JP2003284398A - Method for measuring constant of alternating-current motor and controller - Google Patents

Method for measuring constant of alternating-current motor and controller

Info

Publication number
JP2003284398A
JP2003284398A JP2002076735A JP2002076735A JP2003284398A JP 2003284398 A JP2003284398 A JP 2003284398A JP 2002076735 A JP2002076735 A JP 2002076735A JP 2002076735 A JP2002076735 A JP 2002076735A JP 2003284398 A JP2003284398 A JP 2003284398A
Authority
JP
Japan
Prior art keywords
value
ave
voltage
current
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002076735A
Other languages
Japanese (ja)
Other versions
JP3959617B2 (en
Inventor
Yoichi Yamamoto
陽一 山本
Shuichi Fujii
秋一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002076735A priority Critical patent/JP3959617B2/en
Publication of JP2003284398A publication Critical patent/JP2003284398A/en
Application granted granted Critical
Publication of JP3959617B2 publication Critical patent/JP3959617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for constant measurement wherein it is unnecessary to correct an on-voltage drop every control period and set on-voltage drop characteristics of a power element with accuracy. <P>SOLUTION: The revolution of an alternating-current motor 2 is stopped by an inverter controller 8 for the alternating-current motor. In this stage, a voltage phase is fixed at a preset arbitrary value by a sine wave generator so that alternating magnetic flux is produced. A voltage command for a sine wave with a frequency of fh is given, and the voltage command value is adjusted so that the magnitude of an output current becomes a predetermined value. When a predetermined time has passed thereafter, the average value Vave of the absolute value of the voltage command and the average value Iave of the absolute value of the output current are computed and the phase difference θdif between the voltage command and the output current is measured by an average value-phase difference computing portion 27. Combined resistance (R1+R2) is computed from the cosine component of the ratio of Vave to Iave and measured. Then leakage inductance l=l1+l2 is computed from the sin component of the ratio of Vave to Iave and measured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ベクトル制御等で
制御定数として使用される交流電動機の一次及び二次の
合成抵抗(R1+R2)及び漏れインダクタンス(l=
l1+l2)の測定方法に関し、詳しくは、交流電動機
を可変制御するインバータ装置を用いて、交流電動機の
合成抵抗(R1+R2)、及び漏れインダクタンス(l
=l1+l2)を測定する方法および交流電動機の制御
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined primary and secondary resistance (R1 + R2) and a leakage inductance (l = l) of an AC motor used as a control constant in vector control or the like.
l1 + l2) is measured in detail, using an inverter device that variably controls the AC motor, the combined resistance (R1 + R2) of the AC motor and the leakage inductance (l
= L1 + l2) and an AC motor control device.

【0002】[0002]

【従来の技術】従来技術として、交流電動機を停止した
ままの状態で、交流電動機の合成抵抗(R1+R2)と
漏れインダクタンス(l=l1+l2)を測定する方法
は、例えば、特開平06−98595号に開示されてい
る「交流電動機の定数測定方法および制御装置」が知ら
れている。図11は従来の交流電動機の定数測定装置の
構成図であり、通常の運転時は、インバータ入力電圧V
dcをインバータ104によりPWM制御することで交
流電圧を作り、誘導電動機105を可変速制御してい
る。また、1チップマイコン等を用いた制御回路106
により、通常運転時には速度指令ωrに追従するように
速度センサレスベクトル制御処理107を行い、ゲート
回路108にPWM信号を発生する。この場合、1次抵
抗測定値r1や、二次抵抗値r2、漏れインダクタンス
測定値(l1+l2)や、他のモータ定数設定値及びモ
ータ電流検出器109の出力を基に速度及びトルク制御
を行っている。
2. Description of the Related Art As a conventional technique, a method of measuring a combined resistance (R1 + R2) and a leakage inductance (l = l1 + l2) of an AC motor with the AC motor stopped is disclosed in, for example, Japanese Patent Laid-Open No. 06-98595. The disclosed "constant measuring method and control device for AC electric motor" is known. FIG. 11 is a block diagram of a conventional constant current measuring device for an AC motor, and during normal operation, the inverter input voltage V
By performing PWM control of dc by the inverter 104, an AC voltage is generated and the induction motor 105 is controlled at a variable speed. Further, a control circuit 106 using a one-chip microcomputer or the like
Thus, during normal operation, the speed sensorless vector control processing 107 is performed so as to follow the speed command ωr, and the PWM signal is generated in the gate circuit 108. In this case, speed and torque control is performed based on the primary resistance measurement value r1, the secondary resistance value r2, the leakage inductance measurement value (l1 + l2), other motor constant setting values, and the output of the motor current detector 109. There is.

【0003】従って、合成抵抗値(r1+r2)、漏れ
インダクタンス(l1+l2)といった定数測定は運転
前に行われる。先ず、単相交流励磁処理110で測定用
の正弦波変調信号を作り、これによりゲート回路108
を介してインバータ104を動作させ、交流励磁電圧に
より電動機105に交流電流を流して測定を行うもの
で、電動機105を停止状態のままで、有効パワー電流
Iq無効パワー電流Id演算処理回路111では、測定
用の1次周波数指令ω1を積分した交流励磁電圧のベク
トルの回転位相をθとすると、sinθ、−cosθと
U相の電動機電流iuを基に、Iq、Idを演算する。
次に、抵抗・インダクタンス演算処理回路112で、I
q、Id演算値と励磁電圧指令の大きさVc1から、
(r1+r2)、(l1+l2)を演算する。
Therefore, the constants such as the combined resistance value (r1 + r2) and the leakage inductance (l1 + l2) are measured before the operation. First, a sine wave modulation signal for measurement is created by the single-phase AC excitation processing 110, and the gate circuit 108
In order to perform the measurement by operating the inverter 104 via the AC current and flowing an alternating current to the electric motor 105 by the alternating excitation voltage, the effective power current Iq reactive power current Id arithmetic processing circuit 111 is Letting θ be the rotational phase of the vector of the AC excitation voltage obtained by integrating the primary frequency command ω1 for measurement, Iq and Id are calculated based on sin θ, −cos θ and the U-phase motor current iu.
Next, in the resistance / inductance calculation processing circuit 112, I
From q and Id calculation values and the magnitude Vc1 of the excitation voltage command,
(R1 + r2) and (l1 + l2) are calculated.

【0004】[0004]

【発明が解決しようする課題】しかしながら、上記従来
例では、パワー素子のオン電圧降下によるインバータ出
力電圧誤差の補正を行うことで、励磁電圧指令の大きさ
と電動機の瞬時電流検出値のみから、合成抵抗(r1+
r2)、漏れインダクタンス(l1+l2)を精度良く
演算測定するようにしているので、このうちパワー素子
のオン電圧降下による出力電圧誤差は、出力電流の大き
さで変化するため、制御周期毎に出力電流の瞬時値に対
するオン電圧降下を補正する必要があった。このため
に、定数測定のソフトが複雑になることと、事前に精度
良くパワー素子のオン電圧降下を設定しておくことが必
要になるという問題があった。
However, in the above-mentioned conventional example, by correcting the inverter output voltage error due to the ON voltage drop of the power element, the combined resistance is determined only from the magnitude of the excitation voltage command and the instantaneous current detection value of the motor. (R1 +
r2) and the leakage inductance (l1 + l2) are calculated and measured with high accuracy. Among them, the output voltage error due to the ON voltage drop of the power element changes depending on the magnitude of the output current. It was necessary to correct the ON voltage drop for the instantaneous value of. For this reason, there are problems that the software for measuring the constant becomes complicated and that the on-voltage drop of the power element needs to be set accurately in advance.

【0005】そこで、本発明は、パワー半導体素子のオ
ン電圧降下による振幅誤差及び位相誤差を、測定後の電
圧指令の絶対値の平均値V_aveおよび電圧指令と出
力電流の位相差θ_difに補正することで、瞬時値に
対する制御周期毎のオン電圧降下の補正、及び精度の良
いパワー素子のオン電圧降下特性の設定が不要となる合
成抵抗(R1+R2)および漏れインダクタンス(l=
l1+l2)の高精度な演算方法と、その測定値を用い
た交流電動機の制御装置を提供することを目的としてい
る。
Therefore, in the present invention, the amplitude error and the phase error due to the ON voltage drop of the power semiconductor element are corrected to the average value V_ave of the absolute value of the voltage command after measurement and the phase difference θ_dif between the voltage command and the output current. Therefore, the combined resistance (R1 + R2) and the leakage inductance (l = l = 2) that do not require the correction of the ON voltage drop for each control cycle with respect to the instantaneous value and the setting of the accurate ON voltage drop characteristic of the power element are required.
It is an object of the present invention to provide a highly accurate calculation method of (11 + 12)) and a control device for an AC motor using the measured value.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、出力電圧の大きさ、周波
数および位相の制御が可能なパワー半導体素子から構成
される電力変換器を介して供給される一次電流を、該交
流電動機の磁束と平行な成分(励磁電流)とこれに直交
する成分(トルク電流)とに分離して各々を独立に調整
し、交流電動機の各相に流れる出力電流を検出する電流
検出器を有する交流電動機の定数測定方法において、前
記インバータ装置は、前記交流電動機の回転を停止させ
た状態で、正弦波発生器により交番磁束が発生するよう
に電圧位相を予め設定された任意の値に固定し、周波数
fhの正弦波の電圧指令を与え、電圧指令値は出力電流
の大きさが所定値になるように調整した後、所定時間経
過後に前記電圧指令の絶対値の平均値V_aveおよび
出力電流の絶対値の平均値I_aveおよび前記電圧指
令と出力電流の位相差θ_difを測定し、前記V_a
veとI_aveとの比のcos成分から一次および二
次の合成抵抗(R1+R2)を演算測定し、前記V_a
veとI_aveとの比のsin成分から演算測定する
か、または次式、
In order to achieve the above object, the invention according to claim 1 provides a power converter comprising a power semiconductor element capable of controlling the magnitude, frequency and phase of an output voltage. The primary current supplied via the AC motor is separated into a component (exciting current) parallel to the magnetic flux of the AC motor and a component (torque current) orthogonal to the magnetic flux, and each is independently adjusted to each phase of the AC motor. In the constant measurement method of an AC motor having a current detector that detects a flowing output current, the inverter device is in a state in which rotation of the AC motor is stopped, and a voltage phase so that an alternating magnetic flux is generated by a sine wave generator. Is fixed to a preset arbitrary value, a voltage command of a sine wave having a frequency fh is given, and the voltage command value is adjusted so that the magnitude of the output current becomes a predetermined value. The phase difference θ_dif average value I_ave and the voltage command and the output current of the absolute value of the average value V_ave and an output current of the absolute value is measured, the V_a
From the cos component of the ratio of ve and I_ave, the primary and secondary combined resistances (R1 + R2) are calculated and measured, and V_a
Calculate or calculate from the sin component of the ratio of ve and I_ave, or

【数3】 より漏れインダクタンスl=l1+l2を演算測定する
ことを特徴としている。また、請求項2に記載の発明
は、請求項1に記載の交流電動機の定数測定方法におい
て、出力電圧誤差のうち少なくともバワー半導体素子の
オン電圧降下による振幅および位相差誤差を、測定した
電圧指令の絶対値の平均値V_aveおよび電圧指令と
出力電流の位相差θ_difに補正した後、一次および
二次の合成抵抗(R1+R2)と漏れインダクタンスl
=l1+l2を演算測定することを特徴としている。ま
た、請求項3に記載の発明は、出力電圧の大きさ、周波
数および位相の制御が可能なパワー半導体素子から構成
される電力変換器を介して供給される一次電流を、該交
流電動機の磁束と平行な成分(励磁電流)とこれに直交
する成分(トルク電流)とに分離して各々を独立に調整
し、交流電動機の各相に流れる出力電流を検出する電流
検出器を有する交流電動機の制御装置において、前記イ
ンバータ装置は、前記交流電動機の回転を停止させた状
態で、正弦波発生器により交番磁束が発生するように電
圧位相を予め設定された任意の値に固定し、周波数fh
の正弦波の電圧指令を与える手段と、電圧指令値は出力
電流の大きさが所定値になるように調整した後、所定時
間経過後に前記電圧指令の絶対値の平均値V_ave、
出力電流の絶対値の平均値I_aveおよび前記電圧指
令と出力電流の位相差θ_difを測定する手段を具備
し、前記V_aveとI_aveとの比のcos成分か
ら一次および二次の合成抵抗(R1+R2)を演算測定
し、前記V_aveとI_aveとの比のsin成分か
ら演算測定するか、あるいは次式、
[Equation 3] It is characterized in that more leakage inductance l = l1 + l2 is calculated and measured. According to a second aspect of the present invention, in the constant voltage measuring method for an alternating current motor according to the first aspect, a voltage command for measuring at least an amplitude and a phase difference error due to an ON voltage drop of a bower semiconductor element among output voltage errors. After being corrected to the average value V_ave of the absolute values of and the phase difference θ_dif between the voltage command and the output current, the combined resistance (R1 + R2) of the primary and secondary and the leakage inductance l
It is characterized in that the calculation and measurement of = l1 + l2 are performed. In the invention according to claim 3, the primary current supplied through a power converter composed of a power semiconductor element capable of controlling the magnitude, frequency and phase of the output voltage is supplied to the magnetic flux of the AC motor. Of an AC motor having a current detector for detecting an output current flowing in each phase of the AC motor by separating a component (exciting current) parallel to and a component (torque current) orthogonal thereto and adjusting each independently. In the control device, the inverter device fixes the voltage phase to a preset arbitrary value so that an alternating magnetic flux is generated by a sine wave generator in a state where the rotation of the AC motor is stopped, and the frequency fh
And a mean value V_ave of the absolute value of the voltage command after a predetermined time has elapsed, after adjusting the voltage command value so that the magnitude of the output current becomes a predetermined value.
A means for measuring the average value I_ave of the absolute value of the output current and the phase difference θ_dif between the voltage command and the output current is provided, and the primary and secondary combined resistances (R1 + R2) are calculated from the cos component of the ratio of V_ave and I_ave. Computation and measurement, and calculation or measurement from the sin component of the ratio of V_ave and I_ave, or

【数4】 より漏れインダクタンスl=l1+l2を演算測定する
ことを特徴としている。また、請求項4に記載の発明
は、請求項3に記載の交流電動機の制御装置において、
出力電圧誤差のうち少なくともバワー半導体素子のオン
電圧降下による振幅および位相差誤差を、測定した電圧
指令の絶対値の平均値V_aveおよび電圧指令と出力
電流の位相差θ_difに補正する手段を具備し、これ
ら補正したV_aveおよびθ_difを用いて一次お
よび二次の合成抵抗(R1+R2)と漏れインダクタン
スl=l1+l2を演算測定し、これらの測定値を基に
交流電動機を制御することを特徴としている。
[Equation 4] It is characterized in that more leakage inductance l = l1 + l2 is calculated and measured. The invention described in claim 4 is the control device for an AC electric motor according to claim 3,
Out of the output voltage error, at least an amplitude and phase difference error due to ON voltage drop of the semiconductor device is provided with a means for correcting the average value V_ave of the absolute values of the measured voltage command and the phase difference θ_dif between the voltage command and the output current. The corrected V_ave and θ_dif are used to calculate and measure the primary and secondary combined resistance (R1 + R2) and the leakage inductance l = l1 + l2, and the AC motor is controlled based on these measured values.

【0007】[0007]

【発明の実施の形態】以下、本発明の第1の実施の形態
について図を参照して説明する。図1は本発明の第1の
実施の形態に係る電圧形インバータの回路構成図であ
る。図2は図1に示すインバータ制御装置の詳細回路図
である。図3は図1に示す平均値・位相差演算器の詳細
回路図である。図4は図1に示す電動機の等価回路図で
ある。図5は図1に示す電圧形インバータの動作のフロ
ーチャーチャートである。図6は図4に示す等価回路の
インピーダンスのベクトル図である。図7は図3に示す
平均的・位相差演算器の電圧指令値・電流検出値のタイ
ムチャートである。図1において、1は電圧形インバー
タ、2は交流電動機、3は電流検出器、4は比較器、5
は発振器、6は加算器、7はゲート回路、8はインバー
タ制御装置、 9はデッドバンド補償器、10は直流電
源、11は速度指令回路、14は速度検出器、27は平
均値・位相演算器である。同図において、電圧形インバ
ータ1は直流電源10から加えられる直流電圧をPWM
制御方式により任意の周波数と電圧の交流に変換する。
電圧形インバータ1はトランジスタやIGBT等のパワ
ー半導体素子からなるスイッチング素子TUP、TV
P、…TWNと各スイッチング素子に逆並列接続された
帰還ダイオードDUP、DVP、…DWNとから構成さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit configuration diagram of a voltage type inverter according to a first embodiment of the present invention. FIG. 2 is a detailed circuit diagram of the inverter control device shown in FIG. FIG. 3 is a detailed circuit diagram of the average value / phase difference calculator shown in FIG. FIG. 4 is an equivalent circuit diagram of the electric motor shown in FIG. FIG. 5 is a flowchart of the operation of the voltage source inverter shown in FIG. FIG. 6 is a vector diagram of impedance of the equivalent circuit shown in FIG. FIG. 7 is a time chart of the voltage command value / current detection value of the average / phase difference calculator shown in FIG. In FIG. 1, 1 is a voltage source inverter, 2 is an AC motor, 3 is a current detector, 4 is a comparator, 5
Is an oscillator, 6 is an adder, 7 is a gate circuit, 8 is an inverter controller, 9 is a dead band compensator, 10 is a DC power supply, 11 is a speed command circuit, 14 is a speed detector, and 27 is an average value / phase calculation. It is a vessel. In the figure, the voltage source inverter 1 PWMs the DC voltage applied from the DC power supply 10.
It is converted into alternating current of arbitrary frequency and voltage according to the control method.
The voltage source inverter 1 is a switching element TUP or TV which is made of a power semiconductor element such as a transistor or IGBT.
.. TWN and feedback diodes DUP, DVP ,.

【0008】電圧形インバータ1の各相U、V、Wの交
流出力端に交流電動機2が接続されている。交流電動機
2のU相、V相、W相の1次電流Iu、Iv、Iwは電
流検出器3u、3v、3wによって検出される。また、
速度検出器14により交流電動機2の回転速度を検出す
る。インバータ制御装置8には、速度指令回路11で作
成された速度指令値ωr*と、電流検出器3u、3v、
3wにより検出した交流電動機2のU相、V相、W相の
1次電流Iu、Iv、Iwと、速度検出器14からの速
度検出値ωrが加えられ、120°位相差のU、V、W
の各相の電圧指令パターン信号(Vu*、Vv*、V
*)と、デッドバンドによる電圧誤差を補償するデッ
ドバンド補償器9u、9v、9wに位相γを出力する。
デッドバンド補償器9u、9v、9Wは位相γを引数と
して電圧誤差補償値を加算器6u、6v、6wに出力す
る。
An AC motor 2 is connected to the AC output terminals of each phase U, V, W of the voltage source inverter 1. The U-phase, V-phase, and W-phase primary currents Iu, Iv, and Iw of the AC motor 2 are detected by the current detectors 3u, 3v, and 3w. Also,
The speed detector 14 detects the rotation speed of the AC motor 2. In the inverter control device 8, the speed command value ωr * created by the speed command circuit 11 and the current detectors 3u, 3v,
The U-phase, V-phase, and W-phase primary currents Iu, Iv, and Iw of the AC motor 2 detected by 3w and the speed detection value ωr from the speed detector 14 are added, and U, V having a 120 ° phase difference, W
Voltage command pattern signals (Vu * , Vv * , V
w * ) and the dead band compensators 9u, 9v, 9w for compensating the voltage error due to the dead band.
The dead band compensators 9u, 9v, 9W output the voltage error compensation value to the adders 6u, 6v, 6w using the phase γ as an argument.

【0009】また、加算器6u、6v、6wは、電圧パ
ターン信号Vu*、Vv*、Vw*と、デッドバンド補償
器9u、9v、9wの出力値を加算し、加算値を比較器
4u、4v、4wに送出する。PWM制御のための搬送
波信号を発生する発振器5の出力信号も比較器4u、4
v、4wへ送出され、比較器4u、4v、4wは加算器
6u、6v、6wの出力信号と搬送波信号を比較し、電
圧形インバータ1を構成するスイッチング素子TUP、
TVP、TWNをオン/オフするためのPWMパルスを
発生する。ゲート回路7は比較器4u、4v、4wの出
力するPWMパルスに応じてスイッチング素子TUP、
TVP、…TWNにゲート信号を与える。
The adders 6u, 6v, 6w add the voltage pattern signals Vu * , Vv * , Vw * and the output values of the dead band compensators 9u, 9v, 9w, and add the added values to the comparator 4u, Send to 4v, 4w. The output signal of the oscillator 5 that generates a carrier wave signal for PWM control is also compared with the comparators 4u and 4u.
v4w, the comparators 4u, 4v, and 4w compare the output signals of the adders 6u, 6v, and 6w with the carrier signal, and the switching element TUP that constitutes the voltage source inverter 1,
A PWM pulse for turning on / off the TVP and TWN is generated. The gate circuit 7 switches the switching element TUP in response to the PWM pulse output from the comparators 4u, 4v, 4w.
A gate signal is given to TVP, ... TWN.

【0010】図2において、8はインバータ制御装置、
12は励磁電流指令回路、15は3相/2相変換器、1
6は2相/3相変換器、17は一次角周波数演算回路、
18は速度制御回路、19はトルク電流制御回路、20
は励磁電流制御回路、21は電圧指令補償回路、22は
加算器、23は積算器、24は位相計算器、25はチュ
ーニング処理部、26は電流振幅演算器である。同図に
おいて、インバータ制御装置8には、交流電動機2への
一次電流Iu、Iv、Iwを検出して座標変換を行った
トルク電流帰還値Iqfbと、励磁電流帰還値Idfb
を送出する3相/2相変換器15が設けられている。速
度指令回路11からの速度指令値ωr*と、速度検出器
14からの速度検出値ωrが一致するように設けられた
速度制御回路ASR18の出力値をトルク電流指令値I
qrefとし、このIqrefと3相/2相変換器15
が出力するトルク電流帰還値Iqfbとが一致するよう
に制御するためのトルク電流制御回路ACRq19と、
励磁電流指令回路12からの励磁電流指令値Idref
と、3相/2相変換器15からの励磁電流帰還値Idf
bとが一致するように、励磁電流方向電圧を制御する励
磁電流制御回路ACRd20が設けられている。
In FIG. 2, 8 is an inverter control device,
12 is an exciting current command circuit, 15 is a 3-phase / 2-phase converter, 1
6 is a 2-phase / 3-phase converter, 17 is a primary angular frequency calculation circuit,
18 is a speed control circuit, 19 is a torque current control circuit, 20
Is an excitation current control circuit, 21 is a voltage command compensation circuit, 22 is an adder, 23 is an integrator, 24 is a phase calculator, 25 is a tuning processing unit, and 26 is a current amplitude calculator. In the figure, the inverter control device 8 includes a torque current feedback value Iqfb obtained by detecting the primary currents Iu, Iv, Iw to the AC motor 2 and performing coordinate conversion, and an exciting current feedback value Idfb.
A three-phase / two-phase converter 15 for transmitting the signal is provided. The output value of the speed control circuit ASR18 provided so that the speed command value ωr * from the speed command circuit 11 and the speed detection value ωr from the speed detector 14 are equal to each other is the torque current command value I.
qref, and this Iqref and the 3-phase / 2-phase converter 15
A torque current control circuit ACRq19 for controlling the torque current feedback value Iqfb output by
Excitation current command value Idref from the excitation current command circuit 12
And the exciting current feedback value Idf from the 3-phase / 2-phase converter 15
An exciting current control circuit ACRd20 for controlling the exciting current direction voltage is provided so as to match with b.

【0011】また、交流電動機2の磁束で発生し、誘導
起電力係数による誘起電圧と一次抵抗R1による逆起電
力のトルク電流方向成分の電圧と、交流電動機2の漏れ
インダクタンス(l=l1+l2)や一次抵抗R1によ
る逆起電力の励磁電流方向成分の電圧を出力する電圧指
令補償回路21を有している。電圧指令補償回路21の
出力のうちトルク電流方向成分の電圧は、トルク電流制
御回路19の出力と、加算器22Aで加算されトルク電
流方向電圧指令値Vqrefを生成し、励磁電流方向成
分の電圧は、励磁電流制御回路20の出力と加算器22
Bで加算され励磁電流方向電圧指令値Vdrefを生成
する。更に、トルク電流方向電圧指令値Vqrefと、
励磁電流方向電圧指令値Vdrefとから、120°位
相差のU、V、Wの各相の電圧指令パターン信号(Vu
*、Vv*、Vw*)を生成して出力する2相/3相変換
器16が設けられている。
Further, the induced voltage generated by the magnetic flux of the AC motor 2 and the voltage of the component in the torque current direction of the counter electromotive force by the primary resistance R1 and the induced voltage by the induced electromotive force, and the leakage inductance (l = l1 + l2) of the AC motor 2 and It has a voltage command compensating circuit 21 that outputs a voltage of an exciting current direction component of the counter electromotive force by the primary resistance R1. The voltage of the torque current direction component of the output of the voltage command compensation circuit 21 is added to the output of the torque current control circuit 19 by the adder 22A to generate the torque current direction voltage command value Vqref, and the voltage of the excitation current direction component is , The output of the exciting current control circuit 20 and the adder 22
B is added to generate an exciting current direction voltage command value Vdref. Further, the torque current direction voltage command value Vqref,
Based on the excitation current direction voltage command value Vdref, a voltage command pattern signal (Vu of each phase of U, V, and W having a phase difference of 120 °).
A 2-phase / 3-phase converter 16 for generating and outputting ( * , Vv * , Vw * ) is provided.

【0012】なお、3相/2相変換器15、2相/3相
変換器16は、夫々次の(1)式、(2)式で演算され
る。
The three-phase / two-phase converter 15 and the two-phase / 3-phase converter 16 are calculated by the following equations (1) and (2), respectively.

【数5】 また、インバータ制御装置8は、Idref、Iqre
fと設定された二次抵抗R2から、すべり周波数指令値
ωs*を求め、速度検出器14からの速度検出値ωrと
から一次角周波数ω1*を演算して出力する一次角周波
数指令演算回路17を有し、一次角周波数指令演算回路
17からの一次角周波数ω1*は、積算器23により積
算され、3相/2相変換器15と2相/3相変換器16
へ、位相θとして出力される。また、位相θは位相計算
回路24の出力であるtan-1(Iqfb/Idfb)
と加算器22cで加算され、位相γとしてデッドバンド
補償器9u、9v、9wへ出力される。
[Equation 5] In addition, the inverter control device 8 uses Idref, Iqre
A primary angular frequency command calculation circuit 17 that obtains a slip frequency command value ωs * from the secondary resistance R2 set as f, calculates the primary angular frequency ω1 * from the detected speed value ωr from the speed detector 14, and outputs the calculated primary angular frequency ω1 *. The primary angular frequency ω1 * from the primary angular frequency command calculation circuit 17 is integrated by the integrator 23, and the 3-phase / 2-phase converter 15 and the 2-phase / 3-phase converter 16 are included.
To the phase θ. Further, the phase θ is tan −1 (Iqfb / Idfb) which is the output of the phase calculation circuit 24.
Is added by the adder 22c and output as the phase γ to the dead band compensators 9u, 9v, 9w.

【0013】図2のインバータ制御装置中、本発明の中
核部分を構成するチューニング処理は、実運転前の合成
抵抗、漏れインダクタンス測定動作をコントロールする
チューニング処理部25と、チューニング処理部25か
らの切替信号Cswにより実運転と定数測定動作を切替
えられるスイッチ回路13A、13B、13Cを設け
て、実運転前の定数測定時にはb端子側へ切替え、スイ
ッチ回路13Aではトルク電流方向電圧指令値Vqre
fは0に切替え、スイッチ回路13Bでは励磁電流方向
電圧指令値Vdrefは、チューニング処理部25で定
数測定用に設定したチューニング電圧指令値V_ref
に切替え、スイッチ回路13Cでは位相θを設定値(固
定値)に切替える処理を行う。従って、定数測定時のチ
ューニング処理部25の出力としては、スイッチ切替信
号Csw、定数測定用信号として設定されたチューニン
グ電圧指令値V ref、および同じ位相θhを出力
し、スイッチ13Cにより位相θに任意の固定値に設定
する処理を行う。また、電流振幅演算器26はトルク電
流帰還値Iqfbと励磁電流帰還値Idfbを入力とし
て、出力電流の振幅値I_fbを演算出力する。
In the inverter control device of FIG. 2, the tuning process forming the core part of the present invention is performed by the tuning process unit 25 for controlling the combined resistance and leakage inductance measuring operation before actual operation, and switching from the tuning process unit 25. Switch circuits 13A, 13B, and 13C that can switch between the actual operation and the constant measurement operation by the signal Csw are provided, and when the constant is measured before the actual operation, the switch circuit is switched to the b terminal side. In the switch circuit 13A, the torque current direction voltage command value Vqre
f is switched to 0, and in the switch circuit 13B, the excitation current direction voltage command value Vdref is set to the tuning voltage command value V_ref set for constant measurement in the tuning processing unit 25.
And the switch circuit 13C performs processing for switching the phase θ to a set value (fixed value). Therefore, as the output of the tuning processing unit 25 during the constant measurement, the switch switching signal Csw, the tuning voltage command value V ref set as the constant measurement signal, and the same phase θh are output, and the switch 13C arbitrarily sets the phase θ. Perform the process to set the fixed value of. Further, the current amplitude calculator 26 inputs the torque current feedback value Iqfb and the exciting current feedback value Idfb, and calculates and outputs the amplitude value I_fb of the output current.

【0014】図3において、27は平均値・位相演算
器、28はLPF、29はHPF、30は絶対値回路、
31は乗算器、32は減算器、33は正弦波発生器であ
る。同図において、平均値・位相差演算器27は、イン
バータ制御装置8からの定数測定時の信号V_ref、
I_fb、位相θhを入力して、両信号の位相差θ_d
ifと、各信号の絶対値の平均値V_ave、I_av
eを演算するものであり、直流分を除去するハイパスフ
ィルターHPF29A、29Bと、sin、cosを出
力する正弦波発生器33と、HPF29の出力とsin
θh、cosθhを乗算する乗算回路31A〜Dと、平
均値処理を行うローパスフィルタLPF28A〜Fと、
絶対値演算回路(ABS)30A、30Bと、位相計算
回路24B、24Cを有している。
In FIG. 3, 27 is an average value / phase calculator, 28 is an LPF, 29 is an HPF, 30 is an absolute value circuit,
Reference numeral 31 is a multiplier, 32 is a subtractor, and 33 is a sine wave generator. In the figure, the average value / phase difference calculator 27 indicates the signal V_ref from the inverter controller 8 during constant measurement,
I_fb and phase θh are input, and the phase difference θ_d of both signals
if and average values V_ave and I_av of absolute values of each signal
e for calculating high-pass filters HPF29A and 29B for removing DC components, a sine wave generator 33 for outputting sin and cos, an output of the HPF 29 and sin
Multiplying circuits 31A to 31D for multiplying θh and cosθh, low-pass filters LPF28A to F for performing average value processing,
It has absolute value calculation circuits (ABS) 30A and 30B and phase calculation circuits 24B and 24C.

【0015】以上の図1に示した電圧形インバータ1
と、図2に示したインバータ制御装置8と、図3に示し
た平均値・位相差演算器27による、定数測定処理の概
略は、先ず、図2に示すインバータ制御装置8におい
て、実運転前に、チューニング処理部25より切替信号
Cswによりスイッチ13A、13B、13Cを測定用
のb端子側へ切替えて、Vqrefは0に、Vdref
は定数測定用の電圧指令値V_refに、位相θは固定
値に設定して、定数測定時の電動機停止状態での電圧指
令パターン信号Vu*〜Vw*を出力して、図1に示す電
圧形インバータにより交流電動機2を駆動し、定数測定
時の一次電流Iu、Iv、Iwを検出する。定数測定用
電圧指令V_refと同位相θhと、電流振幅Ifbを
図3の平均値・位相差演算器27へ出力する。平均値・
位相差演算器27では、V_ref、θh、Ifb信号
より位相差θ_difと、平均値V_ave、I_av
eを演算し、定数演算器(図示していない)により合成
抵抗(R1+R2)、漏れインダクタンス(l1+l
2)を求めて記憶する。定数測定が終了したら、図2の
スイッチ13A、13B、13Cを切替え、実運転用の
a端子側に戻し、求めた電動機定数を用いて、図1に示
すインバータ1を制御し実運転を行うものである。
The voltage source inverter 1 shown in FIG. 1 above.
2 and the average value / phase difference calculator 27 shown in FIG. 3, the outline of the constant measurement process is as follows. First, in the inverter control device 8 shown in FIG. Then, the tuning processing unit 25 switches the switches 13A, 13B, and 13C to the terminal b side for measurement by the switching signal Csw, and Vqref is set to 0 and Vdref is set.
Is set to the voltage command value V_ref for constant measurement and the phase θ is set to a fixed value, and the voltage command pattern signals Vu * to Vw * in the motor stopped state at the time of constant measurement are output, and the voltage type shown in FIG. The AC motor 2 is driven by the inverter to detect the primary currents Iu, Iv, Iw at the time of constant measurement. The same phase θh as the constant measurement voltage command V_ref and the current amplitude Ifb are output to the average value / phase difference calculator 27 in FIG. 3. Average value·
In the phase difference calculator 27, the phase difference θ_dif and the average values V_ave, I_av are calculated from the V_ref, θh, Ifb signals.
e is calculated, and a constant resistance calculator (not shown) calculates a combined resistance (R1 + R2) and a leakage inductance (l1 + l).
2) is sought and stored. When the constant measurement is completed, the switches 13A, 13B, and 13C in FIG. 2 are switched to return to the a terminal side for actual operation, and the obtained motor constant is used to control the inverter 1 shown in FIG. 1 to perform actual operation. Is.

【0016】つぎに図5を参照して本発明の定数測定方
法について説明する。定数測定時(チューニング時)に
は、インバータ制御装置8のチューニング処理部25に
おいて、チューニング時に流す定数測定用の交流電流の
大きさと周波数fhを決める(S100)。この場合の
交流電流の大きさは、電圧形インバータ1と交流電動機
2の定格電流値を基に、例えば、2つの定格電流値のう
ち小さい方の50%〜100%程度とし、周波数fh
は、2π・fh ・M≫R2が成立する周波数とする。図
4(a)は交流電動機のT−1型等価回路であり、R
1、R2、l=l1+l2、Mはそれぞれ1次抵抗、2
次抵抗、漏れインダクタンス、相互インダクタンスであ
るが、定数測定用fhのように印加する運転周波数が高
いと、ωM≫R2となるので、Mには殆ど電流は流れず
等価回路は図4(b)のようになる。また、この時の電
圧と電流の位相差θ_difと、(R1+R2)、(l
1+l2)×2πfh、Z、の関係は図6のようにな
る。
Next, the constant measuring method of the present invention will be described with reference to FIG. At the time of constant measurement (at the time of tuning), the tuning processing unit 25 of the inverter control device 8 determines the magnitude and frequency fh of the constant current AC current flowing at the time of tuning (S100). The magnitude of the alternating current in this case is, for example, about 50% to 100% of the smaller one of the two rated current values based on the rated current values of the voltage source inverter 1 and the AC motor 2, and the frequency fh
Is a frequency at which 2π · fh · M >> R2 holds. FIG. 4A is a T-1 type equivalent circuit of an AC motor,
1, R2, l = l1 + l2, M is a primary resistance, 2
Regarding the next resistance, leakage inductance, and mutual inductance, when the operating frequency to be applied is high as in the constant measurement fh, ωM >> R2, so that almost no current flows in M and the equivalent circuit is shown in FIG. 4 (b). become that way. Further, the phase difference θ_dif between the voltage and the current at this time and (R1 + R2), (l
The relationship of (1 + l2) × 2πfh, Z is as shown in FIG.

【0017】次に、チューニング処理部25は、定数測
定時には切替信号Cswにより、スイッチ回路13Aで
はVqrefを0に、13Bではチューニング電圧指令
値V_refに、13Cでは位相θを固定値に設定する
(S101)。ここでV_ref=Vamp・sin
(2πfh・t)、であり、Vampの初期値は0とし
て測定運転を開始する。その後、電流検出値の絶対値の
平均値I_aveが、S100で決めた所定の電流値に
なるように、Vamp(V_refの振幅)を増加させ
る。そしてI_aveの値が所定値に達したら、平均値
・位相差演算器27内のLPF28A〜28Fの出力が
安定するまで、所定時間の経過を待つ(S102)。
Next, the tuning processing unit 25 sets Vqref to 0 in the switch circuit 13A, the tuning voltage command value V_ref in 13B, and the phase θ to a fixed value in 13C by the switching signal Csw during constant measurement (S101). ). Where V_ref = Vamp · sin
(2πfh · t), and the initial value of Vamp is 0, and the measurement operation is started. After that, Vamp (amplitude of V_ref) is increased so that the average value I_ave of the absolute values of the detected current values becomes the predetermined current value determined in S100. Then, when the value of I_ave reaches the predetermined value, a predetermined time elapses until the outputs of the LPFs 28A to 28F in the average value / phase difference calculator 27 are stabilized (S102).

【0018】なお、電流平均値I_aveは、図3に示
す平均値・位相差演算器27において、I_fb入力か
ら絶対値回路30Bと平均値処理回路LPF28Fによ
り演算している。V_aveは絶対値回路30AとLP
F28Eにより求めている。また、基本信号と各信号の
位相差θv´、θi´を位相計算回路24B、24Cの
出力として求め、その差θv´−θi´を減算器32出
力θ_difとして求めている。次に、求めた電圧平均
値V_ave、電流平均値I_ave、位相差θ_di
fの値をそれぞれメモリに保存して、運転を停止する
(S103)。この時の電圧指令V_refと、電流検
出値I_fbの変化の様子を図7に示す。図7(a)に
は、LPFの出力が時間tの経過と共に安定する様子
が、図7(b)にはその時のV_refとI_fbと位
相差θ_difの関係図が示されている。
The average current value I_ave is calculated by the absolute value circuit 30B and the average value processing circuit LPF28F from the input I_fb in the average value / phase difference calculator 27 shown in FIG. V_ave is the absolute value circuit 30A and LP
Required by F28E. Further, the phase differences θv ′ and θi ′ between the basic signal and each signal are obtained as the outputs of the phase calculation circuits 24B and 24C, and the difference θv′−θi ′ is obtained as the subtractor 32 output θ_dif. Next, the obtained voltage average value V_ave, current average value I_ave, and phase difference θ_di
The value of f is stored in each memory and the operation is stopped (S103). FIG. 7 shows how the voltage command V_ref and the detected current value I_fb change at this time. FIG. 7A shows how the output of the LPF stabilizes with the passage of time t, and FIG. 7B shows a relationship diagram of V_ref, I_fb and the phase difference θ_dif at that time.

【0019】V_ave、I_ave、θ_difが求
められたら、次の(3)式、(4)式、(5)式によ
り、
When V_ave, I_ave, and θ_dif are obtained, the following equations (3), (4), and (5) are obtained.

【数6】 (R1+R2)、(l1+l2)を求める(S10
4)。また、(3)式、(4)式、(5)式は、図6か
ら、回路のインピーダンスをZ=(V_ave/√3)
/I_ave、Zと実軸Reとのなす角をθ_difと
すれば、図示の関係から求められる。
[Equation 6] (R1 + R2) and (l1 + l2) are calculated (S10
4). Further, from the equation (3), the equation (4), and the equation (5), the impedance of the circuit is Z = (V_ave / √3).
If the angle between / I_ave, Z and the real axis Re is θ_dif, it can be obtained from the relationship shown in the figure.

【0020】以上の第1の実施の形態によれば、ここま
でVampの初期値を0として測定開始するように説明
したが、実際運転時には、流れる電流値を交流電動機の
V/f特性値から予測し、予めいくらかの値を設定し
て、そこから加減することにより時間短縮することも可
能である。また、図3において各信号の平均値V_av
e、I_aveをLPF28E、28Fによって求めて
いるが、移動平均によって求めてもよいし、V_av
e、位相θV´は、チューニング電圧指令値V_ref
の振幅、周波数、及びLPF28Eの時定数が自明なの
で、演算で求めることもできる。更に、チューニング電
圧指令値V_aveにオフセット値V_ref_ofs
を加えたものを電圧指令値とすると、オフセット分の電
圧は直流として出力されるので、この直流分から同時に
一次抵抗R1を求めることもできる。R1が求まれば、
(R1+R2)よりR2を求めることは容易である。ま
た、本実施の形態では、1種類の振幅、周波数の交流信
号V_refで合成抵抗、漏れインダクタンスを測定し
たが、複数の条件で測定を行い、測定結果の平均を取っ
たり、オフセット量の影響を避けるために差分量を用い
て演算する等しても本発明は実施できる。
According to the first embodiment described above, the measurement was started so far with the initial value of Vamp set to 0, but during actual operation, the flowing current value is changed from the V / f characteristic value of the AC motor. It is also possible to shorten the time by predicting, setting some values in advance, and adjusting from there. Further, in FIG. 3, the average value V_av of each signal is
Although e and I_ave are obtained by the LPFs 28E and 28F, they may be obtained by a moving average or V_av.
e, the phase θV ′ is the tuning voltage command value V_ref
Since the amplitude, frequency, and time constant of the LPF 28E are self-explanatory, they can be calculated. Further, the tuning voltage command value V_ave is added to the offset value V_ref_ofs.
Assuming that the voltage command value is the voltage added with, the offset voltage is output as direct current, and therefore the primary resistance R1 can be simultaneously obtained from this direct current. If R1 is found,
It is easy to obtain R2 from (R1 + R2). Further, in the present embodiment, the combined resistance and the leakage inductance are measured with the AC signal V_ref having one kind of amplitude and frequency, but the measurement is performed under a plurality of conditions, and the average of the measurement results and the influence of the offset amount are measured. The present invention can be implemented by calculating using the difference amount in order to avoid it.

【0021】次に、本発明の第2の実施の形態について
図を参照して説明する。図8は本発明の第2の実施の形
態に係る電圧形インバータの動作のフローチャートであ
る。図9は図8に示す電圧形インバータのオン電圧降下
量を示す図である。図10は図8に示すオン電圧降下量
による補正処理の説明図である。第1の実施の形態で
は、パワー半導体素子の電圧降下の補正を行っていない
ために、測定したV_ave、θ_difに誤差が生じ
る場合があるので、第2の実施の形態では、V_ave
とθ_difの値の補正手段(図示していない)を平均
値・位相差演算器27内に設けて、図8に示すように、
第1の実施の形態の処理に、S105、S106の補正
処理を追加している。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a flowchart of the operation of the voltage source inverter according to the second embodiment of the present invention. FIG. 9 is a diagram showing an ON voltage drop amount of the voltage source inverter shown in FIG. FIG. 10 is an explanatory diagram of the correction process based on the ON voltage drop amount shown in FIG. In the first embodiment, since the voltage drop of the power semiconductor element is not corrected, an error may occur in the measured V_ave and θ_dif. Therefore, in the second embodiment, V_ave is measured.
And means for correcting the values of θ_dif (not shown) are provided in the average value / phase difference calculator 27, and as shown in FIG.
The correction processing of S105 and S106 is added to the processing of the first embodiment.

【0022】なお、図8において、S100〜S104
の処理は第1の実施の形態そのままなので、重複する説
明は省略する。先ず、S100〜S103の処理により
測定したV_aveの補正を行う(S105)。具体的
には、測定交流電流のピーク値Ipkを電流の平均値×
π/2として、電流の位相がθ_difの時の瞬時電流
値をIpk×sinθ_dif、として求める。次に、
各電流値でのパワー半導体素子のオン電圧降下量の平均
値Von_aveを次の(6)式で演算し、V_ave
からVon_aveを減じて、新たなV_aveとす
る。
In FIG. 8, S100 to S104.
Since the processing of 1 is the same as that of the first embodiment, duplicate description will be omitted. First, V_ave measured by the processing of S100 to S103 is corrected (S105). Specifically, the peak value Ipk of the measured alternating current is calculated as the average value of the current ×
As π / 2, the instantaneous current value when the current phase is θ_dif is obtained as Ipk × sin θ_dif. next,
The average value Von_ave of the on-state voltage drop amount of the power semiconductor element at each current value is calculated by the following equation (6) to obtain V_ave
To Von_ave to obtain a new V_ave.

【0023】 Von_ave=(A+B)/2×(90−θ_dif)/90 …(6) 但し、A=2/3×[Von(Ipk)+Von(Ip
k/2)] B=2/3×[Von(Ipk×sinθ_dif)+
Von(Ipk/2×sinθ_dif)] なお、Von(I)は、電流Iが流れている時のパワー
半導体素子のオン電圧降下量を示し、図9に示すように
スイッチング素子による降下量とダイオードによる降下
量との平均値として求め、電流Iの関数として平均値・
位相演算器27に内蔵されている。
Von_ave = (A + B) / 2 × (90−θ_dif) / 90 (6) where A = 2/3 × [Von (Ipk) + Von (Ip
k / 2)] B = 2/3 × [Von (Ipk × sin θ_dif) +
Von (Ipk / 2 × sin θ_dif)] Note that Von (I) represents the on-voltage drop amount of the power semiconductor element when the current I is flowing, and as shown in FIG. Calculated as an average value with the amount of drop, and the average value as a function of the current I
It is built in the phase calculator 27.

【0024】次に、位相差θ_difの補正を行う(S
106)。具体的には、位相補正量θcmpを次の
(7)式で演算し、θ_difにθcmpを加算して新
たなθ_difとする。 θ_dif=K×4/3×Von(Ipk) /V_ave×θ_dif/90 …(7) なお、(7)式中のKは、電圧指令値V_aveとピー
ク電流値Ipkの時のオン電圧降下量4/3×Von
(Ipk)との比で決定される、位相角度の補正のため
の比例係数である。
Next, the phase difference θ_dif is corrected (S
106). Specifically, the phase correction amount θcmp is calculated by the following equation (7), and θcmp is added to θ_dif to obtain a new θ_dif. θ_dif = K × 4/3 × Von (Ipk) / V_ave × θ_dif / 90 (7) In the equation (7), K is the on-voltage drop amount 4 when the voltage command value V_ave and the peak current value Ipk are 4 / 3 x Von
It is a proportional coefficient for correction of the phase angle, which is determined by the ratio with (Ipk).

【0025】上の(6)式、(7)式の、(90−θ_
dif)/90、とθ_dif/90は、パワー半導体
素子のオン電圧降下の影響が平均することで相殺される
残りの部分を位相90°単位で平均していることを示し
ている。図10にこの関係を示している。図10(a)
のA1とA2、図10(b)のB1とB2の領域での影
響は相殺されること、A1の領域はθ_difと一致す
ること、B1の領域は90−θ_difと一致すること
が分かる。また、図10(a)から分かるように、電流
0付近の電圧誤差の影響は相殺されてしまうために、微
小電流でのオン電圧降下量の特性を知る必要が無く、オ
ン電圧分の影響を補正することが可能になる。最後に、
S104でオン電圧量により補正された制御定数を演算
して、測定を終了する(S104)。
In the above equations (6) and (7), (90-θ_
dif) / 90 and θ_dif / 90 indicate that the remaining portion that is canceled by averaging the influence of the ON voltage drop of the power semiconductor element is averaged in 90 ° phase units. This relationship is shown in FIG. Figure 10 (a)
It can be seen that the influences in the areas A1 and A2 of FIG. 10B and the areas B1 and B2 of FIG. 10B are canceled out, that the area A1 matches θ_dif, and that the area B1 matches 90-θ_dif. Further, as can be seen from FIG. 10A, since the influence of the voltage error near the current 0 is canceled out, it is not necessary to know the characteristic of the ON voltage drop amount at the minute current, and the influence of the ON voltage component can be obtained. It becomes possible to correct. Finally,
The control constant corrected by the ON voltage amount is calculated in S104, and the measurement is ended (S104).

【0026】このように本発明によれば、測定した合成
抵抗、漏れインダクタンス測定値と、事前に設定された
1次抵抗R1の値から、R2及び(l=l1+l2)を
求め、一次角周波数演算回路17と、電圧指令補償回路
21に設定して、実運転時にはスイッチ回路13A〜1
3Cをa端子側に戻し切替えることで、測定した抵抗、
漏れインダクタンス等の制御定数によって、ベクトル制
御を行うことができる。また、ここまでは実施対象を速
度検出器付きの誘導電動機により説明したが、速度検出
器無しの誘導電動機や、同期機を用いても適用可能であ
る。すなわち、速度検出器の代りに速度推定器や速度指
令値から周波数指令を作成したり、すべり周波数指令値
ωs*の補償をしない等で実施可能であり、速度推定器
に測定した抵抗、漏れインダクタンスの制御定数を設定
することもできる。なお、本発明により開示された合成
抵抗、漏れインダクタンス測定方法は、実運転時の制御
方法が異なっても、何等問題なく使用できることは言う
までもない。
As described above, according to the present invention, R2 and (l = l1 + l2) are obtained from the measured combined resistance and leak inductance measurement values and the preset value of the primary resistance R1 to calculate the primary angular frequency. The circuit 17 and the voltage command compensating circuit 21 are set, and the switch circuits 13A to 1
By switching 3C back to the a terminal side, the measured resistance,
Vector control can be performed by a control constant such as leakage inductance. Further, although the implementation target has been described so far as the induction motor with the speed detector, the invention can be applied to an induction motor without the speed detector or a synchronous machine. That is, it is possible to create a frequency command from a speed estimator or a speed command value instead of the speed detector, or to compensate for the slip frequency command value ωs *, and to measure the resistance and leakage inductance measured by the speed estimator. The control constant of can be set. Needless to say, the combined resistance and leakage inductance measuring method disclosed by the present invention can be used without any problem even if the control method during actual operation is different.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
合成抵抗(R1+R2)、漏れインダクタンス(l=l
1+l2)等の制御定数を測定する場合に、インバータ
の出力電圧検出器が不要で、且つ、電動機を停止した状
態で合成抵抗及び漏れインダクタンスの測定演算が可能
であって、特に、パワー半導体素子のオン電圧降下の影
響を電圧指令の平均値V_ave、及び電圧指令と出力
電流の位相差θ_difに補正することで、制御周期毎
のオン電圧降下の瞬時補正、精度を考慮したパワー素子
のオン電圧降下特性の設定なしでも、簡単に高精度な制
御定数の測定演算が可能になるという効果がある。
As described above, according to the present invention,
Combined resistance (R1 + R2), leakage inductance (l = 1
1 + l2), etc., the output voltage detector of the inverter is unnecessary, and the combined resistance and leakage inductance can be measured and calculated with the electric motor stopped. By correcting the effect of the on-voltage drop to the average value V_ave of the voltage command and the phase difference θ_dif between the voltage command and the output current, the on-voltage drop of the power element in consideration of the instantaneous correction of the on-voltage drop for each control cycle and the accuracy. There is an effect that it is possible to easily perform highly accurate measurement and calculation of control constants without setting the characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る電圧形インバ
ータの回路構成図である。
FIG. 1 is a circuit configuration diagram of a voltage type inverter according to a first embodiment of the present invention.

【図2】図1に示すインバータ制御装置の詳細回路図で
ある。
FIG. 2 is a detailed circuit diagram of the inverter control device shown in FIG.

【図3】図1に示す平均値・位相差演算器の詳細回路図
である。
FIG. 3 is a detailed circuit diagram of the average value / phase difference calculator shown in FIG.

【図4】図1に示す交流電動機の等価回路図である。4 is an equivalent circuit diagram of the AC motor shown in FIG.

【図5】図1に示す電圧形インバータの動作のフローチ
ャートである。
5 is a flowchart of the operation of the voltage source inverter shown in FIG.

【図6】図4に示す等価回路のインピーダンスのベクト
ル図である。
FIG. 6 is a vector diagram of impedance of the equivalent circuit shown in FIG.

【図7】図3に示す平均値・位相差演算器の電圧指令値
・電流検出値のタイムチャートである。
7 is a time chart of the voltage command value / current detection value of the average value / phase difference calculator shown in FIG.

【図8】本発明の第2の実施の形態に係る電圧形インバ
ータの動作のフローチャートである。
FIG. 8 is a flowchart of the operation of the voltage source inverter according to the second embodiment of the present invention.

【図9】図8に示す電圧形インバータのオン電圧降下量
を示す図である。
9 is a diagram showing an on-voltage drop amount of the voltage source inverter shown in FIG.

【図10】図8に示すオン電圧降下量による補正処理の
説明図である。
FIG. 10 is an explanatory diagram of a correction process based on the ON voltage drop amount shown in FIG.

【図11】従来の交流電動機の定数測定装置の構成図で
ある。
FIG. 11 is a configuration diagram of a conventional constant current measuring device for an AC motor.

【符号の説明】[Explanation of symbols]

1 電圧形インバータ 2 交流電動機 3 電流検出器 4 比較器 5 発振器 6 加算器 7 ゲート回路 8 インバータ制御装置 9 デッドバンド補償器 10 直流電源 11 速度指令回路 12 励磁電流指令回路 13 スイッチ回路 14 速度検出器 15 3相/2相変換器 16 2相/3相変換器 17 一次角周波数演算回路 18 速度制御回路 19 トルク電流制御回路 20 励磁電流制御回路 21 電圧指令補償回路 22 加算器 23 積算器 24 位相計算器 25 チューニング処理部 26 電流振幅演算器 27 平均値・位相演算器 28 LPF 29 HPF 30 絶対値回路 31 乗算器 32 減算器 33 正弦波発生器 1 voltage source inverter 2 AC motor 3 Current detector 4 comparator 5 oscillators 6 adder 7 gate circuit 8 Inverter control device 9 Dead band compensator 10 DC power supply 11 Speed command circuit 12 Excitation current command circuit 13 switch circuit 14 Speed detector 15 3 phase / 2 phase converter 16 2 phase / 3 phase converter 17 Primary angular frequency calculation circuit 18 Speed control circuit 19 Torque current control circuit 20 Excitation current control circuit 21 Voltage command compensation circuit 22 adder 23 Accumulator 24 Phase calculator 25 Tuning processing section 26 Current amplitude calculator 27 Average value / phase calculator 28 LPF 29 HPF 30 Absolute value circuit 31 Multiplier 32 subtractor 33 Sine wave generator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H576 BB06 BB07 CC01 DD02 DD04 DD05 DD07 EE01 EE11 FF05 GG02 GG04 HA02 HB02 JJ03 JJ04 JJ17 JJ26 KK06 LL01 LL22 LL29 LL40    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H576 BB06 BB07 CC01 DD02 DD04                       DD05 DD07 EE01 EE11 FF05                       GG02 GG04 HA02 HB02 JJ03                       JJ04 JJ17 JJ26 KK06 LL01                       LL22 LL29 LL40

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 出力電圧の大きさ、周波数および位相の
制御が可能なパワー半導体素子から構成される電力変換
器を介して供給される一次電流を、該交流電動機の磁束
と平行な成分(励磁電流)とこれに直交する成分(トル
ク電流)とに分離して各々を独立に調整し、交流電動機
の各相に流れる出力電流を検出する電流検出器を有する
交流電動機の定数測定方法において、 インバータ装置は前記交流電動機の回転を停止させた状
態で、正弦波発生器により交番磁束が発生するように電
圧位相を予め設定された任意の値に固定し、周波数fh
の正弦波の電圧指令を与え、電圧指令値は出力電流の大
きさが所定値になるように調整した後、所定時間経過後
に前記電圧指令の絶対値の平均値V_aveおよび出力
電流の絶対値の平均値I_aveおよび前記電圧指令と
出力電流の位相差θ_difを測定し、前記V_ave
とI_aveとの比のcos成分から一次および二次の
合成抵抗(R1+R2)を演算測定し、前記V_ave
とI_aveとの比のsin成分から演算測定するか、
または次式、 【数1】 より、漏れインダクタンスl=l1+l2を演算測定す
ることを特徴とする交流電動機の定数測定方法。
1. A primary current supplied through a power converter composed of a power semiconductor element capable of controlling the magnitude, frequency and phase of an output voltage, a primary current supplied to a component parallel to the magnetic flux of the AC motor (excitation). Current) and a component (torque current) orthogonal to the current) and independently adjusting each of them to detect the output current flowing in each phase of the AC motor. The apparatus fixes the voltage phase at an arbitrary preset value so that an alternating magnetic flux is generated by the sine wave generator while the rotation of the AC motor is stopped, and the frequency fh
Of the sine wave, the voltage command value is adjusted so that the magnitude of the output current becomes a predetermined value, and after a lapse of a predetermined time, the average value V_ave of the absolute values of the voltage command and the absolute value of the output current are The average value I_ave and the phase difference θ_dif between the voltage command and the output current are measured, and V_ave is measured.
And the combined resistance of primary and secondary (R1 + R2) is calculated and calculated from the cos component of the ratio of I_ave to V_ave.
Or calculate from the sin component of the ratio of I_ave and
Or the following equation, According to the method, the leakage inductance l = l1 + l2 is calculated and measured.
【請求項2】 請求項1に記載の交流電動機の定数測定
方法において、 出力電圧誤差のうち少なくともバワー半導体素子のオン
電圧降下による振幅および位相差誤差を、測定した電圧
指令の絶対値の平均値V_aveおよび電圧指令と出力
電流の位相差θ_difに補正した後、一次および二次
の合成抵抗(R1+R2)と漏れインダクタンスl=l
1+l2を演算測定することを特徴とする交流電動機の
定数測定方法。
2. The constant value measuring method for an AC motor according to claim 1, wherein at least an amplitude and a phase difference error due to an ON voltage drop of a bower semiconductor element among output voltage errors are average values of absolute values of measured voltage commands. After correction to V_ave and the phase difference θ_dif between the voltage command and the output current, the combined primary and secondary resistance (R1 + R2) and the leakage inductance l = 1
A method for measuring constants of an AC motor, characterized by calculating and measuring 1 + 12.
【請求項3】 出力電圧の大きさ、周波数および位相の
制御が可能なパワー半導体素子から構成される電力変換
器を介して供給される一次電流を、該交流電動機の磁束
と平行な成分(励磁電流)とこれに直交する成分(トル
ク電流)とに分離して各々を独立に調整し、交流電動機
の各相に流れる出力電流を検出する電流検出器を有する
交流電動機の制御装置において、 インバータ装置は、前記交流電動機の回転を停止させた
状態で、正弦波発生器により交番磁束が発生するように
電圧位相を予め設定された任意の値に固定し、周波数f
hの正弦波の電圧指令を与える手段と、電圧指令値は出
力電流の大きさが所定値になるように調整した後、所定
時間経過後に前記電圧指令の絶対値の平均値V_ave
および出力電流の絶対値の平均値I_aveおよび前記
電圧指令と出力電流の位相差θ_difを測定する手段
を具備し、前記V_aveとI_aveとの比のcos
成分から一次および二次の合成抵抗(R1+R2)を演
算測定し、前記V_aveとI_aveとの比のsin
成分から演算測定するか、あるいは次式、 【数2】 より漏れインダクタンスl=l1+l2を演算測定する
ことを特徴とする交流電動機の制御装置。
3. A primary current supplied through a power converter composed of a power semiconductor element capable of controlling the magnitude, frequency and phase of an output voltage, a primary current supplied to a component parallel to the magnetic flux of the AC motor (excitation). Current) and a component (torque current) orthogonal to the current) and independently adjusting each of them, and having a current detector for detecting an output current flowing in each phase of the AC motor. Is a voltage phase fixed to an arbitrary value set in advance so that an alternating magnetic flux is generated by a sine wave generator while the rotation of the AC motor is stopped, and the frequency f
A means for giving a voltage command of a sine wave of h, and a voltage command value is adjusted so that the magnitude of the output current becomes a predetermined value, and after a predetermined time elapses, an average value V_ave of absolute values of the voltage command.
And a means for measuring the average value I_ave of the absolute value of the output current and the phase difference θ_dif between the voltage command and the output current, and the cos of the ratio of V_ave and I_ave.
The combined resistance (R1 + R2) of the primary and the secondary is calculated and measured from the component, and the ratio of V_ave and I_ave is calculated as sin.
Compute and measure from the component, or the following equation, A control device for an AC motor, characterized in that the leakage inductance l = l1 + l2 is calculated and measured.
【請求項4】 請求項3に記載の交流電動機の制御装置
において、 出力電圧誤差のうち少なくともパワー半導体素子のオン
電圧降下による振幅および位相差誤差を、測定した電圧
指令の絶対値の平均値V_aveおよび電圧指令と出力
電流の位相差θ_difに補正する手段を具備し、これ
ら補正したV_aveおよびθ_aveを用いて一次お
よび二次の合成抵抗(R1+R2)と漏れインダクタン
スl=l1+l2を演算測定し、これらの測定値を基に
交流電動機を制御することを特徴とする交流電動機の制
御装置。
4. The control device for an AC motor according to claim 3, wherein an average value V_ave of absolute values of measured voltage commands of at least an amplitude and a phase difference error due to an ON voltage drop of a power semiconductor element among output voltage errors. And a means for correcting the phase difference θ_dif between the voltage command and the output current, and using these corrected V_ave and θ_ave, the primary and secondary combined resistances (R1 + R2) and the leakage inductance l = l1 + l2 are calculated and measured. A control device for an AC motor, which controls the AC motor based on a measured value.
JP2002076735A 2002-03-19 2002-03-19 AC motor constant measuring method and control device Expired - Fee Related JP3959617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076735A JP3959617B2 (en) 2002-03-19 2002-03-19 AC motor constant measuring method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076735A JP3959617B2 (en) 2002-03-19 2002-03-19 AC motor constant measuring method and control device

Publications (2)

Publication Number Publication Date
JP2003284398A true JP2003284398A (en) 2003-10-03
JP3959617B2 JP3959617B2 (en) 2007-08-15

Family

ID=29227811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076735A Expired - Fee Related JP3959617B2 (en) 2002-03-19 2002-03-19 AC motor constant measuring method and control device

Country Status (1)

Country Link
JP (1) JP3959617B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218282B2 (en) 2003-04-28 2007-05-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Antenna device
WO2009078216A1 (en) * 2007-12-18 2009-06-25 Kabushiki Kaisha Yaskawa Denki Induction motor control device and motor constant measurement/computing method therefor
JP2010045914A (en) * 2008-08-12 2010-02-25 Sinfonia Technology Co Ltd Synchronous motor drive control device
US7852022B2 (en) * 2007-01-12 2010-12-14 Mitsubishi Electric Corporation Control apparatus for electric car
JP2015204651A (en) * 2014-04-11 2015-11-16 株式会社明電舎 Control device for induction motor, and control method
US9335356B2 (en) 2010-12-06 2016-05-10 Mitsubishi Electric Corporation Inductance measuring device and measuring method for synchronous motor
WO2019111730A1 (en) * 2017-12-06 2019-06-13 日本電産株式会社 Controller, motor control system comprising said controller, and electric power-steering system comprising said motor control system
WO2019111728A1 (en) * 2017-12-06 2019-06-13 日本電産株式会社 Controller, motor control system having the controller, and electric power steering system having the motor control system
KR20210102643A (en) * 2020-02-12 2021-08-20 엘에스일렉트릭(주) Apparatus for estimating the parameters of the motor
CN115250088A (en) * 2021-12-27 2022-10-28 青岛大学 Nine-phase open winding permanent magnet synchronous motor model prediction control method considering dead zone compensation

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218282B2 (en) 2003-04-28 2007-05-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Antenna device
US7852022B2 (en) * 2007-01-12 2010-12-14 Mitsubishi Electric Corporation Control apparatus for electric car
WO2009078216A1 (en) * 2007-12-18 2009-06-25 Kabushiki Kaisha Yaskawa Denki Induction motor control device and motor constant measurement/computing method therefor
JP5146925B2 (en) * 2007-12-18 2013-02-20 株式会社安川電機 Induction motor control device and motor constant measurement calculation method thereof
JP2010045914A (en) * 2008-08-12 2010-02-25 Sinfonia Technology Co Ltd Synchronous motor drive control device
US9335356B2 (en) 2010-12-06 2016-05-10 Mitsubishi Electric Corporation Inductance measuring device and measuring method for synchronous motor
JP2015204651A (en) * 2014-04-11 2015-11-16 株式会社明電舎 Control device for induction motor, and control method
WO2019111728A1 (en) * 2017-12-06 2019-06-13 日本電産株式会社 Controller, motor control system having the controller, and electric power steering system having the motor control system
WO2019111730A1 (en) * 2017-12-06 2019-06-13 日本電産株式会社 Controller, motor control system comprising said controller, and electric power-steering system comprising said motor control system
CN111344943A (en) * 2017-12-06 2020-06-26 日本电产株式会社 Controller, motor control system having the same, and electric power steering system having the same
CN111344945A (en) * 2017-12-06 2020-06-26 日本电产株式会社 Controller, motor control system having the same, and electric power steering system having the same
JPWO2019111730A1 (en) * 2017-12-06 2020-11-26 日本電産株式会社 A controller, a motor control system having the controller, and an electric power steering system having the motor control system.
US11271503B2 (en) 2017-12-06 2022-03-08 Nidec Corporation Controller, motor control system having the controller, and electric power steering system having the motor control system
CN111344943B (en) * 2017-12-06 2023-11-03 日本电产株式会社 Controller, motor control system having the same, and electric power steering system having the same
KR20210102643A (en) * 2020-02-12 2021-08-20 엘에스일렉트릭(주) Apparatus for estimating the parameters of the motor
KR102414478B1 (en) * 2020-02-12 2022-06-28 엘에스일렉트릭(주) Apparatus for estimating the parameters of the motor
CN115250088A (en) * 2021-12-27 2022-10-28 青岛大学 Nine-phase open winding permanent magnet synchronous motor model prediction control method considering dead zone compensation

Also Published As

Publication number Publication date
JP3959617B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3611492B2 (en) Inverter control method and apparatus
US8988027B2 (en) Motor control apparatus and motor control method
US7800337B2 (en) Control apparatus for AC rotary machine and method for measuring electrical constant of AC rotary machine using the control apparatus
US10498283B2 (en) Motor drive device
US7423401B2 (en) AC rotary machine constant measuring apparatus for measuring constants of stationary AC rotary machine
JP2004112898A (en) Control method and device for motor in position sensorless
WO2016121237A1 (en) Inverter control device and motor drive system
JP2008167568A (en) Beatless control device of permanent magnet motor
US20050253550A1 (en) Leakage inductance saturation compensation for a slip control technique of a motor drive
JP3832443B2 (en) AC motor control device
JP3959617B2 (en) AC motor constant measuring method and control device
JP4377091B2 (en) Inverter device and AC current detection method thereof
JP3284602B2 (en) AC motor constant measurement method and control device
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
US11456691B2 (en) Inverter control device
JP2929344B2 (en) Method and apparatus for measuring motor constants
JP3771239B2 (en) Induction motor controller
KR102409792B1 (en) Control device of permanent magnet synchronization electric motor, microcomputer, electric motor system, and driving method of permanent magnet synchronization electric motor
JP2018125955A (en) Motor controller
JP2004135407A (en) Control device for ac motor
JP4803413B2 (en) AC motor inverter device
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP3849857B2 (en) AC motor resistance measurement method
JP2003259698A (en) Method for correcting gain in three-phase current detector
JP2000342000A (en) Equipment and method for controlling induction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent or registration of utility model

Ref document number: 3959617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees