JP2000332307A - Manufacture of thermoelectric material - Google Patents

Manufacture of thermoelectric material

Info

Publication number
JP2000332307A
JP2000332307A JP11137777A JP13777799A JP2000332307A JP 2000332307 A JP2000332307 A JP 2000332307A JP 11137777 A JP11137777 A JP 11137777A JP 13777799 A JP13777799 A JP 13777799A JP 2000332307 A JP2000332307 A JP 2000332307A
Authority
JP
Japan
Prior art keywords
powder
thin film
group
element selected
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11137777A
Other languages
Japanese (ja)
Other versions
JP3575332B2 (en
Inventor
Hiroyuki Yamashita
博之 山下
Nobuaki Tomita
延明 富田
Yuuma Horio
裕磨 堀尾
Toshiharu Hoshi
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP13777799A priority Critical patent/JP3575332B2/en
Publication of JP2000332307A publication Critical patent/JP2000332307A/en
Application granted granted Critical
Publication of JP3575332B2 publication Critical patent/JP3575332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a method for manufacturing a thermoelectric material suitable for a device which is required to have a low resistivity, a high performance index and a low power consumption. SOLUTION: The method include steps of forming a raw material containing at least one selected from a group of elements Bi and Sb, and at least one selected from a group of elements Te and Se into a thin film or powder by a liquid quenching method, and solidifying and forming the thin film or powder thus obtained by a hot press in such a manner that the orientation of crystal grains of the film or powder will not be disturbed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電材料の製造方
法に関し、特に、低消費電力であることが求められるデ
バイス等に好適な熱電材料の製造方法に関する。
The present invention relates to a method for producing a thermoelectric material, and more particularly to a method for producing a thermoelectric material suitable for devices requiring low power consumption.

【0002】[0002]

【従来の技術】従来、熱電材料の製造方法としては、原
料粉末を所定の組成に秤量した後、溶解し、冷却条件を
適宜制御しながら凝固させることにより結晶性を制御す
る一方向凝固法が知られている。
2. Description of the Related Art Conventionally, as a method for producing a thermoelectric material, a one-way solidification method in which a raw material powder is weighed to a predetermined composition, melted, and solidified while appropriately controlling cooling conditions to control crystallinity is known. Are known.

【0003】また、熱電材料の製造方法としては、一方
向凝固法により作製された鋳塊を粉砕し、粉末とした
後、常圧でホットプレスにより固化成形する方法が知ら
れている。
[0003] As a method for producing a thermoelectric material, a method is known in which an ingot produced by a unidirectional solidification method is pulverized into powder, and then solidified and formed by hot pressing at normal pressure.

【0004】更に、熱電材料の製造方法としては、液体
急冷法により作製した液体急冷粉をホットプレスにより
形成する方法が知られている。
Further, as a method for producing a thermoelectric material, a method is known in which a liquid quenched powder produced by a liquid quenching method is formed by hot pressing.

【0005】一方、熱電材料の性能は、熱電材料の性能
指数をZ、熱起電力をα、熱伝導率をκ、比抵抗をρと
するとき、下記数式1のように示される。この性能指数
Zの値が大きいほうが熱電材料の性能が優れている。
[0005] On the other hand, the performance of a thermoelectric material is expressed by the following formula 1 when the figure of merit of the thermoelectric material is Z, the thermoelectromotive force is α, the thermal conductivity is κ, and the specific resistance is ρ. The larger the value of the figure of merit Z, the better the performance of the thermoelectric material.

【0006】[0006]

【数1】Z=α2/(κ×ρ)## EQU1 ## Z = α 2 / (κ × ρ)

【0007】[0007]

【発明が解決しようとする課題】しかし、上述の一方向
凝固法により製造された熱電材料は、熱伝導率κが大き
いため、性能指数Zが小さい。また、形成される結晶粒
が大きく結晶界面がへき開してしまうため、強度が低い
という問題点がある。
However, the thermoelectric material manufactured by the above-described directional solidification method has a small thermal index κ and therefore a small figure of merit Z. Further, there is a problem that the strength is low because formed crystal grains are large and the crystal interface is cleaved.

【0008】また、上述の一方向凝固法により作製され
た鋳塊を粉砕し、常圧でホットプレスにより製造された
熱電材料は、性能指数Zが小さいという問題点がある。
A thermoelectric material produced by pulverizing an ingot produced by the above-described unidirectional solidification method and hot-pressing it at normal pressure has a problem that the figure of merit Z is small.

【0009】更に、上述の液体急冷法により形成された
液体急冷粉をホットプレスにより製造された熱電材料は
性能指数Zは高いものの、比抵抗ρが大きいため、デバ
イスとしての用途が限定されてしまうという問題点があ
る。
Further, the thermoelectric material produced by hot pressing the liquid quenched powder formed by the above-mentioned liquid quenching method has a high figure of merit Z, but has a large specific resistance ρ, so that its use as a device is limited. There is a problem.

【0010】本発明はかかる問題点に鑑みてなされたも
のであって、低比抵抗かつ高い性能指数を有する低消費
電力が求められるデバイスに好適な熱電材料の製造方法
を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a method for producing a thermoelectric material suitable for a device requiring low power consumption having a low specific resistance and a high figure of merit. I do.

【0011】[0011]

【課題を解決するための手段】本発明に係る熱電材料の
製造方法は、Bi及びSbからなる群から選択された少
なくとも1種の元素と、Te及びSeからなる群から選
択された少なくとも1種の元素とを含有する原料を液体
急冷法により薄膜又は粉末にする工程と、これにより得
られた薄膜又は粉末の結晶粒の配向性が乱れない条件で
ホットプレスにより固化成形する工程と、を有すること
を特徴とする。ここで、配向性が乱れない条件とは、固
化成形時の押圧方向に垂直な面(hkl)のX線回折で
得られるピーク強度をIhklとするとき、(110)面
と(015)面との強度比、(110)面と(101
0)面との強度比及び(110)面と(205)面との
強度比が夫々下記数式2乃至4で示される範囲内にある
ことをいう。
According to the present invention, there is provided a method for producing a thermoelectric material, comprising: at least one element selected from the group consisting of Bi and Sb; and at least one element selected from the group consisting of Te and Se. And a step of solidifying and molding by hot pressing under conditions that the orientation of the crystal grains of the thin film or powder obtained thereby is not disturbed, and It is characterized by the following. Here, the condition under which the orientation is not disturbed means that the peak intensity obtained by X-ray diffraction of a plane (hkl) perpendicular to the pressing direction at the time of solidification molding is Ihkl, and the (110) plane and the (015) plane Intensity ratio between (110) plane and (101) plane.
It means that the intensity ratio with respect to the (0) plane and the intensity ratio between the (110) plane and the (205) plane are within the ranges represented by the following mathematical expressions 2 to 4, respectively.

【0012】[0012]

【数2】I110/I015≧0.2## EQU2 ## I 110 / I 015 ≧ 0.2

【0013】[0013]

【数3】I110/I1010≧0.5[Equation 3] I 110 / I 1010 ≧ 0.5

【0014】[0014]

【数4】I110/I205≧0.5## EQU4 ## I 110 / I 205 ≧ 0.5

【0015】本発明に係る他の熱電材料の製造方法は、
Bi及びSbからなる群から選択された少なくとも1種
の元素と、Te及びSeからなる群から選択された少な
くとも1種の元素とを含有する原料を液体急冷法により
薄膜又は粉末にする工程と、これにより得られた薄膜又
は粉末を温度をT(℃)、圧力をP(kgf/cm2
とするとき、前記Tが200≦T≦400のとき、前記
Pは−(39/20)×T+790≦P<400であ
り、前記Tが400<T≦600のとき、前記Pは10
≦P<400である条件でホットプレスにより固化成形
する工程と、を有することを特徴とする。
Another method for producing a thermoelectric material according to the present invention is as follows.
Turning a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se into a thin film or powder by a liquid quenching method; The temperature of the obtained thin film or powder is T (° C.) and the pressure is P (kgf / cm 2 ).
When T is 200 ≦ T ≦ 400, P is − (39/20) × T + 790 ≦ P <400, and when T is 400 <T ≦ 600, P is 10
Solidifying and molding by hot pressing under the condition of ≦ P <400.

【0016】この場合、前記原料は更にI、Cl、H
g、Br、Ag及びCuからなる群から選択された少な
くとも1種の元素を含有させて、キャリア密度の制御が
可能である。
In this case, the raw material further comprises I, Cl, H
The carrier density can be controlled by containing at least one element selected from the group consisting of g, Br, Ag, and Cu.

【0017】本発明においては、前記ホットプレスによ
り固化成形する工程は、加熱時間をtとするとき、前記
tは5乃至150分であることが好ましい。
In the present invention, in the step of solidifying and molding by the hot press, when the heating time is t, it is preferable that the t is 5 to 150 minutes.

【0018】また、前記Bi及びSbからなる群から選
択された少なくとも1種の元素と、Te及びSeからな
る群から選択された少なくとも1種の元素とを含有する
原料を液体急冷法により薄膜又は粉末にする工程の後工
程として、前記薄膜又は粉末を粉砕する工程を有するこ
とが好ましい。
Further, a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se is formed into a thin film or a thin film by a liquid quenching method. It is preferable to include a step of pulverizing the thin film or the powder as a step subsequent to the step of forming the powder.

【0019】更に、前記Bi及びSbからなる群から選
択された少なくとも1種の元素と、Te及びSeからな
る群から選択された少なくとも1種の元素とを含有する
原料を液体急冷法により薄膜又は粉末にする工程の後工
程として、前記薄膜又は粉末を水素雰囲気中で加熱する
工程を有することが好ましい。
Further, a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se is formed into a thin film or a thin film by a liquid quenching method. It is preferable to include a step of heating the thin film or the powder in a hydrogen atmosphere as a step after the step of forming the powder.

【0020】更にまた、前記薄膜又は粉末を粉砕する工
程の後工程として、水素雰囲気中で加熱する工程を有す
ることが望ましい。
Further, it is preferable that the method further includes a step of heating in a hydrogen atmosphere as a step subsequent to the step of pulverizing the thin film or the powder.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施例に係る熱電
材料の製造方法について具体的に説明する。本願発明者
等はBi及びSbからなる群から選択された少なくとも
1種の元素と、Te及びSeからなる群から選択された
少なくとも1種の元素とを含有する原料を液体急冷法に
より薄膜又は粉末にし、これにより得られた薄膜又は粉
末の結晶粒の配向性が乱れない条件でホットプレスによ
り固化成形することにより、低比抵抗かつ高い性能指数
を有する熱電材料を製造することができることを見出し
た。図1は縦軸に圧力、横軸に温度をとり、本発明の実
施例に係る熱電材料のホットプレス条件の範囲を示すグ
ラフ図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a thermoelectric material according to an embodiment of the present invention will be specifically described. The present inventors have prepared a thin film or powder of a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se by a liquid quenching method. It was found that a thermoelectric material having a low specific resistance and a high figure of merit can be produced by solidifying and molding by hot pressing under conditions where the orientation of the crystal grains of the thin film or powder obtained thereby is not disturbed. . FIG. 1 is a graph showing a range of hot pressing conditions of a thermoelectric material according to an embodiment of the present invention, with pressure on the vertical axis and temperature on the horizontal axis.

【0022】以下、本発明に係るホットプレスの限定理
由について説明する。
Hereinafter, the reasons for limiting the hot press according to the present invention will be described.

【0023】ホットプレスの条件 温度をT(℃)、圧力をP(kgf/cm2)とすると
き、ホットプレス条件は温度により下記数式5及び数式
6のように示すことができる。
When the temperature of the hot press is T (° C.) and the pressure is P (kgf / cm 2 ), the hot press conditions can be represented by the following formulas 5 and 6 depending on the temperature.

【0024】[0024]

【数5】−(39/20)×T+790≦P<400 但し、200≦T≦400-(39/20) × T + 790 ≦ P <400 where 200 ≦ T ≦ 400

【0025】[0025]

【数6】5≦P<400 但し、400<T≦6005 ≦ P <400 where 400 <T ≦ 600

【0026】図1に示すように、温度が200乃至40
0℃である領域Dでは、圧力が−(39/20)×T+
790kgf/cm2未満であると、圧力が低く焼結が
不十分となり、比抵抗が高くなり、性能指数が低下す
る。一方、圧力が400kgf/cm2以上であると、
結晶粒の配向性が乱れて比抵抗が高くなる。従って、温
度が200乃至400℃では、圧力は−(39/20)
×T+790kgf/cm2以上400kgf/cm2
満であることが好ましい。
As shown in FIG. 1, the temperature is 200 to 40.
In the region D where the temperature is 0 ° C., the pressure is − (39/20) × T +
If it is less than 790 kgf / cm 2 , the pressure is low and sintering becomes insufficient, the specific resistance increases, and the figure of merit decreases. On the other hand, when the pressure is 400 kgf / cm 2 or more,
The orientation of the crystal grains is disturbed, and the specific resistance increases. Therefore, when the temperature is 200 to 400 ° C., the pressure becomes − (39/20)
× T + 790 kgf / cm 2 or more and preferably less than 400 kgf / cm 2 .

【0027】また、図1に示すように、温度が400℃
を超え600℃以下である領域Dでは、圧力が5kgf
/cm2未満であると、圧力が低く焼結が不十分とな
り、比抵抗が高くなると共に性能指数が低下する。一
方、圧力が400kgf/cm2以上であると、高温、
高圧下の条件では、オーバーシンタリング(焼結過剰)
となり、成分元素の脱離が促進されるため、比抵抗は小
さくなるものの、性能指数が小さくなる。従って、温度
が400℃を超え600℃以下では、圧力は5kgf/
cm2以上400kgf/cm2未満であることが好まし
い。
Further, as shown in FIG.
In the region D in which the pressure is higher than 600 ° C. and the pressure is 5 kgf
If it is less than / cm 2 , the pressure will be low and sintering will be insufficient, the specific resistance will increase and the figure of merit will decrease. On the other hand, if the pressure is 400 kgf / cm 2 or more, high temperature,
Under high pressure conditions, oversintering (excessive sintering)
Since the desorption of the component elements is promoted, the specific resistance decreases, but the figure of merit decreases. Therefore, when the temperature exceeds 400 ° C. and is 600 ° C. or less, the pressure is 5 kgf /
It is preferably less than cm 2 or more 400 kgf / cm 2.

【0028】本発明においては、圧力を200乃至40
0℃の温度で−(39/20)×T+790kgf/c
2以上400kgf/cm2未満とし、また、圧力を4
00℃を超え600℃以下の温度で10kgf/cm2
以上400kgf/cm2未満にしているので結晶粒の
配向性が乱れない。このため、固化形成時の押圧方向に
垂直な面のX線回折で得られるピーク強度は、I110
015≧0.2、I110/I1010≧0.5及びI110/I
205≧0.5である。しかし、従来の一般材料の固化形
成時の押圧方向に垂直な面のX線回折例ではI110/I
015=0.13、I11 0/I1010=0.23及びI110
205=2.0である。
In the present invention, the pressure is set to 200 to 40.
At a temperature of 0 ° C.,-(39/20) × T + 790 kgf / c
m 2 to less than 400 kgf / cm 2, and a pressure of 4
10 kgf / cm 2 at a temperature of more than 00 ° C and 600 ° C or less
Since it is less than 400 kgf / cm 2 , the orientation of crystal grains is not disturbed. For this reason, the peak intensity obtained by X-ray diffraction of a plane perpendicular to the pressing direction at the time of solidification is I 110 /
I 015 ≧ 0.2, I 110 / I 1010 ≧ 0.5 and I 110 / I
205 ≧ 0.5. However, in the conventional X-ray diffraction example of a plane perpendicular to the pressing direction at the time of solidification formation of a general material, I 110 / I
015 = 0.13, I 11 0 / I 1010 = 0.23 and I 110 /
I 205 = 2.0.

【0029】なお、いずれの温度範囲においても、加熱
時間をtとするとき、加熱時間tは5乃至150分であ
ることが好ましい。
In any temperature range, when the heating time is t, the heating time t is preferably 5 to 150 minutes.

【0030】また、液体急冷法により形成された薄膜又
は粉末を水素雰囲気中で熱処理してもよい。更に、液体
急冷法により形成された薄膜又は粉末を粉砕した後に水
素雰囲気中で熱処理することもできる。
The thin film or powder formed by the liquid quenching method may be heat-treated in a hydrogen atmosphere. Further, a thin film or powder formed by the liquid quenching method may be pulverized and then heat-treated in a hydrogen atmosphere.

【0031】[0031]

【実施例】以下、本実施例方法により製造された熱電材
料の実施例について、その比抵抗及び性能指数を比較例
と比較して具体的に説明する。
EXAMPLES Examples of the thermoelectric material manufactured by the method of the present example will be specifically described by comparing the specific resistance and the figure of merit with those of a comparative example.

【0032】先ず、下記表1に示す種々の組成を有する
熱電材料を下記表2に示すホットプレス条件により製造
し、これらの実施例及び比較例のサンプルについて、比
抵抗ρを測定すると共に、性能指数Zを算出した。これ
らの結果を表2に示す。
First, thermoelectric materials having various compositions shown in Table 1 below were manufactured under the hot pressing conditions shown in Table 2 below. The samples of Examples and Comparative Examples were measured for the specific resistance ρ and the performance was measured. The index Z was calculated. Table 2 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】上記表2に示すように、実施例No.1乃至
9は比抵抗が1.10×10-5Ω・m以下と小さく、か
つ性能指数が4.0×10-3/K以上と高かった。一
方、比較例No.10乃至12は比抵抗が小さく、かつ性
能指数が3.5×10-3/K以上の高い値にはならなか
った。比較例No.10は圧力が低いため、焼結が不十分
となり比抵抗が大きくなり、性能指数が小さくなった。
As shown in the above Table 2, Examples Nos. 1 to 9 have a small specific resistance of 1.10 × 10 −5 Ω · m or less and a performance index of 4.0 × 10 −3 / K or more. And it was high. On the other hand, in Comparative Examples Nos. 10 to 12, the specific resistance was small and the figure of merit did not become a high value of 3.5 × 10 −3 / K or more. In Comparative Example No. 10, since the pressure was low, sintering was insufficient, the specific resistance increased, and the figure of merit decreased.

【0036】比較例No.11は圧力が高いため、結晶粒
の配向性が乱れ比抵抗が増大し、性能指数が小さくなっ
た。
In Comparative Example No. 11, since the pressure was high, the orientation of the crystal grains was disturbed, the resistivity increased, and the figure of merit decreased.

【0037】比較例No.12は圧力が低いため、焼結不
十分で比抵抗が大きくなった。このため、性能指数が小
さくなった。
In Comparative Example No. 12, since the pressure was low, the sintering was insufficient and the specific resistance increased. Therefore, the figure of merit decreased.

【0038】[0038]

【発明の効果】以上詳述したように本発明においては、
結晶粒の配向性が乱れない条件でホットプレスにより固
化形成することにより、比抵抗が小さく、高い性能指数
を得ることができる。また、このようにして製造された
熱電材料は比抵抗が小さいため、低消費電力を必要とす
るデバイスに好適である。
As described in detail above, in the present invention,
By solidifying and forming by hot pressing under the condition that the orientation of crystal grains is not disturbed, the specific resistance is small and a high figure of merit can be obtained. Further, the thermoelectric material manufactured in this manner has a small specific resistance, and thus is suitable for a device requiring low power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 縦軸に圧力、横軸に温度をとり、本発明の実
施例に係るホットプレス条件の範囲を示すグラフ図であ
る。
FIG. 1 is a graph showing a range of hot pressing conditions according to an embodiment of the present invention, with pressure on the vertical axis and temperature on the horizontal axis.

【符号の説明】[Explanation of symbols]

D;領域 D; area

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B22F 3/14 B22F 3/14 D (72)発明者 堀尾 裕磨 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内 (72)発明者 星 俊治 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内 Fターム(参考) 4K017 AA04 BA10 BB18 DA01 EA03 EC02 4K018 AA40 BA20 BC01 EA02 KA32──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) // B22F 3/14 B22F 3/14 D (72) Inventor Hiroma Horio 10th Nakazawacho, Hamamatsu City, Shizuoka Prefecture No. 1 Yamaha Corporation (72) Inventor Shunji Hoshi 10-1 Nakazawa-cho, Hamamatsu-shi, Shizuoka Prefecture F-term (reference) 4K017 AA04 BA10 BB18 DA01 EA03 EC02 4K018 AA40 BA20 BC01 EA02 KA32

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とを含有する原料を液
体急冷法により薄膜又は粉末にする工程と、これにより
得られた薄膜又は粉末の結晶粒の配向性が乱れない条件
でホットプレスにより固化成形する工程と、を有するこ
とを特徴とする熱電材料の製造方法。
A thin film or powder of a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se by a liquid quenching method. And a step of solidifying and molding by hot pressing under conditions where the orientation of the crystal grains of the thin film or powder obtained thereby is not disturbed.
【請求項2】 Bi及びSbからなる群から選択された
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とを含有する原料を液
体急冷法により薄膜又は粉末にする工程と、これにより
得られた薄膜又は粉末を温度をT(℃)、圧力をP(k
gf/cm2)とするとき、前記Tが200≦T≦40
0のとき、前記Pは−(39/20)×T+790≦P
<400であり、前記Tが400<T≦600のとき、
前記Pは10≦P<400である条件でホットプレスに
より固化成形する工程と、を有することを特徴とする熱
電材料の製造方法。
2. A thin film or powder of a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se by a liquid quenching method. And the temperature of the obtained thin film or powder is set to T (° C.) and the pressure is set to P (k).
gf / cm 2 ), T is 200 ≦ T ≦ 40
When 0, the P is − (39/20) × T + 790 ≦ P
<400, and when T is 400 <T ≦ 600,
A step of solidifying and molding by hot pressing under the condition that P satisfies 10 ≦ P <400.
【請求項3】 前記原料は更にI、Cl、Hg、Br、
Ag及びCuからなる群から選択された少なくとも1種
の元素を含有することを特徴とする請求項1又は2に記
載の熱電材料の製造方法。
3. The raw material further comprises I, Cl, Hg, Br,
The method for producing a thermoelectric material according to claim 1, wherein the thermoelectric material contains at least one element selected from the group consisting of Ag and Cu.
【請求項4】 前記ホットプレスにより固化成形する工
程は、加熱時間をtとするとき、前記tは5乃至150
分であることを特徴とする請求項1乃至3のいずれか1
項に記載の熱電材料の製造方法。
4. The step of solidifying and molding by the hot press is such that when the heating time is t, the t is 5 to 150.
4. The method according to claim 1, wherein
The method for producing a thermoelectric material according to the above item.
【請求項5】 前記Bi及びSbからなる群から選択さ
れた少なくとも1種の元素と、Te及びSeからなる群
から選択された少なくとも1種の元素とを含有する原料
を液体急冷法により薄膜又は粉末にする工程の後工程と
して、前記薄膜又は粉末を粉砕する工程を有することを
特徴とする請求項1乃至4のいずれか1項に記載の熱電
材料の製造方法。
5. A thin film or a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se by a liquid quenching method. The method for producing a thermoelectric material according to any one of claims 1 to 4, further comprising a step of pulverizing the thin film or the powder as a step subsequent to the step of forming the powder.
【請求項6】 前記Bi及びSbからなる群から選択さ
れた少なくとも1種の元素と、Te及びSeからなる群
から選択された少なくとも1種の元素とを含有する原料
を液体急冷法により薄膜又は粉末にする工程の後工程と
して、前記薄膜又は粉末を水素雰囲気中で加熱する工程
を有することを特徴とする請求項1乃至4のいずれか1
項に記載の熱電材料の製造方法。
6. A thin film or a raw material containing at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se by a liquid quenching method. 5. The method according to claim 1, further comprising a step of heating the thin film or the powder in a hydrogen atmosphere as a step subsequent to the step of forming the powder.
The method for producing a thermoelectric material according to the above item.
【請求項7】 前記薄膜又は粉末を粉砕する工程の後工
程として、水素雰囲気中で加熱する工程を有することを
特徴とする請求項5に記載の熱電材料の製造方法。
7. The method for producing a thermoelectric material according to claim 5, further comprising a step of heating in a hydrogen atmosphere as a step subsequent to the step of pulverizing the thin film or the powder.
JP13777799A 1999-05-18 1999-05-18 Thermoelectric material and method for manufacturing the same Expired - Lifetime JP3575332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13777799A JP3575332B2 (en) 1999-05-18 1999-05-18 Thermoelectric material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13777799A JP3575332B2 (en) 1999-05-18 1999-05-18 Thermoelectric material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000332307A true JP2000332307A (en) 2000-11-30
JP3575332B2 JP3575332B2 (en) 2004-10-13

Family

ID=15206604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13777799A Expired - Lifetime JP3575332B2 (en) 1999-05-18 1999-05-18 Thermoelectric material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3575332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333093C (en) * 2005-11-17 2007-08-22 钢铁研究总院 Preparation method of bismuth-tollurium base thromoelectric alloy
US20120018681A1 (en) * 2010-07-22 2012-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Process for optimum thermoelectric properties
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692103B2 (en) 2003-05-08 2014-04-08 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
US8884152B2 (en) 2003-05-08 2014-11-11 Ihi Corporation Thermoelectric semiconductor material, thermoelectric semiconductor element using thermoelectric semiconductor material, thermoelectric module using thermoelectric semiconductor element and manufacturing method for same
CN1333093C (en) * 2005-11-17 2007-08-22 钢铁研究总院 Preparation method of bismuth-tollurium base thromoelectric alloy
US20120018681A1 (en) * 2010-07-22 2012-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Process for optimum thermoelectric properties
US8435429B2 (en) * 2010-07-22 2013-05-07 Toyota Motor Engineering & Manufacturing North America, Inc. Process for optimum thermoelectric properties

Also Published As

Publication number Publication date
JP3575332B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
KR100419488B1 (en) Thermoelectric conversion material and method of producing the same
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JP2002064227A (en) Thermoelectric conversion material and its manufacturing method
KR101736974B1 (en) Thermoelectric materials and method for manufacturing the same
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP2003243734A (en) Thermoelectric conversion material and method for manufacturing the same
JP3415391B2 (en) Manufacturing method of thermoelectric material
EP0996174B1 (en) Thermoelectric materials and thermoelectric conversion element
JP2000332307A (en) Manufacture of thermoelectric material
JP3546675B2 (en) Thermoelectric material and method for producing thermoelectric material
JPS6337072B2 (en)
JP2000307158A (en) Manufacture of thermoelectric material
JPH06144825A (en) Production of thermoelectric element
JP2002016297A (en) METHOD OF MANUFACTURING CRYSTAL-ORIENTED BULK ZnO-BASED SINTERED MATERIAL, AND THERMOELECTRIC CONVERSION DEVICE MANUFACTURED THEREBY
JPH10209508A (en) Thermoelectric transducer and its manufacture
JPH08186294A (en) Thermoelectric material
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP4553521B2 (en) Powder thermoelectric material manufacturing apparatus and powder thermoelectric material manufacturing method using the same
EP0115950A2 (en) New powder pressed N-type thermoelectric materials and method of making same
JPH11284237A (en) Manufacture of p-type thermoelectric conversion material
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
JPH10102160A (en) Production of cobalt triantimonide type composite material
JP3572791B2 (en) Manufacturing method of thermoelectric cooling material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term