JP2000336410A - Production of ironmaking raw material, ironmaking raw material and operation of blast furnace - Google Patents

Production of ironmaking raw material, ironmaking raw material and operation of blast furnace

Info

Publication number
JP2000336410A
JP2000336410A JP11148939A JP14893999A JP2000336410A JP 2000336410 A JP2000336410 A JP 2000336410A JP 11148939 A JP11148939 A JP 11148939A JP 14893999 A JP14893999 A JP 14893999A JP 2000336410 A JP2000336410 A JP 2000336410A
Authority
JP
Japan
Prior art keywords
ore
agglomerate
magnetite
blast furnace
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11148939A
Other languages
Japanese (ja)
Other versions
JP4149080B2 (en
Inventor
Masaaki Naito
誠章 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14893999A priority Critical patent/JP4149080B2/en
Publication of JP2000336410A publication Critical patent/JP2000336410A/en
Application granted granted Critical
Publication of JP4149080B2 publication Critical patent/JP4149080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an agglomerate having scarcely reductively powdering and good reducibility by pre-reducing hematite ore to change magnetite powdery ore and agglomerating the powdery ore. SOLUTION: The pre-reducing temp. of the hematite ore is desirable to <750 deg.C. Further, when the magnetite powdery ore is agglomerated, carbon is desirable to contain. Concretely, the carbon is beforehand contained in the hematite ore and when the magnetite powdery ore is agglomerated, the carbon quantity may be increased. The obtd. agglomerate is not made to reduced powdering and has good high temp. property and good reducibility. Because in the case of executing the pre-reduction at <750 deg.C, many fine pores are formed and the total porosity becomes high. Further, the magnetite powdery ore is agglomerated into small grains having 3-10 mm grain diameter and the agglomerate combining plural grains has the best reducibility. That is, the smaller the single grain for agglomerate is, the higher the reducibility of the agglomerate is.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製銑原料の製造方
法、製銑原料、および高炉の操業方法に係り、特に還元
粉化の生じない高被還元性の塊成鉱を製造する製銑原料
の製造方法、製銑原料、および該塊成鉱を装入する高炉
の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material for ironmaking, a raw material for ironmaking, and a method for operating a blast furnace. The present invention relates to a method for producing a raw material, a raw material for producing iron, and a method for operating a blast furnace into which the agglomerate is charged.

【0002】[0002]

【従来の技術】従来より製造されている焼結鉱は、還元
粉化性指数(RDI値)によって異なるが、いずれも5
00℃〜700℃の還元領域で還元粉化が生じる。ま
た、その鉱石類であるペレットや塊鉱石も、焼結鉱に比
較すると還元粉化量は少ないが、炉内において還元粉化
が生じており、従来技術では還元粉化の生じない塊成鉱
は存在していない。
2. Description of the Related Art Conventionally manufactured sinters vary in reductive powdering index (RDI value).
Reduction powdering occurs in the reduction region of 00 ° C to 700 ° C. In addition, pellets and lump ores, which are ores, have a reduced amount of reduced dusting compared to sintered ore, but reduced dusting occurs in the furnace, and the agglomerate ore that does not cause reduced dusting in the conventional technology Does not exist.

【0003】一方、高炉操業において、炉内における塊
状帯部分の温度分布、特に塊状帯部分の高さ方向におけ
る500℃〜800℃の低温領域の長さを適正化するこ
とは、操業の安定化および還元ガス利用率を向上させ、
燃料比を低減する上で極めて重要である。すなわち、5
00℃〜800℃の低温領域は、炉内に装入された焼結
鉱や塊成鉱などの鉄源の還元粉化が最も発生し易い温度
域であるため、該低温領域の存在を確認した場合には、
還元粉化の抑制策を実施することが高炉の安定操業上か
ら必要であった。
On the other hand, in the operation of a blast furnace, it is necessary to optimize the temperature distribution of the massive band portion in the furnace, in particular, to optimize the length of the low-temperature region of 500 ° C. to 800 ° C. in the height direction of the massive band portion. And reducing gas utilization rate,
It is extremely important in reducing the fuel ratio. That is, 5
The low-temperature range of 00 ° C to 800 ° C is the temperature range in which reduction and pulverization of iron sources such as sintered ore and agglomerate charged in the furnace are most likely to occur. If you do
It was necessary to implement measures to reduce reductive powder from the viewpoint of stable operation of the blast furnace.

【0004】従来の高炉操業では、炉内に上記低温領域
が存在していると認知したときには、焼結鉱の還元粉化
を抑制し、通気性の改善を図る手段として、焼結鉱の耐
還元粉化指数(RDI)の低減、装入物の分布調整を図
っているが、燃料比の上昇によって炉内状況の再構築に
至る場合が多い。
[0004] In the conventional blast furnace operation, when it is recognized that the above-mentioned low-temperature region exists in the furnace, as a means for suppressing the reduction and pulverization of the sinter ore and improving the permeability, the sinter ore resistance is improved. The reduction of the reduction powder index (RDI) and the adjustment of the distribution of the charge are attempted, but in many cases, an increase in the fuel ratio leads to the reconstruction of the conditions inside the furnace.

【0005】[0005]

【発明が解決しようとする課題】しかし、焼結鉱の還元
粉化の対策として行われる低RDI化は、焼結鉱の被還
元性を悪化させる傾向があり、還元効率の低下により高
炉燃料比が上昇し、さらには焼結鉱の製造コストも増大
する傾向にある。また、将来の低燃料比操業を安定して
継続するためには、還元粉化が殆どなく、被還元性の良
好な塊成鉱の開発が必要である。
However, the reduction in RDI as a countermeasure against reduction and pulverization of the sinter ore tends to deteriorate the reducibility of the sinter, and the reduction efficiency reduces the blast furnace fuel ratio. And the production cost of sintered ore tends to increase. In addition, in order to stably continue the operation at a low fuel ratio in the future, it is necessary to develop agglomerate ores that are hardly reduced and pulverized and have good reducibility.

【0006】本発明の目的は、上記課題に鑑み、還元粉
化が殆どなく、被還元性の良好な塊成鉱を製造すること
ができる製銑原料の製造方法、この方法により製造され
る製銑原料、この製銑原料を装入することにより、低燃
料比操業を安定して継続することができる高炉の操業方
法を提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method for producing a raw material for ironmaking, which is capable of producing agglomerate ore having little reducible pulverization and good reducibility, and a method for producing a raw material produced by this method. It is an object of the present invention to provide a method of operating a blast furnace capable of stably continuing operation at a low fuel ratio by charging an iron raw material and the raw material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すべく、
本発明に係る製銑原料の製造方法は、ヘマタイト鉱石を
予備還元してマグネタイト粉鉱石とし、該粉鉱石を塊成
化して塊成鉱を製造するものである。
In order to achieve the above object,
The method for producing a raw material for producing pig iron according to the present invention is to reduce hematite ore into magnetite powder ore and agglomerate the powder ore to produce agglomerate ore.

【0008】上記高炉の操業方法において、上記ヘマタ
イト鉱石の予備還元温度が、750℃未満であることが
好ましい。
In the blast furnace operating method, it is preferable that the hematite ore has a pre-reduction temperature of less than 750 ° C.

【0009】上記マグネタイト粉鉱石を塊成化する際
に、炭素を含有させることが好ましい。この場合、ヘマ
タイト鉱石中に炭素を含有させておき、マグネタイト粉
鉱石を塊成化する際に炭素増量させることがより好まし
い。
When agglomerating the magnetite powder ore, it is preferable to include carbon. In this case, it is more preferable to include carbon in the hematite ore and to increase the amount of carbon when agglomerating the magnetite powder ore.

【0010】さらに、上記マグネタイト粉鉱石を小粒に
塊成化し、複数粒を結合して塊成鉱を製造することが好
ましい。
Further, it is preferable to agglomerate the magnetite powder ore into small grains and combine a plurality of grains to produce agglomerate ores.

【0011】また、本発明に係る製銑原料は、上記のい
ずれかの方法により、塊成鉱として製造される。
[0011] The ironmaking raw material according to the present invention is produced as an agglomerate ore by any of the above methods.

【0012】さらに、本発明に係る高炉の操業方法は、
炉頂から原料および燃料を装入するとともに、羽口から
送風調整して製銑を行う高炉の操業方法において、原料
として、ヘマタイト鉱石を予備還元してマグネタイト粉
鉱石とし、該粉鉱石を塊成化した塊成鉱を装入する。
Further, the method for operating a blast furnace according to the present invention comprises:
In a blast furnace operating method in which raw materials and fuel are charged from the furnace top and the air is adjusted from the tuyeres to make iron, the hematite ore is preliminarily reduced to magnetite powder ore as a raw material, and the powder ore is agglomerated. Charged agglomerate is charged.

【0013】上記高炉の操業方法において、上記ヘマタ
イト鉱石の予備還元温度が、750℃未満であることが
好ましい。
In the blast furnace operating method, it is preferable that the hematite ore has a pre-reduction temperature of less than 750 ° C.

【0014】上記マグネタイト粉鉱石を塊成化する際
に、炭素を含有させることが好ましい。この場合、ヘマ
タイト鉱石中に炭素を含有させておき、マグネタイト粉
鉱石を塊成化する際に炭素増量させることがより好まし
い。
When agglomerating the magnetite powder ore, carbon is preferably contained. In this case, it is more preferable to include carbon in the hematite ore and to increase the amount of carbon when agglomerating the magnetite powder ore.

【0015】さらに、上記塊成鉱が、マグネタイト粉鉱
石を小粒に塊成化し、複数粒を結合したものであること
が好ましい。
Further, it is preferable that the agglomerate ore is formed by agglomerating magnetite powder ore into small grains and combining a plurality of grains.

【0016】本発明によれば、高炉へ装入する製銑原料
がマグネタイト鉱石の場合、還元粉化しないことを利用
している。また、ヘマタイト鉱石を予備還元してマグネ
タイト粉鉱石を製造しているのは、天然的に存在するマ
グネタイト粉鉱石の場合、マグネタイト粒子中に気孔が
殆ど存在していないため、塊成化しても被還元性の改善
代が少ないからである。
According to the present invention, the fact that the ironmaking raw material to be charged into the blast furnace is magnetite ore is not reduced and powdered. In addition, magnetite fine ore is produced by pre-reduction of hematite ore because, in the case of naturally occurring magnetite fine ore, almost no pores are present in the magnetite particles, so that even if agglomeration occurs, This is because there is little reduction in the reduction.

【0017】ヘマタイト鉱石の予備還元温度を750℃
未満としているのは、ヘマタイトがマグネタイトに還元
する過程で微細気孔を多く含む半球状マグネタイトを積
極的に製造するためである。予備還元温度を750℃以
上とすると、Fe原子の拡散が速くなるため、ヘマタイ
トがマグネタイトに還元する過程で、微細気孔の少ない
針状マグネタイトが生成し気孔率が低下する傾向にあ
り、被還元性の高い塊成鉱を得ることができないからで
ある。また、マグネタイト粉鉱石を塊成化する際に、炭
素を含有させるのは、被還元性を高めるためである。さ
らに、マグネタイト粉鉱石を小粒に塊成化し、複数粒を
結合して塊成鉱とするのは、塊成化の粒子が小さい方が
被還元性が高くなり、かつ、いびつな形状により、転動
を抑制し、挿入物分布制御を可能とするためである。
The prereduction temperature of the hematite ore is 750 ° C.
The reason for the lower limit is to actively produce hemispherical magnetite containing many fine pores in the process of reducing hematite to magnetite. When the pre-reduction temperature is 750 ° C. or higher, the diffusion of Fe atoms is accelerated. Therefore, in the process of reducing hematite to magnetite, acicular magnetite having few fine pores tends to be generated, and the porosity tends to decrease. This is because it is not possible to obtain an agglomerate ore having a high density. The carbon is included when agglomerating the magnetite powder ore in order to enhance the reducibility. Furthermore, the agglomeration of magnetite powder ore into small grains and combining multiple grains to form agglomerate ore is because the smaller the agglomerate particles, the higher the reducibility and the irregular shape. This is because the movement is suppressed and the distribution of the inserted object can be controlled.

【0018】このように、還元粉化が殆どなく、被還元
性の良好な塊成鉱を開発し、これを製銑原料として炉頂
から装入することにより、高炉の低燃料比操業を安定し
て継続することができる。
As described above, the agglomerate ore having little reducible pulverization and good reducibility is developed, and is charged from the furnace top as a raw material for making iron, thereby stabilizing the low fuel ratio operation of the blast furnace. And can continue.

【0019】[0019]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づき説明するが、本発明は本実施の形態
に限るものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited to the embodiments.

【0020】まず、本発明の操業方法に用いる高炉につ
いて説明する。図1は、高炉内の状況を示す概略図であ
る。図示するように、高炉1は上部へ向けて順次縮径さ
れた有底筒体状を呈しており、その炉頂からは鉄鉱石等
の原料2、およびコークスや石炭等の固体燃料3が装入
され、側壁下部に設けられた羽口4からは熱風とともに
酸素や微粉炭が吹き込まれて製銑を行っている。羽口4
は、羽口径、炉内突出し長、および吹き込み圧力等が調
整可能になっており、レースウェイ5の空間部が形成さ
れる。
First, the blast furnace used in the operation method of the present invention will be described. FIG. 1 is a schematic diagram showing the situation inside the blast furnace. As shown in the figure, the blast furnace 1 has a bottomed cylindrical shape whose diameter is gradually reduced toward the top, and a raw material 2 such as iron ore and a solid fuel 3 such as coke and coal are loaded from the furnace top. Oxygen and pulverized coal are blown together with hot air from the tuyere 4 provided at the lower part of the side wall to perform iron making. Tuyere 4
The diameter of the tuyere, the length of protruding in the furnace, the blowing pressure, and the like can be adjusted, and the space of the raceway 5 is formed.

【0021】炉内下部に位置する炉芯6は固体燃料3が
詰まった層であり、溶銑7およびスラグ8から浮力を受
けて浮力と荷重の大小によって下面は溶銑中に浮遊また
は炉底に沈下している。
The core 6 located at the lower part in the furnace is a layer filled with the solid fuel 3 and receives the buoyancy from the hot metal 7 and the slag 8 so that the lower surface floats in the hot metal or sinks to the furnace bottom depending on the buoyancy and the load. are doing.

【0022】また、高炉シャフト部上方には、上昇ガス
による鉱石およびコークスの乾燥、予熱が生じる塊状帯
9が形成され、鉱石の間接還元、コークスのソルーショ
ンロスの反応が生じている。なお、高炉1の上部には、
炉内に原料および燃料等の装入物を装入する不図示の炉
頂装入装置が設けられている。さらに、高炉1の上部に
は、炉上部から排出されるガスを導入するための不図示
のダクトが接続されており、このダクトには揮発成分回
収装置等が介設されている。
Above the shaft portion of the blast furnace, a massive zone 9 in which ore and coke are dried and preheated by the rising gas is formed, and an indirect reduction of the ore and a reaction of solution loss of the coke occur. In addition, in the upper part of the blast furnace 1,
A furnace top charging device (not shown) for charging materials such as raw materials and fuel into the furnace is provided. Further, a duct (not shown) for introducing gas discharged from the upper part of the blast furnace 1 is connected to the upper part of the blast furnace 1, and a volatile component recovery device and the like are interposed in this duct.

【0023】このような高炉1を使用して、本実施形態
の高炉の操業方法は以下のように実施される。
Using such a blast furnace 1, the operation method of the blast furnace according to the present embodiment is carried out as follows.

【0024】鉱石類の還元粉化は、ヘマタイトからマグ
ネタイトへの還元過程で、結晶構造が変化し、この変化
により亀裂が発生し、粉化に至ると考えられている。そ
のため、ヘマタイトを低減し、カルシウムフェライト、
マグネタイトの生成を促進する方法が提案されている。
また、マグネタイト粉鉱石を原料とする場合でも、焼結
に使用する過程で、ヘマタイトが生成するため、還元粉
化を抑制することはできなかった。
It is considered that the reduction and pulverization of ores changes the crystal structure in the process of reduction from hematite to magnetite, and this change causes cracks to occur, leading to pulverization. Therefore, reducing hematite, calcium ferrite,
Methods have been proposed to promote the formation of magnetite.
Further, even when using magnetite powder ore as a raw material, hematite is generated in the process of use for sintering, so that reduction pulverization cannot be suppressed.

【0025】本実施形態の高炉の操業方法は、原料とし
て装入する塊成鉱の製造において、ヘマタイト鉱石(F
2 3 )を予備還元してマグネタイト粉鉱石(Fe3
4)を製造し、この粉鉱石を塊成化することを指向し
た。これは、図2に示すように、原料がマグネタイト鉱
石の場合、500℃〜800℃の低温領域においても還
元粉化しないことを利用している。
The method of operating a blast furnace according to the present embodiment is a method for manufacturing agglomerate ore charged as a raw material.
e 2 O 3 ) is pre-reduced to reduce magnetite powder ore (Fe 3
O 4) were prepared and were directed to agglomerating the fine ore. This utilizes the fact that, as shown in FIG. 2, when the raw material is magnetite ore, it does not reduce and powder even in a low temperature range of 500 ° C. to 800 ° C.

【0026】ヘマタイト鉱石を予備還元してマグネタイ
ト粉鉱石を製造することを前提にしているのは、天然的
に存在するマグネタイト粉鉱石の場合には、マグネタイ
ト粒子中に気孔が殆ど存在していないため、塊成化して
も被還元性の改善代が少ないからである。本発明におけ
る予備還元法については、公知の予備還元技術を採用す
ることが可能である。
The prereduction of hematite ore to produce magnetite powder ore is based on the premise that naturally occurring magnetite powder ore has almost no pores in the magnetite particles. This is because even if agglomeration occurs, there is little improvement in reducibility. As the pre-reduction method in the present invention, a known pre-reduction technique can be adopted.

【0027】ヘマタイト鉱石の予備還元温度について
は、予備還元温度によって微細気孔量が異なり、図3に
示すように、750℃以上の予備還元温度では、気孔率
が低下する傾向にある。したがって、被還元性の高い塊
成鉱とするためには、予備還元温度が750℃未満であ
ることが好ましい。
Regarding the pre-reduction temperature of the hematite ore, the amount of fine porosity varies depending on the pre-reduction temperature. As shown in FIG. 3, at the pre-reduction temperature of 750 ° C. or higher, the porosity tends to decrease. Therefore, it is preferable that the pre-reduction temperature is lower than 750 ° C. in order to obtain a highly reducible agglomerate.

【0028】また、マグネタイト粉鉱石を塊成化する際
に、炭素を含有させることが好ましい。炭素を含有させ
るのは、被還元性を高めるためである。具体的には、ヘ
マタイト鉱石中に炭素を含有させておき、マグネタイト
粉鉱石を塊成化する際に炭素増量させることが考えられ
る。
When agglomerating the magnetite powder ore, it is preferable to contain carbon. The inclusion of carbon is for enhancing the reducibility. Specifically, it is conceivable that carbon is contained in the hematite ore, and the amount of carbon is increased when agglomerating the magnetite powder ore.

【0029】本発明者らは、実公平1−27038号公
報にて提案した高炉内反応シミュレータを用いて調査
し、下記のような知見を得た。なお、同公報における高
炉内反応シミュレータは、鉱石類とスクラップを混合使
用した場合の炉内還元性、還元粉化性、および溶融滴下
性状について検討したものであり、上部より鉱石を充填
するとともに、下部より還元ガスを導通して、これら還
元ガスと鉱石を向流接触する炉芯管と、該炉芯管の一部
を包囲して還元ガス下流方向に移動自在に設けた加熱器
とを有する装置である。
The present inventors have conducted an investigation using a blast furnace reaction simulator proposed in Japanese Utility Model Publication No. 1-27038 and obtained the following findings. Incidentally, the reaction simulator in the blast furnace in the same gazette is a study on the in-furnace reducibility, reduced pulverizability, and molten dropping properties when ores and scrap are mixed and used. It has a furnace core tube that conducts the reducing gas from the lower part and makes the reducing gas and the ore in countercurrent contact with each other, and a heater surrounding a part of the furnace core tube and movably provided in the downstream direction of the reducing gas. Device.

【0030】まず第一に、本発明により製造した塊成鉱
は還元粉化しないことを確認した。第二に、ヘマタイト
粉鉱石の予備還元温度を700℃未満として製造したマ
グネタイト粉鉱石を塊成化した塊成鉱は、同じ塊成化条
件下において、被還元性が良好であった。これは、70
0℃未満の温度で予備還元を行うと、1μm程度の微細
気孔が多く生成し、全気孔率も高い粉鉱石が得られるこ
とによる。
First, it was confirmed that the agglomerate produced according to the present invention was not reduced to powder. Secondly, the agglomerate obtained by agglomerating the magnetite powder ore produced at a pre-reduction temperature of the hematite powder ore of less than 700 ° C. had good reducibility under the same agglomeration conditions. This is 70
Preliminary reduction at a temperature of less than 0 ° C. results in the generation of fine ore having a large number of fine pores of about 1 μm and a high total porosity.

【0031】第三に、マグネタイト粉鉱石を予備還元し
て製造したマグネタイト粉鉱石を粒径3〜10mmの小
粒に塊成化し、かつ複数粒を結合した塊成鉱が最も被還
元性が良好である。すなわち、塊成化の単一粒子を小さ
くする方が被還元性を高くすることができる。そして第
四に、通常の焼結鉱に対比しても、被還元性だけでな
く、高温性状も良好であることを確認した。
Third, the magnetite powder ore produced by pre-reduction of the magnetite powder ore is agglomerated into small grains having a particle size of 3 to 10 mm, and the agglomerate ore in which a plurality of grains are combined has the best reducibility. is there. That is, reducing the single particles of agglomeration can increase the reducibility. Fourth, it was confirmed that not only the reducibility but also the high-temperature properties were good as compared with ordinary sintered ores.

【0032】このように、本実施の形態において採用す
る塊成鉱は、還元粉化せず、被還元性の良好なことが判
明した。このように、還元粉化が殆どなく、被還元性の
良好な塊成鉱を開発し、これを製銑原料として炉頂から
装入することにより、炉内に500℃〜800℃の低温
領域が存在しても、塊成鉱が還元粉化せず、その被還元
性が良好であるので、高炉の低燃料比操業を安定して継
続することができる。
As described above, it was found that the agglomerate ore employed in the present embodiment was not reduced to powder and had good reducibility. As described above, by developing agglomerate ore having little reducible pulverization and good reducibility, and charging it from the furnace top as a raw material for making iron, a low-temperature region of 500 ° C to 800 ° C in the furnace. Exists, the agglomerate ore is not reduced and powdered, and its reducibility is good, so that the low fuel ratio operation of the blast furnace can be stably continued.

【0033】[0033]

【実施例】以下に、本発明の好適な実施例を説明する
が、本発明はこれらの実施例に限るものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.

【0034】[実施例1]本実施例における対象高炉は
内容積が3000m3 の中型高炉であり、送風温度12
00℃、送風湿度25g/Nm3 −air、酸素富化量
0.013Nm3/Nm3 −air、微粉炭吹込み量1
80g/Nm3 −airの条件下で、羽口前フレーム温
度を2100℃に維持しながら、溶銑を6000ton
/日で製造した。実施例1では、製銑原料として装入す
る塊成鉱の製造方法において、ヘマタイト鉱石を750
℃未満で予備還元してマグネタイト粉鉱石を製造し、該
粉鉱石を塊成化したものを30%配合した。
[Embodiment 1] The target blast furnace in this embodiment is a medium-sized blast furnace having an inner volume of 3000 m 3 ,
00 ° C., blast humidity 25g / Nm 3 -air, oxygen-enriched amount 0.013Nm 3 / Nm 3 -air, pulverized coal blowing amount 1
Under the condition of 80 g / Nm 3 -air, while maintaining the tuyere front flame temperature at 2100 ° C.,
/ Day. In Example 1, in the method for producing agglomerate ore to be charged as a raw material for ironmaking, hematite ore was added to 750
Preliminary reduction was performed at less than 0 ° C. to produce a magnetite powder ore, and agglomeration of the powder ore was blended at 30%.

【0035】表1は、実施例1としてマグネタイト塊成
鉱を30%用いた操業方法と従来法との比較結果を示し
ている。
Table 1 shows, as Example 1, the results of comparison between the operation method using 30% of magnetite agglomerate ore and the conventional method.

【表1】 [Table 1]

【0036】被還元性指数(JIS−RI)及び耐化還
元粉化性指数(RDI)が、通常使用している焼結鉱
(JIS−RI:65%、RDI:38%)に比べて高
いマグネタイト塊成鉱(JIS−RI:75%、RD
I:2%)を30%使用する事により、炉内通気性が良
好に維持した中で、炉内反応指数であるシャフト効率が
従来よりも3%工場し、コークス比が9kg/t低減する
ことが可能になった。
The index of reducibility (JIS-RI) and the index of resistance to chemical reduction (RDI) are higher than those of commonly used sinter (JIS-RI: 65%, RDI: 38%). Magnetite agglomerate (JIS-RI: 75%, RD
(I: 2%) by using 30%, while maintaining good air permeability in the furnace, the shaft efficiency, which is the reaction index in the furnace, is 3% higher than before, and the coke ratio is reduced by 9 kg / t. It became possible.

【0037】よって、実施例1によれば、塊成鉱が還元
粉化せず、その被還元性が良好であるので、高炉の低燃
料比操業を安定して継続できることが確認された。
Therefore, according to Example 1, it was confirmed that the agglomerate ore was not reduced and powdered and had good reducibility, so that the low fuel ratio operation of the blast furnace could be stably continued.

【0038】[実施例2]実施例2では、ヘマタイト鉱
石中に炭素を含有させ、マグネタイト粉鉱石を塊成化す
る際に炭素増量させている以外は、実施例1と同様であ
る。なお、マグネタイト粉鉱石への炭素含有量は、強度
維持のため20%以下を目標とし、ここでは4%に調整
している。
Example 2 Example 2 is the same as Example 1 except that hematite ore contains carbon and increases the amount of carbon when agglomerating magnetite powder ore. The carbon content in the magnetite powder ore is targeted at 20% or less for maintaining strength, and is adjusted to 4% here.

【0039】表2は、実施例2として実施例1にさらに
Cを4%内装したマグネタイト塊成鉱を30%用いた操
業方法と従来法との比較結果を示している。
Table 2 shows the results of comparison between the conventional method and the operation method using 30% of magnetite agglomerate containing 4% of C in Example 1 as Example 2.

【表2】 [Table 2]

【0040】被還元指数(JIS−RI)及び耐還元化
粉化性指数(RDI)が、通常使用している焼結鉱(J
IS−RI:65%、RDI:38%)に比べて高いマ
グネタイト塊成鉱(JIS−RI:80%、RDI:3
%)を30%使用することにより、炉内通気性が良好に
維持した中で、炉内反応指数であるシャフト効率が従来
よりも4%向上し、コークス比が19kg/t低減するこ
とが可能になった。実施例2では、実施例1で用いたマ
グネタイト塊成鉱にさらにCを4%内装させたことによ
り、実施例1で用いたマグネタイト塊成鉱の被還元性が
5%向上し、実施例1よりもコークス比を大幅に向上さ
せることができた。
The index to be reduced (JIS-RI) and the index to reduce powdering resistance (RDI) are calculated based on the commonly used sinter (J
Magnetite agglomerate (JIS-RI: 80%, RDI: 3) higher than IS-RI: 65%, RDI: 38%
%), The furnace efficiency, which is the shaft efficiency, is improved by 4% and the coke ratio can be reduced by 19 kg / t, while maintaining good air permeability in the furnace. Became. In Example 2, the reducibility of the magnetite agglomerate used in Example 1 was improved by 5% by adding C to the magnetite agglomerate used in Example 1 by 4%. The coke ratio was significantly improved.

【0041】よって、実施例2によれば、塊成鉱が還元
粉化せず、実施例1よりもさらに被還元性が良好である
ので、高炉の低燃料比操業を安定して継続できることが
確認された。
Thus, according to the second embodiment, the agglomerate ore is not reduced and powdered, and the reducibility is better than that of the first embodiment. Therefore, it is possible to stably continue the low fuel ratio operation of the blast furnace. confirmed.

【0042】[実施例3]実施例3では、ヘマタイト鉱
石を予備還元して製造したマグネタイト粉鉱石を粒径3
〜10mmの小粒に塊成化し、かつ複数粒を結合して塊
成鉱を製造した以外は、実施例1と同様である。
Example 3 In Example 3, magnetite powder ore produced by pre-reduction of hematite ore was used.
It is the same as Example 1 except that agglomeration was performed by agglomerating into small grains of 10 mm to 10 mm and combining a plurality of grains to produce agglomerate ore.

【0043】表3は、実施例3として実施例1のマグネ
タイト塊成鉱を粒径3〜10mmの小粒塊成鉱を複数結
合して製造した場合の操業方法と従来法との比較結果を
示している。
Table 3 shows the results of comparison between the operation method and the conventional method when the magnetite agglomerate of Example 1 was produced by combining a plurality of small agglomerates with a particle size of 3 to 10 mm as Example 3. ing.

【表3】 [Table 3]

【0044】被還元性指数(JIS−RI)及び耐還元
粉化性指数(RDI)が、通常使用している焼結鉱(J
IS−RI:65%、RDI:38%)に比べて高いマ
グネタイト塊成鉱(JIS−RI:78%、RDI:2
%)を30%使用することにより、炉内通気性が良好に
維持した中で、炉内反応指数であるシャフト効率が従来
よりも5%向上し、コークス比が18kg/t低減するこ
とが可能になった。実施例3では、マグネタイト塊成鉱
を粒径3〜10mmの小粒塊成鉱を複数結合して製造す
ることにより、実施例1よりもマグネタイト塊成鉱の被
還元性を3%向上し、実施例1よりもコークス比を大幅
に向上させることができた。
The reducibility index (JIS-RI) and reduction powdering resistance index (RDI) are calculated based on the commonly used sinter (J
Magnetite agglomerate (JIS-RI: 78%, RDI: 2) higher than that of IS-RI: 65%, RDI: 38%
%), 30% improvement in shaft efficiency, which is a reaction index in the furnace, and a coke ratio of 18 kg / t can be reduced while maintaining good air permeability in the furnace. Became. In Example 3, the magnetite agglomerate was manufactured by combining a plurality of small-size agglomerates having a particle size of 3 to 10 mm, thereby improving the reducibility of the magnetite agglomerate by 3% compared to Example 1. The coke ratio was significantly improved as compared with Example 1.

【0045】よって、実施例3によれば、塊成鉱が還元
粉化せず、実施例1よりもさらに被還元性が良好である
ので、高炉の低燃料比操業を安定して継続できることが
確認された。
Therefore, according to the third embodiment, the agglomerate ore is not reduced and powdered, and the reducibility is better than that of the first embodiment, so that the low fuel ratio operation of the blast furnace can be stably continued. confirmed.

【0046】[実施例4]実施例4では、ヘマタイト鉱
石中に炭素を含有させ、予備還元して製造したマグネタ
イト粉鉱石を粒径3〜10mmの小粒に塊成化し、かつ
複数粒を結合して塊成鉱を製造するものであり、それ以
外は、実施例1と同様である。
Example 4 In Example 4, magnetite powder ore produced by pre-reducing magnetite ore containing carbon in a hematite ore was agglomerated into small particles having a particle size of 3 to 10 mm, and a plurality of particles were combined. The agglomeration ore is manufactured by the same method as in the first embodiment.

【0047】表4は、実施例4、として実施例1のマグ
ネタイト塊成鉱を粒径3〜10mmの小粒塊成鉱とし、
それらを複数結合して塊成鉱を製造した場合の操業方法
との比較結果を示している。
Table 4 shows that, as Example 4, the magnetite agglomerate of Example 1 was changed into a small agglomerate having a particle size of 3 to 10 mm.
The result of comparison with the operation method when agglomerate ore is manufactured by combining a plurality of them is shown.

【表4】 [Table 4]

【0048】被還元指数(JIS−RI)及び耐還元粉
化性指数(RDI)が、通常使用している焼結鉱(JI
S−RI:65%、RDI:38%)に比べて高いマグ
ネタイト塊成鉱(JIS−RI:80%、RDI:2
%)を30%使用することにより、炉内通気性が良好に
維持した中で、炉内反応指数であるシャフト効率が従来
よりも5%向上し、コークス比が26kg/t低減するこ
とが可能になった。
The index of reduction (JIS-RI) and the index of resistance to reduction powdering (RDI) can be calculated by using the commonly used sinter (JI
Magnetite agglomerate (JIS-RI: 80%, RDI: 2) higher than S-RI: 65%, RDI: 38%
%), The furnace efficiency is improved by 5% and the coke ratio can be reduced by 26kg / t, while maintaining good air permeability in the furnace. Became.

【0049】実施例4では、マグネタイト塊鉱石を粒径
3〜10mmの小粒塊成鉱を複数結合し、かつ内装炭素
量を増加させたことにより、実施例1に比べてさらにマ
グネタイト塊成鉱の還元成が10%向上し、実施例より
もコークス比を大幅に向上させることが出来た。よっ
て、高炉の低燃料比操業を安定して行うことが出来る。
In Example 4, the magnetite lump ore was combined with a plurality of small agglomerates having a particle size of 3 to 10 mm, and the amount of interior carbon was increased. The reduction was improved by 10%, and the coke ratio was able to be significantly improved as compared with the example. Therefore, the low fuel ratio operation of the blast furnace can be stably performed.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
還元粉化が殆どなく、被還元性の良好な塊成鉱を開発
し、これを製銑原料として高炉へ装入することにより、
低燃料比操業を安定して継続することができるという優
れた効果を発揮する。
As described above, according to the present invention,
Developed agglomerate ore with little reducible powder and good reducibility and charged it to blast furnace as raw material for making iron,
It has an excellent effect that the operation at a low fuel ratio can be stably continued.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高炉の操業方法の一実施形態に使
用する高炉の炉内状況を示す概略図である。
FIG. 1 is a schematic view showing the inside of a blast furnace used in an embodiment of a method for operating a blast furnace according to the present invention.

【図2】本発明において、マグネタイト鉱石が還元粉化
しないことを示す説明図である。
FIG. 2 is an explanatory diagram showing that magnetite ore is not reduced to powder in the present invention.

【図3】本発明において、ヘマタイト粉鉱石の予備還元
温度と気孔率との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing the relationship between the pre-reduction temperature and the porosity of hematite ore in the present invention.

【符号の説明】[Explanation of symbols]

1 高炉 2 原料 3 固体燃料 4 羽口 5 レースウェイ 6 炉芯 7 溶銑 8 スラグ 9 塊状帯 DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Raw material 3 Solid fuel 4 Tuyere 5 Raceway 6 Furnace 7 Hot metal 8 Slag 9 Lump belt

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ヘマタイト鉱石を予備還元してマグネタ
イト粉鉱石とし、該粉鉱石を塊成化して塊成鉱を製造す
ることを特徴とする製銑原料の製造方法。
1. A method for producing a raw material for ironmaking, comprising preliminarily reducing hematite ore into magnetite ore, and agglomerating the ore to produce agglomerate ore.
【請求項2】 前記ヘマタイト鉱石の予備還元温度が、
750℃未満であることを特徴とする請求項1に記載の
製銑原料の製造方法。
2. The pre-reduction temperature of the hematite ore is:
The method according to claim 1, wherein the temperature is lower than 750 ° C.
【請求項3】 前記マグネタイト粉鉱石を塊成化する際
に、炭素を含有させることを特徴とする請求項1または
2に記載の製銑原料の製造方法。
3. The method according to claim 1, wherein carbon is contained when agglomerating the magnetite powder ore.
【請求項4】 ヘマタイト鉱石中に炭素を含有させてお
き、マグネタイト粉鉱石を塊成化する際に炭素増量させ
ることを特徴とする請求項3に記載の製銑原料の製造方
法。
4. The method according to claim 3, wherein carbon is contained in the hematite ore, and the amount of carbon is increased when agglomerating the magnetite powder ore.
【請求項5】 前記マグネタイト粉鉱石を小粒に塊成化
し、複数粒を結合して塊成鉱を製造することを特徴とす
る請求項1から4のいずれかに記載の製銑原料の製造方
法。
5. The method according to claim 1, wherein the magnetite powder ore is agglomerated into small grains and a plurality of grains are combined to produce agglomerate ore. .
【請求項6】 請求項1から5のいずれかの方法によっ
て、製造されることを特徴とする製銑原料。
6. An ironmaking raw material produced by the method according to any one of claims 1 to 5.
【請求項7】 炉頂から原料および燃料を装入するとと
もに、羽口から送風調整して製銑を行う高炉の操業方法
において、 原料として、ヘマタイト鉱石を予備還元してマグネタイ
ト粉鉱石とし、該粉鉱石を塊成化した塊成鉱を装入する
ことを特徴とする高炉の操業方法。
7. A method for operating a blast furnace in which a raw material and a fuel are charged from a furnace top and air is adjusted from a tuyere to perform iron making, wherein a hematite ore is preliminarily reduced as a raw material into a magnetite powder ore. A method for operating a blast furnace, comprising charging an agglomerate ore obtained by agglomerating fine ore.
【請求項8】 前記ヘマタイト鉱石の予備還元温度が、
750℃未満であることを特徴とする請求項7に記載の
高炉の操業方法。
8. The pre-reduction temperature of the hematite ore,
The method for operating a blast furnace according to claim 7, wherein the temperature is lower than 750 ° C.
【請求項9】 前記マグネタイト粉鉱石を塊成化する際
に、炭素を含有させることを特徴とする請求項7または
8に記載の高炉の操業方法。
9. The blast furnace operating method according to claim 7, wherein carbon is contained when agglomerating the magnetite powder ore.
【請求項10】 ヘマタイト鉱石中に炭素を含有させて
おき、マグネタイト粉鉱石を塊成化する際に炭素増量さ
せることを特徴とする請求項9に記載の製銑原料の製造
方法。
10. The method according to claim 9, wherein carbon is contained in the hematite ore, and the amount of carbon is increased when agglomerating the magnetite powder ore.
【請求項11】 前記塊成鉱が、マグネタイト粉鉱石を
小粒に塊成化し、複数粒を結合したものであることを特
徴とする請求項7から10のいずれかに記載の高炉の操
業方法。
11. The method for operating a blast furnace according to claim 7, wherein the agglomerate ore is obtained by agglomerating magnetite powder ore into small grains and combining a plurality of grains.
JP14893999A 1999-05-27 1999-05-27 Method for producing raw material for iron making, raw material for iron making, and method for operating blast furnace Expired - Lifetime JP4149080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14893999A JP4149080B2 (en) 1999-05-27 1999-05-27 Method for producing raw material for iron making, raw material for iron making, and method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14893999A JP4149080B2 (en) 1999-05-27 1999-05-27 Method for producing raw material for iron making, raw material for iron making, and method for operating blast furnace

Publications (2)

Publication Number Publication Date
JP2000336410A true JP2000336410A (en) 2000-12-05
JP4149080B2 JP4149080B2 (en) 2008-09-10

Family

ID=15464051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14893999A Expired - Lifetime JP4149080B2 (en) 1999-05-27 1999-05-27 Method for producing raw material for iron making, raw material for iron making, and method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP4149080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218693A (en) * 2013-05-08 2014-11-20 Jfeスチール株式会社 Method for producing agglomerated ore
JP2014224286A (en) * 2013-05-15 2014-12-04 新日鐵住金株式会社 Method for operating blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218693A (en) * 2013-05-08 2014-11-20 Jfeスチール株式会社 Method for producing agglomerated ore
JP2014224286A (en) * 2013-05-15 2014-12-04 新日鐵住金株式会社 Method for operating blast furnace

Also Published As

Publication number Publication date
JP4149080B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP6414493B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
JP2011225926A (en) Agglomerated ore including carbonaceous material for iron-making, and producing method therefor
CN105899690A (en) Method for producing manganese containing ferroalloy
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP5540806B2 (en) Carbon steel interior agglomerate for iron making and method for producing the same
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JP5958264B2 (en) Agglomerate for blast furnace and method for producing the same
JP4149080B2 (en) Method for producing raw material for iron making, raw material for iron making, and method for operating blast furnace
JP4972761B2 (en) Method for producing sintered ore and pseudo particles for producing sintered ore
JP4997712B2 (en) Blast furnace operation method
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP3829516B2 (en) Blast furnace operation method
JP4173925B2 (en) Blast furnace operation method
JP2731829B2 (en) Blast furnace operation method
JP7040659B1 (en) How to operate the reduction furnace
JP3718604B2 (en) Blast furnace raw material charging method
JP5892317B2 (en) Production method of raw materials for blast furnace
JP2015101740A (en) Method for manufacturing reduced iron
JP5915864B2 (en) Agglomerate production method
JP3014549B2 (en) Blast furnace operation method
JP3522553B2 (en) Blast furnace raw material charging method
JP5892318B2 (en) Agglomerate production method
JP2014031528A (en) Method for producing raw material for blast furnace
JP2003113426A (en) Method for manufacturing sintered ore
JP3942062B2 (en) Blast furnace and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term