . . , Idref N (N is an integer of 3 or more), and an output voltage command value Vref corresponding to the exciting current command value
1, Vref 2,. . . , Vref N , and calculates the primary resistance r 1 of the induction motor and the on-voltage drop V 0 of the power element by a least square method or the like based on the plurality of excitation current command values and the output voltage command values, You can ask. Further, the present method provides a DC current command to measure the resistance r 1 of the induction motor and the ON voltage drop amount of the power element, so that the excitation current command value and the torque current command value are arbitrarily set, It may be a DC current command value. Next, the induction motor
A method of tuning the secondary resistance and the leakage inductance will be described. Torque current command value Iqref = 0, frequency command f
ref = 0, sets the excitation current command value Idref = Idref 3, applied to the induction motor. After some time has elapsed, while limiting the output voltage command in the voltage command value Vref 3 at this time, to change the frequency command fref to fref3 a high frequency. With this operation, the induction motor is out of step, and the induction motor can be stopped even though three-phase alternating current is being applied. Then, the limit of the output voltage command is removed, and the current control is restarted. At this time, the compensated excitation current direction voltage command value Vdcref 3 and the compensated torque current direction voltage command Vqcref 3 are obtained. Here, the compensation excitation current direction voltage command value and the compensated torque current direction voltage command value correspond to a voltage drop due to the resistance of the induction motor and a voltage drop due to the leakage inductance, respectively. Then, the secondary resistance r 2 and the leakage inductance L of the induction motor are
【0011】 r2=Vdcref3/ Idref3- r1 (4) L=Vqcref3/(Idref3×2πfref) (5)R 2 = Vdcref 3 / Idref 3 -r 1 (4) L = Vqcref 3 / (Idref 3 × 2πfref) (5)
【0012】と求められる。本方法では2次側の漏れイ
ンダクタンスを1次換算し、1次側の漏れインダクタンス
に含めている。Is required. In this method, the leakage inductance on the secondary side is converted to primary and included in the leakage inductance on the primary side.
【0013】次に、誘導電動機の相互インダクタンスを
チューニングする方法について説明する。相互インダク
タンスをチューニングする為には通常無負荷運転する必
要があるが、本発明では誘導電動機を停止させてチュー
ニングする特徴がある。誘導電動機を直流励磁すること
により、誘導電動機の回転子を停止状態にする。直流電
流が流れている場合には、二次回路に電流が流れない
為、二次回路に電流を流す為に二次磁束を変化させる必
要がある。この方法として、直流励磁した二次磁束を微
少変化させる信号を電圧指令あるいは電流指令に重畳す
る。この信号は周波数の低い正弦波や三角波やのこぎり
波等が望ましい。このとき誘導電動機は図2の等価回路
で表せるので、(6)、(7)式の方程式が成立する。電
圧指令と電流検出値がわかれば(6),(7)式を解くこ
とにより相互インダクタンスMを求めることができる。Next, a method of tuning the mutual inductance of the induction motor will be described. Normally, it is necessary to perform no-load operation to tune the mutual inductance. However, the present invention has a feature that tuning is performed by stopping the induction motor. The rotor of the induction motor is stopped by DC excitation of the induction motor. When a DC current is flowing, no current flows in the secondary circuit, and thus it is necessary to change the secondary magnetic flux in order to flow the current in the secondary circuit. As this method, a signal for slightly changing the DC-excited secondary magnetic flux is superimposed on a voltage command or a current command. This signal is desirably a sine wave, a triangular wave, a sawtooth wave, or the like having a low frequency. At this time, since the induction motor can be represented by the equivalent circuit of FIG. 2, the equations (6) and (7) are established. If the voltage command and the current detection value are known, the mutual inductance M can be obtained by solving equations (6) and (7).
【0014】[0014]
【数1】 (Equation 1)
【0015】本実施例では電流指令値を基準として説明
するが、電圧指令を基準にしても同様に上式を解くこと
ができる。まず、電流指令として、励磁電流指令I1と
二次磁束を変化させる為の信号として、低周波数の交流
電流指令I' 1ejωtを与える。電流制御により電流指令
と電流検出値が一致するように電圧指令を制御する。こ
のとき、図2の等価回路の電圧・電流をIn this embodiment, the description will be made based on the current command value. However, the above equation can be similarly solved using the voltage command as a reference. First, as a current command, as a signal for changing the exciting current command I 1 and the secondary magnetic flux, providing an alternating current command I '1 e j ω t of low frequencies. The voltage command is controlled by the current control so that the current command matches the current detection value. At this time, the voltage and current of the equivalent circuit of FIG.
【0016】[0016]
【数2】 (Equation 2)
【0017】とおき、(6),(7)式に代入すると、By substituting into equations (6) and (7),
【0018】[0018]
【数3】 (Equation 3)
【0019】となる。この方程式を直流成分と交流成分
に分けて解くと、直流成分より## EQU1 ## Solving this equation by dividing it into DC and AC components gives
【0020】[0020]
【数4】 (Equation 4)
【0021】が得られる。また、交流成分を考えるにあ
たりIs obtained. In considering the AC component,
【0022】[0022]
【数5】 (Equation 5)
【0023】とおくと、(9)式の実成分のみを考える
とConsidering only the real component of the equation (9),
【0024】[0024]
【数6】 (Equation 6)
【0025】が得られる。(13)式に電圧指令値及び
電流検出値を代入することにより相互インダクタンスを
チューニングすることができる。本実施例は実成分に着
目して解いたが、虚成分に着目して解いたり、絶対値や
位相成分を使って解くこともできる。Is obtained. The mutual inductance can be tuned by substituting the voltage command value and the current detection value into the equation (13). In the present embodiment, the solution is performed by focusing on the real component. However, the solution may be performed by focusing on the imaginary component, or the solution may be performed by using the absolute value or the phase component.
【0026】[0026]
【発明の効果】以上述べたように本発明によれば、誘導
電動機を停止した状態でしかもインバータ主回路パワー
素子自体のオン電圧降下量を測定考慮して誘導電動機の
抵抗及び漏れインダクタンス及び相互インダクタンスを
高精度にチューニングすることができる。さらにそのチ
ューニング結果を利用して、誘導電動機を駆動すること
により、誘導電動機を高精度に制御できるという効果が
ある。本発明は、電圧指令値と電流検出値に基づいて電
動機定数を測定し、設定できるため、誘導電動機に位置
・速度検出器、インバータ出力電圧を検出する電圧検出
器を持たないセンサレスベクトル制御に最適である。イ
ンバータ主回路素子のオン電圧降下量も考慮しているた
め、センサレスベクトル制御での低速領域においても速
度制御性能を向上できる。As described above, according to the present invention, the resistance, leakage inductance and mutual inductance of the induction motor are measured while the induction motor is stopped and the amount of on-voltage drop of the inverter main circuit power element itself is measured and taken into consideration. Can be tuned with high accuracy. Further, by driving the induction motor using the tuning result, there is an effect that the induction motor can be controlled with high accuracy. Since the present invention can measure and set the motor constant based on the voltage command value and the current detection value, the present invention is ideal for sensorless vector control in which the induction motor does not have a position / speed detector and a voltage detector for detecting an inverter output voltage. It is. Since the amount of on-voltage drop of the inverter main circuit element is also taken into consideration, speed control performance can be improved even in a low-speed region in sensorless vector control.
【図1】本発明における誘導電動機の制御装置の実施形
態の構成を表すブロック図FIG. 1 is a block diagram illustrating a configuration of an embodiment of an induction motor control device according to the present invention.
【図2】誘導電動機の等価回路(モータ一相分)FIG. 2 Equivalent circuit of an induction motor (for one phase of a motor)
1 電力変換器 2 誘導電動機 3 電流検出器 4 電流座標変換回路 5 電圧指令演算回路 6 励磁電流制御回路 7 トルク電流制御回路 8 電圧指令座標変換回路 9 出力電圧位相角指令演算回路 10 2相3相座標変換回路 11 PWM発生回路 12 電動機定数チューニング手段 DESCRIPTION OF SYMBOLS 1 Power converter 2 Induction motor 3 Current detector 4 Current coordinate conversion circuit 5 Voltage command calculation circuit 6 Excitation current control circuit 7 Torque current control circuit 8 Voltage command coordinate conversion circuit 9 Output voltage phase angle command calculation circuit 10 Two phase three phase Coordinate conversion circuit 11 PWM generation circuit 12 Motor constant tuning means
Claims (8)
して誘導電動機に供給する電力変換器と、前記誘導電動
機に供給される1次電流を検出する電流検出回路と、前
記誘導電動機に供給される1次電流を励磁電流検出値と
トルク電流検出値に変換して出力する座標変換回路と、
与えられた励磁電流指令値と与えられたトルク電流指令
値とから励磁電流方向電圧指令とトルク電流方向電圧指
令を演算する電圧指令演算回路と、前記励磁電流指令値
と前記励磁電流検出値とが一致するように励磁電流方向
電圧を制御する励磁電流制御回路と、前記トルク電流指
令値と前記トルク電流検出値とが一致するようにトルク
電流方向電圧を制御するトルク電流制御回路と、前記励
磁電流方向電圧指令を前記励磁電流制御回路の出力で補
償した値と前記トルク電流方向電圧指令を前記トルク電
流制御回路の出力で補償した値を入力し、電圧指令と電
圧位相指令を出力する電圧指令座標変換回路と、前記電
圧位相角指令と与えられた出力周波数指令を積分するこ
とにより得られた位相角指令を加えた出力電圧位相角指
令を演算する出力電圧位相角指令演算回路と、前記出力
電圧位相角指令と前記電圧指令とを入力し、各相の出力
電圧指令に変換する2相3相変換回路と、前記各相の出
力電圧指令よりPWM信号を生成して前記電力変換器に
供給するPWM発生回路とを備えた誘導電動機の制御装
置において、前記誘導電動機を停止させたままの状態
で、前記出力電圧指令と前記1次電流検出値から前記誘
導電動機の抵抗及び主回路パワー素子のオン電圧降下量
及び漏れインダクタンス及び相互インダクタンスをチュ
ーニングする電動機定数チューニング手段を有すること
を特徴とする誘導電動機の制御装置。1. A power converter that converts a direct current into an alternating current of a given frequency and voltage and supplies it to an induction motor, a current detection circuit that detects a primary current supplied to the induction motor, A coordinate conversion circuit that converts the supplied primary current into an excitation current detection value and a torque current detection value and outputs the result;
A voltage command calculation circuit for calculating an excitation current direction voltage command and a torque current direction voltage command from a given excitation current command value and a given torque current command value, and wherein the excitation current command value and the excitation current detection value are An exciting current control circuit that controls an exciting current direction voltage so as to match; a torque current control circuit that controls a torque current direction voltage so that the torque current command value and the torque current detection value match; A voltage command coordinate for inputting a value obtained by compensating a direction voltage command with the output of the exciting current control circuit and a value obtained by compensating the torque current direction voltage command with the output of the torque current control circuit, and outputting a voltage command and a voltage phase command A conversion circuit, and an output for calculating an output voltage phase angle command to which a phase angle command obtained by integrating the voltage phase angle command and a given output frequency command is added. A pressure phase angle command calculation circuit, a two-phase three-phase conversion circuit that receives the output voltage phase angle command and the voltage command, and converts the output voltage command into each phase output voltage command, and a PWM signal based on the output voltage command for each phase. And a PWM generation circuit for generating and supplying the power to the power converter, in a state where the induction motor is stopped, the output voltage command and the primary current detection value, A control device for an induction motor, comprising motor constant tuning means for tuning the resistance of the induction motor, the amount of on-voltage drop of the main circuit power element, and the leakage inductance and mutual inductance.
チューニングされた誘導電動機の定数により前記誘導電
動機を制御することを特徴とする請求項1記載の誘導電
動機の制御装置。2. The induction motor control device according to claim 1, wherein the induction motor is controlled by a constant of the induction motor tuned by the motor constant tuning means.
記誘導電動機に少なくとも2種類以上の直流電流指令を
与え、その電流検出値が前記直流電流指令値に一致する
ような前記出力電圧指令値を求め、その直流電流に比例
する成分を誘導電動機の1次抵抗、比例しない一定値を
主回路パワー素子のオン電圧降下量とする手段からなる
ことを特徴とする請求項1または2記載の誘導電動機の
制御装置。3. The motor constant tuning means gives at least two types of DC current commands to the induction motor, and obtains the output voltage command value whose current detection value matches the DC current command value, 3. The control of an induction motor according to claim 1, further comprising means for setting a component proportional to the DC current as a primary resistance of the induction motor and setting a non-proportional value as an on-voltage drop amount of a main circuit power element. apparatus.
転停止状態の前記誘導電動機に停止状態を維持するに十
分な周波数からなる高周波の電圧を印加し、前記誘導電
動機を停止状態に維持し、前記電圧指令値と前記電流検
出値に基づいて2次抵抗及び漏れインダクタンスのチュ
ーニングをする手段からなることを特徴とする請求項1
または2記載の誘導電動機の制御装置。4. The motor constant tuning means applies a high-frequency voltage having a frequency sufficient to maintain a stopped state to the induction motor in a rotation stopped state, and maintains the induction motor in a stopped state. 2. The apparatus according to claim 1, further comprising means for tuning a secondary resistance and a leakage inductance based on a command value and the detected current value.
Or the control device for an induction motor according to 2.
圧降下量を前記パワー素子に流れる電流Ifbに対して、
前記電流に比例する成分と一定値V0とに近似し、前記
電流に比例する成分は誘導電動機の1次抵抗r1に含め前
記パワー素子のオン電圧降下量V0は電流に比例しない
一定値とし、 トルク電流指令値Iqrefと周波数指令frefを零に設定
し、 2種類の励磁電流指令値Idref1、Idref2を与えたときの
出力電圧指令値をそれぞれVref1、Vref2とし、前記誘導
電動機の1次抵抗r1とパワー素子のオン電圧降下量V0
をぞれぞれ r1=(Vref1−Vref2)/{2(Idref1−Idref2 )} V0=(Vref1 Idref2−Vref2 Idref1)/(Idref2−Idr
ef1) として求めることを特徴とする誘導電動機の制御方法。5. An on-voltage drop amount of a power element of a power converter main circuit with respect to a current Ifb flowing through the power element.
The component proportional to the current and a constant value V 0 are approximated, and the component proportional to the current is included in the primary resistance r 1 of the induction motor, and the ON voltage drop V 0 of the power element is a constant value not proportional to the current. The torque motor command value Iqref and the frequency command fref are set to zero, and the output voltage command values when two types of excitation current command values Idref 1 and Idref 2 are given are Vref 1 and Vref 2 , respectively. oN voltage of the primary resistance r 1 and a power element drop amount V 0
R 1 = (Vref 1 −Vref 2 ) / {2 (Idref 1 −Idref 2 )} V 0 = (Vref 1 Idref 2 −Vref 2 Idref 1 ) / (Idref 2 −Idr
ef 1 ) A method for controlling an induction motor, wherein the method is obtained as:
圧降下量を前記パワー素子に流れる電流Ifbに対して、
前記電流に比例する成分と一定値V0とに近似し、前記
電流に比例する成分は誘導電動機の1次抵抗r1に含め前
記パワー素子のオン電圧降下量V0は電流に比例しない
一定値とし、 トルク電流指令値Iqrefと周波数指令frefを零に設定
し、 複数の励磁電流指令値Idref1、Idref2、...、IdrefN
(Nは3以上の整数)を与え、前記励磁電流指令値に対
応する出力電圧指令値Vref1、Vref2、...、VrefNを
求め、 複数の前記励磁電流指令値と前記出力電圧指令値に基づ
いて前記誘導電動機の1次抵抗r1とパワー素子のオン電
圧降下量V0を求めることを特徴とする誘導電動機の制
御方法。6. An on-voltage drop amount of a power element of a power converter main circuit with respect to a current Ifb flowing through the power element.
The component proportional to the current and a constant value V 0 are approximated, and the component proportional to the current is included in the primary resistance r 1 of the induction motor, and the ON voltage drop V 0 of the power element is a constant value not proportional to the current. The torque current command value Iqref and the frequency command fref are set to zero, and a plurality of excitation current command values Idref 1 , Idref 2 ,. . . , Idref N
(N is an integer of 3 or more), and output voltage command values Vref 1 , Vref 2 ,. . . , Vref N, and a primary resistance r 1 of the induction motor and an on-voltage drop V 0 of the power element based on the plurality of excitation current command values and the output voltage command values. Control method.
fを零、励磁電流指令値をIdref= Idref3 に設定し誘導
電動機に印加し、 しばらく経過した後に、前記電圧指令値Vref3で出力電
圧指令をリミットした状態で前記周波数指令frefを前記
誘導電動機が停止状態を維持するに十分な周波数fref3
に変更し、 一定時間経過後に前記出力電圧指令のリミットを外して
電流制御を再開し、この時の前記補償後励磁電流方向電
圧指令値Vdcref3及び前記補償後トルク電流方向電圧指
令Vqcref3を求め、前記誘導電動機の2次抵抗r2及び漏
れインダクタンスLを r2=Vdcref3/Idref3- r1 L=Vqcref3/(Idref3×2πfref) として求めることを特徴とする誘導電動機の制御方法。7. A torque current command value Iqref and a frequency command fre
zero f, excitation current command value is set to Idref = Idref 3 is applied to the induction motor, while after a lapse, the induction motor the frequency command fref while limiting the output voltage command in the voltage command value Vref 3 Frequency fref3 is sufficient to maintain
After a certain period of time, the output voltage command limit is removed and the current control is restarted.At this time, the post-compensation excitation current direction voltage command value Vdcref 3 and the post-compensation torque current direction voltage command Vqcref 3 are obtained. And a secondary resistance r 2 and a leakage inductance L of the induction motor are obtained as r 2 = Vdcref 3 / Idref 3 -r 1 L = Vqcref 3 / (Idref 3 × 2πfref).
記誘導電動機に直流励磁する為の電圧を印加し,前記誘
導電動機を停止状態に維持し、直流励磁した二次磁束を
微少変化させる信号を電圧指令あるいは電流指令に重畳
し、電流検出値と前記電圧指令または電圧検出値とに基
づいて相互インダクタンスを演算し、相互インダクタン
スをチューニングするものである請求項1または2記載
の誘導電動機の制御装置。8. The motor constant tuning means applies a voltage for DC excitation to the induction motor, maintains the induction motor in a stopped state, and outputs a signal for slightly changing the DC-excited secondary magnetic flux to a voltage command. 3. The control device for an induction motor according to claim 1, wherein the control unit superimposes on a current command, calculates a mutual inductance based on the detected current value and the voltage command or the detected voltage value, and tunes the mutual inductance. 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000072287A JP2000342000A (en) | 1999-03-24 | 2000-03-15 | Equipment and method for controlling induction motor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-79234 | 1999-03-24 | ||
JP7923499 | 1999-03-24 | ||
JP2000072287A JP2000342000A (en) | 1999-03-24 | 2000-03-15 | Equipment and method for controlling induction motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000342000A true JP2000342000A (en) | 2000-12-08 |
Family
ID=26420281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000072287A Pending JP2000342000A (en) | 1999-03-24 | 2000-03-15 | Equipment and method for controlling induction motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000342000A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033180A1 (en) * | 2004-09-22 | 2006-03-30 | Mitsubishi Denki Kabushiki Kaisha | Vector controller of induction motor |
US9231510B2 (en) | 2011-11-29 | 2016-01-05 | Mitsubishi Electric Corporation | Control device for rotary machine and inductance measurement method for rotary machine |
WO2016199444A1 (en) * | 2015-06-12 | 2016-12-15 | 株式会社 日立産機システム | Power conversion device for induction machine, secondary time constant measurement method and speed control method |
KR101814480B1 (en) * | 2016-01-26 | 2018-01-03 | 가천대학교 산학협력단 | Apparatus and method for calculating motor constant of induction motor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06273496A (en) * | 1993-03-17 | 1994-09-30 | Hitachi Ltd | Method and apparatus for measuring constant of motor |
JPH0775399A (en) * | 1993-09-03 | 1995-03-17 | Meidensha Corp | Variable speed device |
JPH0775400A (en) * | 1994-07-25 | 1995-03-17 | Hitachi Ltd | Controller of voltage-control type vector control inverter |
JPH07107799A (en) * | 1993-09-29 | 1995-04-21 | Toyo Electric Mfg Co Ltd | Inverter apparatus provided with constant-measurement setting function |
JPH07298697A (en) * | 1994-04-20 | 1995-11-10 | Meidensha Corp | Method for auto-tuning electric constants of motor |
JPH0843462A (en) * | 1994-07-29 | 1996-02-16 | Hitachi Ltd | Constant measurement method and device for ac equipment |
-
2000
- 2000-03-15 JP JP2000072287A patent/JP2000342000A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06273496A (en) * | 1993-03-17 | 1994-09-30 | Hitachi Ltd | Method and apparatus for measuring constant of motor |
JPH0775399A (en) * | 1993-09-03 | 1995-03-17 | Meidensha Corp | Variable speed device |
JPH07107799A (en) * | 1993-09-29 | 1995-04-21 | Toyo Electric Mfg Co Ltd | Inverter apparatus provided with constant-measurement setting function |
JPH07298697A (en) * | 1994-04-20 | 1995-11-10 | Meidensha Corp | Method for auto-tuning electric constants of motor |
JPH0775400A (en) * | 1994-07-25 | 1995-03-17 | Hitachi Ltd | Controller of voltage-control type vector control inverter |
JPH0843462A (en) * | 1994-07-29 | 1996-02-16 | Hitachi Ltd | Constant measurement method and device for ac equipment |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033180A1 (en) * | 2004-09-22 | 2006-03-30 | Mitsubishi Denki Kabushiki Kaisha | Vector controller of induction motor |
KR100795283B1 (en) * | 2004-09-22 | 2008-01-15 | 미쓰비시덴키 가부시키가이샤 | Vector controller of induction motor |
CN100391097C (en) * | 2004-09-22 | 2008-05-28 | 三菱电机株式会社 | Vector controller of induction motor |
US7385371B2 (en) | 2004-09-22 | 2008-06-10 | Mitsubishi Denki Kabushiki Kaisha | Vector controller for induction motor |
US9231510B2 (en) | 2011-11-29 | 2016-01-05 | Mitsubishi Electric Corporation | Control device for rotary machine and inductance measurement method for rotary machine |
WO2016199444A1 (en) * | 2015-06-12 | 2016-12-15 | 株式会社 日立産機システム | Power conversion device for induction machine, secondary time constant measurement method and speed control method |
JP2017005920A (en) * | 2015-06-12 | 2017-01-05 | 株式会社日立産機システム | Power conversion apparatus for inductor, secondary time constant measurement method and velocity control method |
KR101814480B1 (en) * | 2016-01-26 | 2018-01-03 | 가천대학교 산학협력단 | Apparatus and method for calculating motor constant of induction motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4139934B2 (en) | AC motor control method and control apparatus | |
US6741059B2 (en) | Controller for a wound rotor slip ring induction machine | |
US7602138B2 (en) | Driving apparatus and driving system for electric motor | |
JP2708408B2 (en) | Control device of voltage control type vector control inverter | |
JP2006262643A (en) | Controller for synchronous motor, and regulation method thereof | |
KR102604003B1 (en) | Apparatus for controlling motor, system for controlling motor and method for controlling motor | |
US6018225A (en) | Method and apparatus for reconnecting a rotating motor to a motor drive | |
US9331618B2 (en) | Magnetic pole position detector for synchronous motor | |
US20020021105A1 (en) | Sensorless vector control apparatus and method thereof | |
US12063000B2 (en) | Electric power conversion with phase correction | |
US12095395B2 (en) | Power conversion apparatus | |
JP2008206330A (en) | Device and method for estimating magnetic pole position of synchronous electric motor | |
JP2929344B2 (en) | Method and apparatus for measuring motor constants | |
JP2000342000A (en) | Equipment and method for controlling induction motor | |
JP2003284398A (en) | Method for measuring constant of alternating-current motor and controller | |
JP2579119B2 (en) | Vector controller for induction motor | |
JP4448300B2 (en) | Control device for synchronous machine | |
JPH07274600A (en) | Method and apparatus for controlling acceleration/ deceleration of induction motor | |
JP2000324878A (en) | Controller for motor | |
JP4061517B2 (en) | AC motor variable speed controller | |
KR102243155B1 (en) | Motor control apparatus and controlling method thereof | |
JPH0746887A (en) | Speed controller for single phase induction motor | |
JP3118940B2 (en) | Induction motor vector control device | |
JP2018011474A (en) | Control apparatus of induction motor | |
WO1998042067A1 (en) | Power converter, ac motor controller and their control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100623 |