JP2000336945A - Construction method for non-reinforced and non-anchor earthquake-resistant reinforced wall - Google Patents

Construction method for non-reinforced and non-anchor earthquake-resistant reinforced wall

Info

Publication number
JP2000336945A
JP2000336945A JP11153862A JP15386299A JP2000336945A JP 2000336945 A JP2000336945 A JP 2000336945A JP 11153862 A JP11153862 A JP 11153862A JP 15386299 A JP15386299 A JP 15386299A JP 2000336945 A JP2000336945 A JP 2000336945A
Authority
JP
Japan
Prior art keywords
reinforced
fiber
composite material
less
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11153862A
Other languages
Japanese (ja)
Other versions
JP3762143B2 (en
Inventor
Tetsushi Kanda
徹志 閑田
Toshiyuki Fukumoto
敏之 福元
Masaya Taki
正哉 瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP15386299A priority Critical patent/JP3762143B2/en
Publication of JP2000336945A publication Critical patent/JP2000336945A/en
Application granted granted Critical
Publication of JP3762143B2 publication Critical patent/JP3762143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply construct an earthquake-resistant reinforced wall having high tenacity by using a high-tenacity FRC material (a short-fiber reinforced cement composite material). SOLUTION: When an earthquake resisting wall 10 is to be extended at an opening 7 in the frame of a reinforced concrete-constructed existing column 2 and an existing beam 3, form at only in one side is erected under the existing beam 3, short fibers are mixed towards the forms and concrete and mortar are mixed, a composite material having improved tensile and being strength and tenacity is manufactured by three-dimensional random blending of the fibers, and high-tenacity FRC material (a short-fiber reinforced cement composite material) 12 in which tensile strain exceeds 1% is sprayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高靭性型の繊維補
強セメント複合材料を用いた無補強・無アンカーの耐震
補強壁の施工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a non-reinforced and non-anchored seismic reinforced wall using a high-toughness fiber-reinforced cement composite material.

【0002】[0002]

【従来の技術】構造物の耐震性能を高めるために、図7
に示すような鉄筋コンクリート造耐震壁1を増設するこ
とが一般的に行われる。図7は鉄筋コンクリート造の建
物の場合で、図中2は鉄筋コンクリート造の既存柱、3
は鉄筋コンクリート造の既存梁であり、鉄筋コンクリー
ト造耐震壁1はこれら既存柱2と既存梁3との架構内開
口部に配設する。
2. Description of the Related Art To improve the seismic performance of a structure, FIG.
It is common practice to add a reinforced concrete earthquake-resistant wall 1 as shown in FIG. Fig. 7 shows a case of a reinforced concrete building.
Is an existing reinforced concrete beam, and the reinforced concrete earthquake-resistant wall 1 is disposed at an opening in the frame of the existing column 2 and the existing beam 3.

【0003】しかし、このような従来の鉄筋コンクリー
ト造耐震壁1による増設耐震壁は以下のように、多くの
工程を要する。
[0005] However, such an existing earthquake-resistant wall made of the conventional reinforced concrete earthquake-resistant wall 1 requires many steps as follows.

【0004】アンカー筋4を配設するとか、補強筋5を
ダブル配筋する等の数多くの後施工アンカーを用いて、
既存柱2と既存梁3などの既存部材との一体性を確保す
る必要がある。さらに、鉄筋コンクリート造耐震壁1自
体の施工に型枠組立、鉄筋配筋、コンクリート打設の一
連の作業が必要である。
[0004] By using a number of post-installed anchors such as arranging anchor bars 4 or double reinforcing bars 5,
It is necessary to ensure the integrity of the existing pillar 2 and the existing members such as the existing beam 3. In addition, a series of operations such as formwork assembly, reinforcing bar arrangement, and concrete placement are necessary for the construction of the reinforced concrete earthquake-resistant wall 1 itself.

【0005】一方、短繊維を混入してコンクリートおよ
びモルタルを練り混ぜ、同繊維を3次元ランダム配合さ
せることにより、引張・曲げ強度および靭性を向上させ
た複合材料(短繊維補強セメント複合材料、FRC)が
一般に普及している。
On the other hand, a composite material (short fiber reinforced cement composite material, FRC) having improved tensile / bending strength and toughness by mixing short fibers with kneading concrete and mortar and randomly mixing the fibers. ) Is popular.

【0006】そして、特開平10−152927号公報
では、後施工アンカーを打ち込まずに周辺フレームに接
着したコッターおよび吹き付けFRCを用いて、後施工
アンカーと配筋作業を省略する工法を提案している。
Japanese Unexamined Patent Application Publication No. 10-152927 proposes a method of omitting post-installation anchors and rebar arrangement work using a cotter and sprayed FRC bonded to a peripheral frame without driving in post-installation anchors. .

【0007】図8に示すように、耐震壁6を構築する場
合、まず、既存柱2と既存梁3の開口7側の面に、ブロ
ック状の多数のコッター8を所定間隔をもって配置し接
着する。次いで、これらコッター8の周縁部に包含する
ようにして、開口7に繊維補強モルタル9を吹き付けて
耐震壁6を構築する。
As shown in FIG. 8, when constructing the earthquake-resistant wall 6, first, a large number of block-shaped cotters 8 are arranged at predetermined intervals on the surfaces of the existing columns 2 and the existing beams 3 on the opening 7 side and bonded. . Next, a fiber reinforced mortar 9 is sprayed on the opening 7 so as to be included in the peripheral portion of the cotter 8 to construct the earthquake-resistant wall 6.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記特開平1
0−152927号公報では、1)コッター8を周辺フ
レームヘ接着する工程が依然として残ること、また、
2)従来型の繊維補強モルタル9(吹き付けFRC)を
用いているので、無筋の耐震壁6は、水平力作用時にせ
ん断クラックが発生すると、そのクラックがそのまま進
展して大きな開口変位となり、急激に耐力を失い、脆性
的な挙動を示すことが予想される。
However, Japanese Patent Application Laid-Open Publication No.
According to Japanese Patent Application Laid-Open No. 0-152927, 1) the step of bonding the cotter 8 to the peripheral frame still remains.
2) Since the conventional fiber-reinforced mortar 9 (sprayed FRC) is used, if a shear crack occurs in the unreinforced earthquake-resistant wall 6 when a horizontal force is applied, the crack propagates as it is, resulting in a large opening displacement, and abrupt opening displacement occurs. Is expected to lose proof stress and exhibit brittle behavior.

【0009】本発明の目的は前記従来例の不都合を解消
し、高靭性FRC材料(短繊維補強セメント複合材料)
を使用することで、簡易に高靭性の耐震補強壁を施工す
ることができる無補強・無アンカーの耐震補強壁の施工
法を提供することにある。
An object of the present invention is to overcome the disadvantages of the prior art and to provide a high toughness FRC material (short fiber reinforced cement composite material).
An object of the present invention is to provide a method of constructing a non-reinforced, non-anchored seismic retrofitting wall that can easily construct a high-toughness seismic retrofitting wall by using.

【0010】本発明は前記目的を達成するため、第1
に、はり下に片方のみの型枠を立て、これに向かって高
靭性FRC材料(短繊維補強セメント複合材料)を吹き
付け施工すること、第2に、表裏2枚の型枠を施工し、
これに高靭性FRC材料(短繊維補強セメント複合材
料)を流入すること、第3に、工場製作したPCa版
(プレキャストコンクリート版)を既存フレーム開口部
に立て込み仮止めした後、既存フレームとPCa版の
間、およびPCa版間を現場にて高靭性FRC材料(短
繊維補強セメント複合材料)を圧入すること、第4に、
高靭性FRC材料(短繊維補強セメント複合材料)で成
形したブロックを積み上げることを要旨とするものであ
る。
[0010] In order to achieve the above object, the present invention provides a first method.
Then, only one formwork is erected under the beam, and a high toughness FRC material (short fiber reinforced cement composite material) is sprayed toward the formwork. Secondly, two formwork sides are constructed,
Third, a high-toughness FRC material (short fiber reinforced cement composite material) is poured into the opening. Third, a PCa plate (precast concrete plate) manufactured at the factory is inserted into the opening of the existing frame and temporarily fixed. Press-fitting a high toughness FRC material (short fiber reinforced cement composite material) between the plates and between the PCa plates at the site;
The gist of the present invention is to stack blocks formed of a high toughness FRC material (short fiber reinforced cement composite material).

【0011】さらに、第6に、高靭性FRC材料(短繊
維補強セメント複合材料)は、材令28日の硬化体の引
張試験において引張ひずみが1%以上を示すクラック分
散型であって、下記[F1]のPVA短繊維を水セメン
ト比40%以上でかつ砂セメント比(S/C)が1.0
以下(0を含む)の調合マトリクスに、1.5越え3v
o1.%の配合量で、3次元ランダムに配合したもので
あることを要旨とするものである。 [F1] ・繊維径40〜50μm ・繊維長5〜20mm ・繊維強度1000MPa〜1500MPa未満 ・みかけの繊維強度700MPa〜1000MPa未満
Sixth, the high toughness FRC material (short fiber reinforced cement composite material) is a crack-dispersed type exhibiting a tensile strain of 1% or more in a tensile test of a hardened material on an age of 28 days. The PVA short fiber of [F1] has a water cement ratio of 40% or more and a sand cement ratio (S / C) of 1.0.
For the following (including 0) formula matrix, more than 1.5 3v
o1. The gist of the present invention is that it is a three-dimensionally random blended material with a blending amount of%. [F1] • Fiber diameter 40 to 50 μm • Fiber length 5 to 20 mm • Fiber strength 1000 MPa to less than 1500 MPa • Apparent fiber strength 700 MPa to less than 1000 MPa

【0012】第7に、高靭性FRC材料(短繊維補強セ
メント複合材料)は、材令28日の硬化体の引張試験に
おいて引張ひずみが1%以上を示すクラック分散型であ
って、下記[F2]のPVA短繊維を水セメント比30
%以上でかつ砂セメント比(S/C)が1.0以下(0
を含む)の調合マトリクスに、1越え3vo1.%の配
合量で、3次元ランダムに配合したものであることを要
旨とするものである。 [F2] ・繊維径50μm以下 ・繊維長5〜20mm ・繊維強度1500MPa〜2400MPa以下 ・みかけの繊維強度1000MPa〜1800MPa以
Seventh, the high toughness FRC material (short fiber reinforced cement composite material) is a crack-dispersed type exhibiting a tensile strain of 1% or more in a tensile test of a hardened material on the age of 28, and has the following [F2 ] PVA short fiber of water-cement ratio 30
% Or more and the sand-cement ratio (S / C) is 1.0 or less (0
Is included in the formulation matrix of 1 to 3 vo1. The gist of the present invention is that it is a three-dimensionally random blended material with a blending amount of%. [F2]-Fiber diameter 50 µm or less-Fiber length 5 to 20 mm-Fiber strength 1500 MPa to 2400 MPa or less-Apparent fiber strength 1000 MPa to 1800 MPa or less

【0013】請求項1記載の本発明によれば、高靭性F
RC材料(短繊維補強セメント複合材料)を既存のコン
クリート上に後打設した場合の界面の挙動は、靭性に富
み、かつ高い面内せん断力に耐えるもので、既存コンク
リート上に後打ちコンクリートを打設した場合と比較し
て大きな改善が期待される。従って、既存躯体と増設耐
震壁の境界における滑り破壊を遅らせ、高いせん断力に
耐えることができる。
According to the first aspect of the present invention, high toughness F
When RC material (short fiber reinforced cement composite material) is post-cast on existing concrete, the behavior of the interface is rich in toughness and withstands high in-plane shearing force. Great improvement is expected compared to the case of casting. Therefore, it is possible to delay the sliding failure at the boundary between the existing building and the additional earthquake-resistant wall, and to endure high shearing force.

【0014】また、高靭性FRC材料(短繊維補強セメ
ント複合材料)を用いることにより、靭性に富む挙動を
示す耐震壁とすることができる。高靭性FRC材料(短
繊維補強セメント複合材料)は、引張挙動のみならず、
圧縮挙動においてもコンクリートと比較して大幅な圧縮
ひずみ性能の向上が図られており、高い引張ひずみ能力
と相まって、非常に大きなせん断変形に耐えることが可
能である。したがって、本発明で形成される耐震補強壁
は、一般のRCと比較して非常に靭性に富む挙動を示
す。
[0014] By using a high toughness FRC material (short fiber reinforced cement composite material), it is possible to provide a shear-resistant wall exhibiting a tough behavior. High toughness FRC material (short fiber reinforced cement composite material) not only has tensile behavior,
The compression behavior is also greatly improved in compression behavior as compared with concrete, and in combination with high tensile strain capability, it is possible to withstand very large shear deformation. Therefore, the seismic retrofit wall formed by the present invention exhibits a behavior that is very rich in toughness as compared with general RC.

【0015】それゆえ、はり下に片方のみの型枠を立
て、これに向かって高靭性FRC材料(短繊維補強セメ
ント複合材料)を吹き付け施工することで、非常に簡単
かつ迅速に耐震補強壁を形成することができる。
[0015] Therefore, by setting up only one formwork under the beam and spraying a high-toughness FRC material (short fiber reinforced cement composite material) on the formwork, the earthquake-resistant reinforcement wall can be formed very easily and quickly. Can be formed.

【0016】請求項2記載の本発明によれば、前記作用
と同様に、表裏2枚の型枠を施工し、これに高靭性FR
C材料(短繊維補強セメント複合材料)を流入すること
で、非常に簡単にかつ迅速に耐震補強壁を形成すること
ができる。
According to the second aspect of the present invention, similarly to the above-described operation, two front and back molds are constructed, and a high toughness FR is applied thereto.
By injecting the C material (short fiber reinforced cement composite material), it is possible to form the earthquake-resistant reinforcing wall very simply and quickly.

【0017】請求項3記載の本発明によれば、前記作用
と同様に、仮止めした後、既存フレームとPCa版の
間、およびPCa版間を現場にて高靭性FRC材料(短
繊維補強セメント複合材料)を圧入することで、非常に
簡単かつ迅速に耐震補強壁を形成することができる。
According to the third aspect of the present invention, similarly to the above-described operation, after the temporary fixing, a high toughness FRC material (short fiber reinforced cement) is formed on site between the existing frame and the PCa plate and between the PCa plates. By press-fitting the composite material), the earthquake-resistant reinforcing wall can be formed very easily and quickly.

【0018】請求項4記載の本発明によれば、前記作用
と同様に、高靭性FRC材料(短繊維補強セメント複合
材料)で成形したブロックを積み上げることで非常に簡
単にかつ迅速に耐震補強壁を形成することができる。
According to the fourth aspect of the present invention, similar to the above-described operation, the seismic strengthening wall can be very simply and quickly formed by stacking blocks formed of a high toughness FRC material (short fiber reinforced cement composite material). Can be formed.

【0019】請求項5および請求項6記載の本発明によ
れば、安価な汎用材料であるPVA繊維(マトリクス中
の見かけ繊維強度は高性能ポリエチレン繊維の1/2〜
1/3程度でしかない)を用いて高靭性FRC材料(短
繊維補強セメント複合材料)を実現することができる。
According to the fifth and sixth aspects of the present invention, an inexpensive general-purpose PVA fiber (the apparent fiber strength in a matrix is 1/2 to that of a high-performance polyethylene fiber).
A high toughness FRC material (short fiber reinforced cement composite material) can be realized by using only about 1/3).

【0020】[0020]

【発明の実施の形態】以下、図面について本発明の実施
の形態を詳細に説明する。図1は本発明の無補強・無ア
ンカーの耐震補強壁の施工法で施工された増設耐震補強
壁の1実施形態を示す一部切欠いた正面図、図2は本発
明の無補強・無アンカーの耐震補強壁の施工法の第1実
施形態を示す縦断側面図で、図1は前記従来例を示す図
7と同一構成要素には同一参照符号を付したものであ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a partially cutaway front view showing an embodiment of an additional seismic retrofitting wall constructed by the method of constructing a non-reinforcement non-anchor seismic retrofitting wall of the present invention, and FIG. FIG. 1 is a vertical sectional side view showing a first embodiment of a method of constructing an earthquake-resistant reinforcing wall. In FIG. 1, the same components as those in FIG. 7 showing the conventional example are denoted by the same reference numerals.

【0021】すなわち、鉄筋コンクリート造の建物で、
鉄筋コンクリート造の既存柱2と既存梁3との架構内の
開口7に耐震壁10を増設する場合、図1に示すように既
存梁3の下に片方のみの型枠11を立て、これに向かって
高靭性FRC材料(短繊維補強セメント複合材料)12を
吹き付けて施工するものとした。
That is, in a reinforced concrete building,
When an earthquake-resistant wall 10 is to be added to the opening 7 in the frame between the existing reinforced concrete column 2 and the existing beam 3, only one formwork 11 is erected under the existing beam 3 as shown in FIG. A high toughness FRC material (short fiber reinforced cement composite material) 12 is sprayed to perform the construction.

【0022】型枠11は後日脱型するものでも、また、埋
殺すものでもよく、埋殺す場合には高靭性FRC材料
(短繊維補強セメント複合材料)12の付着性を考慮して
金属製網体等の利用が考えられる。
The mold 11 may be removed from the mold at a later date, or may be buried. In the case of burying, the metal frame is formed in consideration of the adhesion of the high toughness FRC material (short fiber reinforced cement composite material) 12. Use of the body is possible.

【0023】高靭性FRC材料(短繊維補強セメント複
合材料)12は、材令28日の硬化体の引張試験において
引張ひずみが1%以上を示すクラック分散型であって、
下記[F1]のPVA短繊維を水セメント比40%以上
でかつ砂セメント比(S/C)が1.0以下(0を含
む)の調合マトリクスに、1.5越え3vo1.%の配
合量で、3次元ランダムに配合したものである。 [F1] ・繊維径40〜50μm ・繊維長5〜20mm ・繊維強度1000MPa〜1500MPa未満 ・みかけの繊維強度700MPa〜1000MPa未満
The high toughness FRC material (short fiber reinforced cement composite material) 12 is a crack-dispersed type showing a tensile strain of 1% or more in a tensile test of a hardened material on the age of 28,
The PVA short fiber of the following [F1] was added to a blend matrix having a water cement ratio of 40% or more and a sand cement ratio (S / C) of 1.0 or less (including 0) to exceed 1.5 and 3 vol. % Is randomly blended three-dimensionally. [F1] • Fiber diameter 40 to 50 μm • Fiber length 5 to 20 mm • Fiber strength 1000 MPa to less than 1500 MPa • Apparent fiber strength 700 MPa to less than 1000 MPa

【0024】もしくは、高靭性FRC材料(短繊維補強
セメント複合材料)12は、材令28日の硬化体の引張試
験において引張ひずみが1%以上を示すクラック分散型
であって、下記[F2]のPVA短繊維を水セメント比
30%以上でかつ砂セメント比(S/C)が1.0以下
(0を含む)の調合マトリクスに、1越え3vo1.%
の配合量で、3次元ランダムに配合したものである。 [F2] ・繊維径50μm以下 ・繊維長5〜20mm ・繊維強度1500MPa〜2400MPa以下 ・みかけの繊維強度1000MPa〜1800MPa以
Alternatively, the high toughness FRC material (short fiber reinforced cement composite material) 12 is a crack-dispersed type exhibiting a tensile strain of 1% or more in a tensile test of a hardened body on the age of 28, and has the following [F2] Of PVA short fibers in a mixing matrix having a water-cement ratio of 30% or more and a sand-cement ratio (S / C) of 1.0 or less (including 0) is more than 1 vol. %
Is randomly blended three-dimensionally. [F2]-Fiber diameter 50 µm or less-Fiber length 5 to 20 mm-Fiber strength 1500 MPa to 2400 MPa or less-Apparent fiber strength 1000 MPa to 1800 MPa or less

【0025】前記PVA繊維配合の高靭性FRC材料12
は、マトリクスと繊維の摩擦付着強度が1〜6MPa、
化学付着強度が40MPa以下である。
The high toughness FRC material 12 containing the PVA fiber
Has a matrix and fiber friction adhesion strength of 1 to 6 MPa,
The chemical adhesion strength is 40 MPa or less.

【0026】そして、モルタル中にPVA短繊維を3次
元方向にランダムに配合させてなる繊維補強セメント複
合材料(FRC材料)の調合にさいし、下記の式(5)
で求まるコンプリメンタルエネルギーJ′b と、式
(l)の関係を有するマトリクスの破壊靭性Jtip
で、 3Jtip <J′b の関係が成立するPVA短繊維を使用し且つマトリクス
の調合を決定することを特徴とするPVA短繊維を用い
た高靭性FRC材料の調合法による。を提供する。
Then, in preparing a fiber reinforced cement composite material (FRC material) in which PVA short fibers are randomly mixed in a mortar in a three-dimensional direction, the following formula (5) is used.
Determining completion mental energy J 'and b, between the matrix fracture toughness J tip having a relationship of equation (l), 3J tip <J ' a and the formulation of the matrix using a PVA short fiber relationship b is established which is obtained by And a method for preparing a high toughness FRC material using PVA short fibers. I will provide a.

【0027】[0027]

【数1】 ただし、 σa :マルチクラック発生時の作用応力 δa :マルチクラック発生時のクラック中央部の開口変
位 σc :繊維による架橋応力 σc (δ):繊維による架橋応力σcと開口変位δの関
係 δpeak:最大架橋応力 δpeak:σpeakに対応する開口変位 を表す。ここに、Jtip はマトリクスの調合すなわち水
セメント比や砂/セメント比によって制御可能な値であ
り、実験によってその値を確認することができる。例え
ば大岸、小野:セメントペースト、モルタルの破壊靭性
に及ぼす試験要因効果、「コンクリート工学」vol.2
5.No.2、PP.113−125。
(Equation 1) Where σ a : acting stress when a multi-crack occurs δ a : opening displacement at the center of the crack when a multi-crack occurs σ c : bridging stress due to fiber σ c (δ): relationship between bridging stress σc due to fiber and opening displacement δ δ peak : Maximum bridging stress δ peak : Opening displacement corresponding to σ peak . Here, J tip is a value that can be controlled by the preparation of the matrix, that is, the water-cement ratio or the sand / cement ratio, and the value can be confirmed by an experiment. For example, Ogishi, Ono: Effect of test factors on fracture toughness of cement paste and mortar, "Concrete Engineering" vol.2
5. No. 2, PP. 113-125.

【0028】前記PVA繊維配合の高靭性FRC材料12
は引張ひずみ1%以上、好ましくは2%以上を有する。
本明細書で言う「引張ひずみ」は材令28日以上の硬化
体の引張試験で得られる応力一歪み曲線において、最大
引張応力値でのひずみ量(%)を言う。実際には、材令
28日での試験体の引張試験(例えば後記の実施例に示
すように断面30mm×13mmの試験体を80mmの
試験区間で引張試験を行う)における引張ひずみ(%)
で代表される。
The high toughness FRC material 12 containing the PVA fiber
Has a tensile strain of 1% or more, preferably 2% or more.
The term "tensile strain" as used herein refers to the amount of strain (%) at the maximum tensile stress value in a stress-strain curve obtained by a tensile test of a cured body having an age of 28 days or more. Actually, tensile strain (%) in a tensile test of a specimen on a material age of 28 days (for example, a specimen having a cross section of 30 mm x 13 mm is subjected to a tensile test in a test section of 80 mm as shown in Examples described later)
Is represented by

【0029】この引張ひずみが1%以上であることは、
載荷方向(応力方向)とほぼ直角方向に多数のクラック
(マルチクラック)が発生するクラック分散型の破壊現
象が生じていることを意味する。これまでも、PVA繊
維配合のFRC材料それ自体は知られているが、その引
張ひずみは高々0.5%程度であり、マルチクラック発
生による引張ひずみ1%以上を達成したPVA繊維配合
のFRC材料は例を見ない。
The fact that the tensile strain is 1% or more means that
This means that a crack-dispersed fracture phenomenon in which a number of cracks (multi-cracks) occur in a direction substantially perpendicular to the loading direction (stress direction) has occurred. Until now, the FRC material containing PVA fiber itself is known, but its tensile strain is at most about 0.5%, and the FRC material containing PVA fiber which has achieved a tensile strain of 1% or more due to the occurrence of multi-cracks. Sees no example.

【0030】例えば特開平5−24897号公報では、
直径と長さが異なる2種のPVA繊維(ビニロン繊維)
を配合することにより厚付け可能でひび割れ抵抗に優れ
たモルタルが開示されているが、繊維無添加のものと比
べた曲げ靭性は高々20倍でであり、この値から推定す
ると引張ひずみは0.5%以下である(引張ひずみ約1
%では、曲げ靭性は繊維無添加のものの約80倍以上と
なる筈である)。
For example, in JP-A-5-24897,
Two types of PVA fiber (vinylon fiber) with different diameter and length
A mortar which can be made thicker and has excellent resistance to cracking by blending with a compound is disclosed. However, the flexural toughness is at most 20 times that of the mortar containing no fiber. 5% or less (a tensile strain of about 1
%, The flexural toughness should be about 80 times or more that of the fiber-free one).

【0031】前記PVA繊維配合の高靭性FRC材料12
によれば、マルチクラックの発生要因であるSteady Sta
te Cracking 現象(SSC現象)をPVA繊維で実現す
べく、用いるPVA繊維の性質と、マトリクスの性質を
うまく組み合わせると、PVA繊維であっても引張ひず
み1%以上、好ましくは2%以上の高靭性FRC材料12
が得られる。
The high toughness FRC material 12 containing the PVA fiber
According to Steady Sta, the cause of multi-cracks
In order to realize the te cracking phenomenon (SSC phenomenon) with the PVA fiber, when the properties of the PVA fiber used and the properties of the matrix are well combined, the high toughness of the tensile strain of 1% or more, preferably 2% or more even for the PVA fiber. FRC material 12
Is obtained.

【0032】すなわち、下記のPVA短繊維F1を、水
セメント比(W/C×100)が40%以上で砂セメン
ト比(S/C)が1.0以下(0を含む)の調合のマト
リクスに、1.5超え〜3vol.%の配合量で、3次元方
向にランダムに分散配合させた場合(配合と言う)と、
前記のPVA繊維F2を、水セメント比(W/C×10
0)が30%以上で砂セメント比(S/C)が1.0以
下(0を含む)の調合のマトリクスに、l〜3vol.%の
配合量で、3次元方向にランダムに分散配合させた場合
(配合と言う)には、クラック分散型の高靭性FRC材
料が得られる。
That is, the following PVA short fiber F1 is prepared by mixing a water-cement ratio (W / C × 100) of 40% or more and a sand-cement ratio (S / C) of 1.0 or less (including 0). In addition, when it is dispersed and blended in a three-dimensional direction at a blending amount of more than 1.5 to 3 vol.% (Referred to as blending),
The PVA fiber F2 was converted to a water-cement ratio (W / C × 10
0) is 30% or more and the sand-cement ratio (S / C) is 1.0 or less (including 0). In such a case (called “combination”), a crack-dispersed high toughness FRC material is obtained.

【0033】F1とF2における「見かけの繊維強度」
は、当該PVA繊維が実際のFRC材料中で破断する強
度であり、これは実際のFRC材料中の繊維について破
断試験することにより実測できる。
"Apparent fiber strength" in F1 and F2
Is the strength at which the PVA fiber breaks in the actual FRC material, and can be measured by performing a break test on the fiber in the actual FRC material.

【0034】F1を用いる配合においては、マトリクス
の水セメント比が40%未満ではこの繊維にとってはマ
トリクスの弾性係数と破壊靭性が高くなってマルチクラ
ックが発生せず、1%以上の引張ひずみが発生しない。
また、砂セメント比が1.0を超えるとこの繊維にとっ
てはマトリクスの弾性係数と破壊靭性が高くなってマル
チクラックが発生せず、1%以上の引張ひずみが発生し
ない。したがって、F1繊維を用いる場合のマトリクス
は水セメントが40%以上、好ましくは42%以上、さ
らに好ましくは44%以上とし、砂セメント比は1.0
以下、好ましくは0.7以下、さらに好ましくは0.5
以下とする。しかし、この調合のマトリクスであって
も、F1繊維の配合量が1.5vol.%以下ではマルチク
ラックが発生しないので、F1繊維の配合量を1.5vo
l.%より多くする必要がある。しかし、あまり多く配合
しても効果は飽和するので3vol.%以下とする。
In the formulation using F1, if the water-cement ratio of the matrix is less than 40%, the elastic modulus and fracture toughness of the matrix are increased for this fiber, so that multi-cracks do not occur and tensile strain of 1% or more occurs. do not do.
On the other hand, if the sand-cement ratio exceeds 1.0, the elastic modulus and fracture toughness of the matrix are increased for this fiber, so that multi-cracks do not occur and no tensile strain of 1% or more occurs. Therefore, the matrix in the case of using F1 fiber is 40% or more of water cement, preferably 42% or more, more preferably 44% or more, and the sand cement ratio is 1.0%.
Or less, preferably 0.7 or less, more preferably 0.5
The following is assumed. However, even with this blended matrix, if the amount of the F1 fiber is less than 1.5 vol.%, Multicracks do not occur.
l.% need to be more. However, the effect is saturated even if it is added in an excessively large amount.

【0035】また、この調合のマトリクスと繊維配合量
であっても、F1繊維の長さが5mm未満であると、マ
ルチクラックが発生しないので、5mm以上の長さのも
のを使用する必要がある。しかし、20mmより長いも
のを使用しても、前記の配合量ではマルチクラックが発
生しなくなる。したがってF1繊維の長さは5〜20m
mとする必要があり、好ましくは6〜20mm、さらに
好ましくは8〜15mmである。
Even with the matrix and fiber blending amount of this blend, if the length of the F1 fiber is less than 5 mm, multi-cracks do not occur, so it is necessary to use a fiber having a length of 5 mm or more. . However, even if a material longer than 20 mm is used, multicracks do not occur at the above-mentioned amount. Therefore, the length of the F1 fiber is 5 to 20 m.
m, preferably 6 to 20 mm, more preferably 8 to 15 mm.

【0036】他方、F2を用いる配合においては、マト
リクスの水セメント比が30%未満ではこの繊維にとっ
てはマトリクスの弾性係数と破壊靭性が高くなってマル
チクラックが発生せず、l%以上の引張ひずみが発生し
ない。また砂セメント比が1.0を超えるとこの繊維に
とってはマトリクスの弾性係数と破壊靭性が高くなって
マトリクスが発生せず、1%以上の引張ひずみが発生し
ない。したがって、F2繊維を用いる場合のマトリクス
は水セメントが30%以上、好ましくは32%以上、さ
らに好ましくは35%以上とし、砂セメント比は1.0
以下、好ましくは0.7以下、さらに好ましくは0.5
以下とする。しかし、この調合のマトリクスであって
も、F2繊維の配合量が1.0vol.%以下ではマルチク
ラックが発生しがたいので、F2繊維の配合量を1.0
vol.%より多くする必要がある。しかし、あまり多く配
合しても効果は飽和するので3vol.%以下とする。
On the other hand, in the composition using F2, if the water-cement ratio of the matrix is less than 30%, the elastic modulus and fracture toughness of the matrix are increased for this fiber, so that multi-cracks do not occur, and the tensile strain is 1% or more. Does not occur. On the other hand, if the sand-cement ratio exceeds 1.0, the elastic modulus and fracture toughness of the matrix are increased for this fiber, so that no matrix is generated and no tensile strain of 1% or more is generated. Therefore, the matrix in the case of using F2 fiber is 30% or more of water cement, preferably 32% or more, more preferably 35% or more, and the sand cement ratio is 1.0%.
Or less, preferably 0.7 or less, more preferably 0.5
The following is assumed. However, even with this blended matrix, if the amount of F2 fiber is less than 1.0 vol.%, Multicracks are unlikely to occur.
It needs to be more than vol.%. However, the effect is saturated even if it is added in an excessively large amount.

【0037】また、この調合のマトリクスと繊維配合量
であっても、F2繊維の長さが5mm未満であると、マ
ルチクラックが発生しないので、5mm以上の長さのも
のを使用する必要がある。しかし、20mmより長いも
のを使用しても、前記の配合量ではマルチクラックが発
生しなくなる。したがってF2繊維の長さは5〜20m
mとする必要があり、好ましくは6〜18mm、さらに
好ましくは6〜15mmである。
Even with the matrix and fiber blending amount of this blend, if the length of the F2 fiber is less than 5 mm, multi-cracks do not occur, so it is necessary to use a fiber having a length of 5 mm or more. . However, even if a material longer than 20 mm is used, multicracks do not occur at the above-mentioned amount. Therefore, the length of F2 fiber is 5-20m
m, preferably 6 to 18 mm, more preferably 6 to 15 mm.

【0038】前記PVA繊維配合の高靭性FRC材料1
2、破壊靭性が金属のアルミニウムと同等の水準(通常
のコンクリートの100倍のオーダー)まで向上するた
め、材料内部に必ず存在する初期欠陥の大きさに材料挙
動が左右されにくくなる。したがって、材料の信頼性が
大きく増すことにより、部材を設計する際に安全率を低
減して実際の材料強度により近い許容応力とすることが
できる。
High toughness FRC material containing PVA fiber 1
2. Since the fracture toughness is improved to a level equivalent to that of metal aluminum (on the order of 100 times that of ordinary concrete), the behavior of the material is hardly influenced by the size of the initial defects that always exist inside the material. Therefore, when the reliability of the material is greatly increased, the safety factor can be reduced when designing the member, and the allowable stress closer to the actual material strength can be obtained.

【0039】第2実施形態として、鉄筋コンクリート造
の既存柱2と既存梁3との架構内の開口7に耐震壁10を
増設する場合、図3に示すように、表裏2枚の型枠13
a,13bを適宜な間隔を存して設置し、この型枠13a,
13b間に高靭性FRC材料(短繊維補強セメント複合材
料)12を、いずれか一方の型枠の下部に接続口14を設
け、この接続口14に圧入ホース15を接続して圧入する。
As a second embodiment, when an earthquake-resistant wall 10 is added to the opening 7 in the frame of the existing column 2 and the existing beam 3 made of reinforced concrete, as shown in FIG.
a, 13b are installed at appropriate intervals, and the formwork 13a,
A high-toughness FRC material (short fiber reinforced cement composite material) 12 is provided between 13b and a connection port 14 is provided at a lower portion of one of the molds, and a press-fit hose 15 is connected to the connection port 14 and press-fitted.

【0040】第3実施形態として図4に示すように表裏
2枚の型枠13a, 13bを適宜な間隔を存して設置し、こ
の型枠13a, 13b間に高靭性FRC材料(短繊維補強セ
メント複合材料)12を流入する場合に、上方にホッパー
16を形成してここから流し込むようにしてもよい。
As a third embodiment, as shown in FIG. 4, two molds 13a and 13b are installed at appropriate intervals, and a high toughness FRC material (short fiber reinforcement) is provided between the molds 13a and 13b. When the cement composite material) 12 flows in, the hopper
16 may be formed and poured from here.

【0041】前記第2実施形態、第3実施形態、いずれ
の場合も型枠13a, 13bは、合板、金属製板、コンクリ
ート系板など材質を問わない。また、埋殺し、または脱
型のいずれのタイプでもよい。
In each of the second and third embodiments, the molds 13a and 13b may be made of any material such as a plywood, a metal plate, and a concrete plate. Further, any type of burial or demolding may be used.

【0042】第4実施形態として、図5に示すように、
鉄筋コンクリート造の既存柱2と既存梁3との架構内の
開口7に耐震壁10を増設する場合、工場製作したPCa
版(プレキャストコンクリート版)17を開口7の部分に
立て込み仮止めした後、既存柱2と既存梁3による既存
フレームとPCa版17の間、およびPCa版17間を現場
にて、高靭性FRC材料(短繊維補強セメント複合材
料)12を充填する。この充填はホース等による圧入が適
する。
As a fourth embodiment, as shown in FIG.
When adding an earthquake-resistant wall 10 to the opening 7 in the frame of the existing reinforced concrete columns 2 and existing beams 3, the PCa
After the slab (precast concrete slab) 17 is set up temporarily in the opening 7 and temporarily fixed, a high-toughness FRC is applied between the existing frame formed by the existing columns 2 and the existing beams 3 and the PCa slab 17 and between the PCa slabs 17 on site. The material (short fiber reinforced cement composite material) 12 is filled. This filling is suitably press-fitted with a hose or the like.

【0043】また、PCa版17は外周に凹凸を形成し
て、コッター的な作用を行わしめる。
Further, the PCa plate 17 forms irregularities on the outer periphery and performs a cotter-like action.

【0044】第5実施形態として、図6に示すように、
鉄筋コンクリート造の既存柱2と既存梁3との架構内の
開口7に耐震壁10を増設する場合、高靭性FRC材料
(短繊維補強セメント複合材料)12で成形したブロック
18を、積み上げる。
As a fifth embodiment, as shown in FIG.
When an earthquake-resistant wall 10 is to be added to the opening 7 in the frame of the existing column 2 and the existing beam 3 made of reinforced concrete, a block formed of a high-toughness FRC material (short fiber reinforced cement composite material) 12
Stack 18,

【0045】ブロック18の形状は特に限定がなく、通常
あるコンクリート製のブロック形状や煉瓦形状のものの
他種々の形状が考えられる。
The shape of the block 18 is not particularly limited, and various shapes such as a concrete block shape and a brick shape which are usually used can be considered.

【0046】また、既存柱2と既存梁3による既存フレ
ームとこれらブロック18間、およびブロック18の隙間は
モルタルもしくは高靭性FRC材料(短繊維補強セメン
ト複合材料)12で充填する。
Further, the gap between the existing frame and the block 18 and the gap between the block 18 and the existing column 2 and the existing beam 3 is filled with mortar or a high toughness FRC material (short fiber reinforced cement composite material) 12.

【0047】[0047]

【発明の効果】以上述べたように本発明の無補強・無ア
ンカーの耐震補強壁の施工法は、高靭性FRC材料(短
繊維補強セメント複合材料)を使用することで、簡易に
高靭性の耐震補強壁を施工することができるものであ
る。
As described above, the construction method of the non-reinforced, non-anchored seismic retrofitting wall of the present invention uses a high toughness FRC material (short fiber reinforced cement composite material) to easily provide high toughness. It is possible to construct a seismic reinforcement wall.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の無補強・無アンカーの耐震補強壁の施
工法で施工された増設耐震補強壁の1実施形態を示す一
部切欠いた正面図である。
FIG. 1 is a partially cutaway front view showing an embodiment of an additional seismic retrofitting wall constructed by a method of constructing a non-reinforcement / anchor-free seismic retrofitting wall of the present invention.

【図2】本発明の無補強・無アンカーの耐震補強壁の施
工法の第1実施形態を示す縦断側面図である。
FIG. 2 is a longitudinal sectional side view showing a first embodiment of a method for constructing a non-reinforced / anchor-free earthquake-resistant reinforced wall of the present invention.

【図3】本発明の無補強・無アンカーの耐震補強壁の施
工法の第2実施形態を示す縦断側面図である。
FIG. 3 is a longitudinal sectional side view showing a second embodiment of a method for constructing a non-reinforced / anchor-free earthquake-resistant reinforced wall of the present invention.

【図4】本発明の無補強・無アンカーの耐震補強壁の施
工法の第3実施形態を示す縦断側面図である。
FIG. 4 is a longitudinal sectional side view showing a third embodiment of a method for constructing a non-reinforced / anchor-free earthquake-resistant reinforced wall of the present invention.

【図5】本発明の無補強・無アンカーの耐震補強壁の施
工法の第4実施形態を示す正面図である。
FIG. 5 is a front view showing a fourth embodiment of the method for installing a non-reinforced / anchor-free earthquake-resistant reinforced wall of the present invention.

【図6】本発明の無補強・無アンカーの耐震補強壁の施
工法の第5実施形態を示す正面図である。
FIG. 6 is a front view showing a fifth embodiment of a method for constructing a non-reinforced / anchor-free, seismic reinforced wall according to the present invention.

【図7】従来例を示す一部切欠いた正面図である。FIG. 7 is a partially cutaway front view showing a conventional example.

【図8】他の従来例を示す一部切欠いた正面図である。FIG. 8 is a partially cutaway front view showing another conventional example.

【符号の説明】[Explanation of symbols]

1…鉄筋コンクリート造耐震壁 2…既存柱 3…既存梁 4…アンカー
筋 5…補強筋 6…耐震壁 7…開口 8…コッター 9…繊維補強モルタル 10…耐震壁 11…型枠 12…高靭性FRC材料(短繊維補強セメント複合材料) 13a,13b…型枠 14…接続口 15…圧入ホー
ス 16…ホッパー 17…PCa版 18…ブロック
DESCRIPTION OF SYMBOLS 1 ... Reinforced concrete shear wall 2 ... Existing column 3 ... Existing beam 4 ... Anchor bar 5 ... Reinforcement bar 6 ... Shear wall 7 ... Opening 8 ... Cotter 9 ... Fiber reinforced mortar 10 ... Shear wall 11 ... Formwork 12 ... High toughness FRC Material (short fiber reinforced cement composite material) 13a, 13b ... Form 14 ... Connection port 15 ... Press-fit hose 16 ... Hopper 17 ... PCa version 18 ... Block

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) E04B 2/84 E04B 2/84 K (72)発明者 瀧 正哉 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 Fターム(参考) 2E176 AA01 BB28 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) E04B 2/84 E04B 2/84 K (72) Inventor Masaya Taki 2-9-1-1, Tobita-Kita, Chofu-shi, Tokyo Kashima Construction Co., Ltd. F-term (reference) 2E176 AA01 BB28

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 はり下に片方のみの型枠を立て、これに
向かって、短繊維を混入してコンクリートおよびモルタ
ルを練り混ぜ、同繊維を3次元ランダム配合させること
により、引張・曲げ強度および靭性を向上させた複合材
料であり、引張ひずみが1%を超えるような高靭性FR
C材料(短繊維補強セメント複合材料)を、吹き付け施
工することを特徴とした無補強・無アンカーの耐震補強
壁の施工法。
1. A mold having only one side under a beam, mixing short fibers into the concrete and mortar, and randomly mixing the fibers to form a three-dimensional random mixture. High toughness FR with composite material with improved toughness and tensile strain exceeding 1%
A method of constructing a non-reinforced, non-anchored, earthquake-resistant reinforced wall characterized by spraying C material (short fiber reinforced cement composite material).
【請求項2】 表裏2枚の型枠を施工し、これに、短繊
維を混入してコンクリートおよびモルタルを練り混ぜ、
同繊維を3次元ランダム配合させることにより、引張・
曲げ強度および靭性を向上させた複合材料であり、引張
ひずみが1%を超えるような高靭性FRC材料(短繊維
補強セメント複合材料)を、流入することを特徴とした
無補強・無アンカーの耐震補強壁の施工法。
2. A two-sided formwork is constructed, short fibers are mixed therein, and concrete and mortar are mixed and mixed.
The three-dimensional random blending of these fibers allows for tensile and
A non-reinforced, non-anchored seismic resistant composite material characterized by inflow of a high toughness FRC material (short fiber reinforced cement composite material) that is a composite material with improved bending strength and toughness and a tensile strain exceeding 1%. Construction method of reinforced wall.
【請求項3】 工場製作したPCa版(プレキャストコ
ンクリート版)を既存フレーム開口部に立て込み仮止め
した後、既存フレームとPCa版の間、およびPCa版
間を現場にて、短繊維を混入してコンクリートおよびモ
ルタルを練り混ぜ、同繊維を3次元ランダム配合させる
ことにより、引張・曲げ強度および靭性を向上させた複
合材料であり、引張ひずみが1%を超えるような高靭性
FRC材料(短繊維補強セメント複合材料)を、圧入す
ることを特徴とする無補強・無アンカーの耐震補強壁の
施工法。
3. A factory-made PCa plate (precast concrete plate) is set up in the opening of the existing frame and temporarily fixed, and then short fibers are mixed between the existing frame and the PCa plate and between the PCa plates on site. A high-toughness FRC material (short fiber) with tensile and flexural strength and toughness improved by mixing concrete and mortar and mixing the fibers three-dimensionally at random to increase tensile strain. Reinforced cement composite material), and press-fitting it.
【請求項4】 短繊維を混入してコンクリートおよびモ
ルタルを練り混ぜ、同繊維を3次元ランダム配合させる
ことにより、引張・曲げ強度および靭性を向上させた複
合材料であり、引張ひずみが1%を超えるような高靭性
FRC材料(短繊維補強セメント複合材料)で成形した
ブロックを、積み上げることを特徴とする無補強・無ア
ンカーの耐震補強壁の施工法。
4. A composite material in which short fibers are mixed, concrete and mortar are kneaded and mixed, and the fibers are three-dimensionally random-mixed to improve tensile / bending strength and toughness. A method of constructing a non-reinforced, non-anchored, seismic reinforced wall, characterized by stacking blocks formed of a high toughness FRC material (short fiber reinforced cement composite material).
【請求項5】 高靭性FRC材料(短繊維補強セメント
複合材料)は、 材令28日の硬化体の引張試験において引張ひずみが1
%以上を示すクラック分散型であって、下記[F1]の
PVA短繊維を水セメント比40%以上でかつ砂セメン
ト比(S/C)が1.0以下(0を含む)の調合マトリ
クスに、1.5越え3vo1.%の配合量で、3次元ラ
ンダムに配合したものである請求項1ないし請求項4の
いずれかに記載の無補強・無アンカーの耐震補強壁の施
工法。 [F1] ・繊維径40〜50μm ・繊維長5〜20mm ・繊維強度1000MPa〜1500MPa未満 ・みかけの繊維強度700MPa〜1000MPa未満
5. A high-toughness FRC material (short fiber reinforced cement composite material) has a tensile strain of 1 in a tensile test of a hardened body on the age of 28.
% Or less, and PVA short fibers of the following [F1] are used as a preparation matrix having a water cement ratio of 40% or more and a sand cement ratio (S / C) of 1.0 or less (including 0). , More than 1.5 3vo1. The method for constructing a non-reinforced, non-anchored, earthquake-resistant reinforced wall according to any one of claims 1 to 4, wherein the non-reinforced, non-anchored, non-reinforced, non-reinforced, seismic reinforced wall is blended three-dimensionally at a blending amount of 3%. [F1] • Fiber diameter 40 to 50 μm • Fiber length 5 to 20 mm • Fiber strength 1000 MPa to less than 1500 MPa • Apparent fiber strength 700 MPa to less than 1000 MPa
【請求項6】 高靭性FRC材料(短繊維補強セメント
複合材料)は、 材令28日の硬化体の引張試験において引張ひずみが1
%以上を示すクラック分散型であって、下記[F2]の
PVA短繊維を水セメント比30%以上でかつ砂セメン
ト比(S/C)が1.0以下(0を含む)の調合マトリ
クスに、1越え3vo1.%の配合量で、3次元ランダ
ムに配合したものである請求項1ないし請求項4のいず
れかに記載の無補強・無アンカーの耐震補強壁の施工
法。 [F2] ・繊維径50μm以下 ・繊維長5〜20mm ・繊維強度1500MPa〜2400MPa以下 ・みかけの繊維強度1000MPa〜1800MPa以
6. A high-toughness FRC material (short fiber reinforced cement composite material) has a tensile strain of 1 in a tensile test of a hardened body on the age of 28.
% Or less, and a PVA short fiber of the following [F2] is used as a preparation matrix having a water cement ratio of 30% or more and a sand cement ratio (S / C) of 1.0 or less (including 0). 1 over 3vo1. The method for constructing a non-reinforced, non-anchored, earthquake-resistant reinforced wall according to any one of claims 1 to 4, wherein the non-reinforced, non-anchored, non-reinforced, non-reinforced, seismic reinforced wall is blended three-dimensionally at a blending amount of 3%. [F2]-Fiber diameter 50 µm or less-Fiber length 5 to 20 mm-Fiber strength 1500 MPa to 2400 MPa or less-Apparent fiber strength 1000 MPa to 1800 MPa or less
JP15386299A 1999-06-01 1999-06-01 Construction method of reinforced / unanchored seismic reinforced walls Expired - Fee Related JP3762143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15386299A JP3762143B2 (en) 1999-06-01 1999-06-01 Construction method of reinforced / unanchored seismic reinforced walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15386299A JP3762143B2 (en) 1999-06-01 1999-06-01 Construction method of reinforced / unanchored seismic reinforced walls

Publications (2)

Publication Number Publication Date
JP2000336945A true JP2000336945A (en) 2000-12-05
JP3762143B2 JP3762143B2 (en) 2006-04-05

Family

ID=15571738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15386299A Expired - Fee Related JP3762143B2 (en) 1999-06-01 1999-06-01 Construction method of reinforced / unanchored seismic reinforced walls

Country Status (1)

Country Link
JP (1) JP3762143B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276165A (en) * 2001-03-14 2002-09-25 Toray Ind Inc Reinforcing method of existing wooden structure and reinforced wooden structure
JP2009249865A (en) * 2008-04-03 2009-10-29 Toda Constr Co Ltd Concrete block for aseismatic reinforcing and method for aseismatic reinforcing using the same
JP2010065393A (en) * 2008-09-08 2010-03-25 Kajima Corp Method for placing concrete while dispersing crack caused by temperature stress
DE102009054563A1 (en) 2009-12-11 2011-06-16 Wacker Chemie Ag Production of mineral bonded coatings with ductile properties
JP2012177229A (en) * 2011-02-25 2012-09-13 Kajima Corp Construction method of wall by spraying
CN103758362A (en) * 2014-01-06 2014-04-30 北京筑福国际工程技术有限责任公司 Earthquake resistant reinforcing method of subsequently added ring beams, constructive columns and steel pulling rods in existing building
JP2021092106A (en) * 2019-12-12 2021-06-17 株式会社竹中工務店 Wall construction method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276165A (en) * 2001-03-14 2002-09-25 Toray Ind Inc Reinforcing method of existing wooden structure and reinforced wooden structure
JP4596298B2 (en) * 2001-03-14 2010-12-08 東レ株式会社 Reinforcing method of existing wooden structure and reinforced wooden structure
JP2009249865A (en) * 2008-04-03 2009-10-29 Toda Constr Co Ltd Concrete block for aseismatic reinforcing and method for aseismatic reinforcing using the same
JP2010065393A (en) * 2008-09-08 2010-03-25 Kajima Corp Method for placing concrete while dispersing crack caused by temperature stress
DE102009054563A1 (en) 2009-12-11 2011-06-16 Wacker Chemie Ag Production of mineral bonded coatings with ductile properties
WO2011070014A1 (en) 2009-12-11 2011-06-16 Wacker Chemie Ag Production of mineral bonded coating having ductile properties
JP2012177229A (en) * 2011-02-25 2012-09-13 Kajima Corp Construction method of wall by spraying
CN103758362A (en) * 2014-01-06 2014-04-30 北京筑福国际工程技术有限责任公司 Earthquake resistant reinforcing method of subsequently added ring beams, constructive columns and steel pulling rods in existing building
CN103758362B (en) * 2014-01-06 2016-05-04 北京筑福国际工程技术有限责任公司 After existing masonry building, increase the Shockproof reinforcing method of collar tie beam, constructional column and reinforcing pull rod
JP2021092106A (en) * 2019-12-12 2021-06-17 株式会社竹中工務店 Wall construction method
JP7367293B2 (en) 2019-12-12 2023-10-24 株式会社竹中工務店 wall construction method

Also Published As

Publication number Publication date
JP3762143B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
JP4541916B2 (en) Synthetic floor slab
JP6652754B2 (en) Joint structure of precast concrete slab for rapid construction and its construction method
Paramasivam et al. Ferrocement laminates for strengthening RC T-beams
Carrillo et al. Quasi-static cyclic tests of confined masonry walls retrofitted with mortar overlays reinforced with either welded-wire mesh or steel fibers
CN114197753B (en) UHPC shuttering type steel reinforced concrete composite cylinder-shaped steel beam combined frame and construction method
JP4541915B2 (en) Synthetic floor slab
El-Khier et al. Precast concrete deck-to-girder connection using Ultra-High Performance Concrete (UHPC) shear pockets
US7419543B2 (en) Metal fiber concrete
JP6876413B2 (en) Cover member for concrete block connecting device construction, concrete block connecting device using it, and concrete block connecting method
JP2000336945A (en) Construction method for non-reinforced and non-anchor earthquake-resistant reinforced wall
JP4022205B2 (en) Joining structure of members
JP2003213623A (en) Upper structure of ridge
JP4035075B2 (en) Reinforcing structure and method for existing wall-like structure
US11982086B2 (en) Ultra high-performance concrete bond anchor
JP2558100B2 (en) Hybrid type fiber reinforced lightweight concrete structure
JP3648094B2 (en) Construction method of earthquake-resistant wall of steel structure.
JP2005226248A (en) Composite member
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
JP2003192421A (en) Stain hardening type cement based composite material having self-compacting property and low shrinkability
JP2000170323A (en) Truss and brace structure material
Mahmoud et al. Strengthening and Retrofitting of Reinforced Concrete Hollow Columns using High Strength Ferrocement Fibers Composites
JPH0960121A (en) Joint method of steel shell and reinforced concrete member
Mobin et al. Re-strengthening of reinforced concrete (RC) beam using near surface mounted (NSM) steel re-bars
JP3708874B2 (en) Columnar structure and its construction method
EP1694926A1 (en) A structural element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees