JP2000331939A - Film-forming device - Google Patents

Film-forming device

Info

Publication number
JP2000331939A
JP2000331939A JP11136067A JP13606799A JP2000331939A JP 2000331939 A JP2000331939 A JP 2000331939A JP 11136067 A JP11136067 A JP 11136067A JP 13606799 A JP13606799 A JP 13606799A JP 2000331939 A JP2000331939 A JP 2000331939A
Authority
JP
Japan
Prior art keywords
wafer
gas
gas supply
processing chamber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11136067A
Other languages
Japanese (ja)
Inventor
Yoji Takagi
庸司 高木
Yasuji Arima
靖二 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to JP11136067A priority Critical patent/JP2000331939A/en
Priority to PCT/JP2000/003165 priority patent/WO2000070662A1/en
Priority to TW89109497A priority patent/TW457559B/en
Publication of JP2000331939A publication Critical patent/JP2000331939A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve evenness in the film-thickness distribution of a thin film formed on a wafer surface, related to a semiconductor manufacturing device. SOLUTION: An epitaxial growth device 1 comprises a process chamber 2, and a liner part 2A which forms a part of the side part of the process chamber 2 is provided with gas support openings 3a to 3e and gas exhaust opening 4 which each other. A susceptor 7 for supporting wafer W is provided in the process chamber 2, and a pre-heating ring 9 is provided between the liner part 2A and the susceptor 7. At the upper part of the pre-heating ring 9, guide plates 11a-11f extending on a placement part 7a side of the susceptor 7 from the tip of a plurality of side walls 10 which form the gas supply openings 3a to 3e are provided side by side in horizontal direction. The guide plates 11a to 11f rectify each reactive gas guided into the process chamber 2 and guide it to a specified region on the surface of wafer W placed on the placement part 7A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エピタキシャル成
長装置等、反応ガスを被処理体の表面に沿って流し、熱
分解反応させることで成膜を行う成膜装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming apparatus, such as an epitaxial growth apparatus, for forming a film by flowing a reaction gas along the surface of an object to be processed and causing a thermal decomposition reaction.

【0002】[0002]

【従来の技術】従来における枚葉式のエピタキシャル成
長装置は、例えば、石英ガラスで構成され、ガス供給口
及びガス排気口を有する処理チャンバと、この処理チャ
ンバ内に配設され、半導体ウェハを支持するサセプタ
と、処理チャンバの上方及び下方に放射状に配置された
複数本のハロゲンランプとを備えている。このようなエ
ピタキシャル成長装置において、サセプタ上にウェハを
載置した後、ハロゲンランプを点灯してウェハを加熱す
ると共に、反応ガスをガス供給口から処理チャンバ内に
導入すると、所定温度に加熱されたウェハの表面に沿っ
て反応ガスが層流状態で流れ、反応ガスの熱分解反応が
起こり、ウェハ表面に薄膜が形成される。
2. Description of the Related Art A conventional single-wafer type epitaxial growth apparatus is made of, for example, quartz glass and has a processing chamber having a gas supply port and a gas exhaust port, and is provided in the processing chamber to support a semiconductor wafer. The apparatus includes a susceptor and a plurality of halogen lamps radially arranged above and below the processing chamber. In such an epitaxial growth apparatus, after the wafer is placed on the susceptor, the halogen lamp is turned on to heat the wafer, and when the reaction gas is introduced into the processing chamber from the gas supply port, the wafer heated to a predetermined temperature is heated. The reaction gas flows in a laminar flow state along the surface of the wafer, and a thermal decomposition reaction of the reaction gas occurs to form a thin film on the wafer surface.

【0003】ところで、このような成膜処理において
は、ハロゲンランプの設置位置や反応ガスの流速等の要
因によって、ウェハ表面に形成される薄膜の膜厚分布が
不均一になってしまう傾向にある。そこで、従来では、
ガス供給口を処理チャンバに複数設け、各ガス供給口か
ら処理チャンバ内に導入される反応ガスの流量比を調整
して、ウェハ表面に形成される薄膜の膜厚分布を改善す
るようにしている。
In such a film forming process, the film thickness distribution of the thin film formed on the wafer surface tends to be non-uniform due to factors such as the location of the halogen lamp and the flow rate of the reaction gas. . So, conventionally,
A plurality of gas supply ports are provided in the processing chamber, and the flow rate ratio of the reaction gas introduced into the processing chamber from each gas supply port is adjusted to improve the film thickness distribution of the thin film formed on the wafer surface. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
たように反応ガスの流れを複数のゾーンに分け、各ゾー
ンにおける反応ガスの流量比を制御するだけでは、ウェ
ハ上の薄膜の膜厚均一性を改善することには限界があっ
た。
However, as described above, by dividing the flow of the reaction gas into a plurality of zones and controlling the flow ratio of the reaction gas in each zone, the uniformity of the film thickness of the thin film on the wafer can be reduced. There were limits to improvement.

【0005】本発明の目的は、ウェハ表面に形成される
薄膜の膜厚分布の均一性を向上させることができる成膜
装置を提供することにある。
An object of the present invention is to provide a film forming apparatus capable of improving the uniformity of the film thickness distribution of a thin film formed on a wafer surface.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、反応ガスを処理チャンバ内に導入して被
処理体の表面に沿って流し、熱分解反応させることで成
膜を行う成膜装置であって、処理チャンバ内に導入され
た反応ガスを被処理体の表面に導くためのガイド手段を
備える成膜装置を提供する。
In order to achieve the above object, the present invention provides a method of forming a film by introducing a reaction gas into a processing chamber, flowing the gas along the surface of the object to be processed, and causing a thermal decomposition reaction. Provided is a film forming apparatus for performing, which includes a guide unit for guiding a reaction gas introduced into a processing chamber to a surface of an object to be processed.

【0007】このようにガイド部材を設けることによ
り、反応ガスの流れる方向を制御することが可能となる
ため、ウェハ表面において薄膜の膜厚が不足する傾向に
ある領域に向かって反応ガスが流れるように調整するこ
とで、ウェハ表面に形成される薄膜の膜厚均一性を向上
させることができる。
By providing the guide member in this manner, the flow direction of the reaction gas can be controlled, so that the reaction gas flows toward a region where the thickness of the thin film tends to be insufficient on the wafer surface. In this case, the uniformity of the thickness of the thin film formed on the wafer surface can be improved.

【0008】また、上記の目的を達成するため、本発明
は、ガス供給口を有する処理チャンバと、処理チャンバ
内に設置され、被処理体が置かれる載置部を有するウェ
ハ支持部材とを備え、反応ガスをガス供給口から処理チ
ャンバ内に導入して被処理体の表面に沿って流し、熱分
解反応させることで成膜を行う成膜装置であって、ガス
供給口から載置部に向かって延び、処理チャンバ内に導
入された反応ガスを被処理体の表面に導くためのガイド
部材を備える成膜装置を提供する。
According to another aspect of the present invention, there is provided a processing chamber having a gas supply port, and a wafer support member provided in the processing chamber and having a mounting portion on which an object to be processed is placed. A film formation apparatus for introducing a reaction gas into a processing chamber through a gas supply port, flowing the gas along a surface of a processing object, and performing a thermal decomposition reaction to form a film. Provided is a film forming apparatus provided with a guide member extending toward a surface of an object to be processed and extending a reaction gas introduced into a processing chamber.

【0009】このようにガイド部材を設けることによ
り、熱分解反応が行われる領域(以下、反応領域とい
う)に近い位置で、反応ガスの流れる方向を制御するこ
とが可能となるため、反応ガスの流れを精密に調整する
ことで、ウェハ表面に形成される薄膜の膜厚分布の均一
性を向上させることができる。具体的には、反応ガスが
反応領域に近い位置から拡散するようになるため、処理
チャンバに複数のガス供給口を有する場合には、各ガス
供給口から導入される反応ガス同士が反応領域から離れ
た位置で混流するようになる。このため、反応ガスの流
れが制御しやすくなり、ウェハ表面において薄膜の膜厚
が不足する傾向にある領域に向かって反応ガスが流れる
ように調整することで、ウェハ上の薄膜の膜厚均一性を
良好にすることができる。
By providing the guide member in this manner, the flow direction of the reaction gas can be controlled at a position close to a region where the thermal decomposition reaction is performed (hereinafter, referred to as a reaction region). By precisely adjusting the flow, the uniformity of the film thickness distribution of the thin film formed on the wafer surface can be improved. Specifically, since the reaction gas is diffused from a position near the reaction region, when the processing chamber has a plurality of gas supply ports, the reaction gases introduced from each gas supply port are separated from the reaction region. It will be mixed at a remote location. This makes it easier to control the flow of the reaction gas, and by adjusting the flow of the reaction gas toward the region where the film thickness of the thin film tends to be insufficient on the wafer surface, the uniformity of the film thickness of the thin film on the wafer is improved. Can be improved.

【0010】上記半導体製造装置において、例えば、処
理チャンバ内におけるウェハ支持部材の外側には、ガス
供給口から導入された反応ガスを加熱するための加熱部
材が設けられており、加熱部材の上部にガイド部材が設
けられている。
In the above-described semiconductor manufacturing apparatus, for example, a heating member for heating the reaction gas introduced from the gas supply port is provided outside the wafer support member in the processing chamber. A guide member is provided.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明に係る成膜装置として、被
処理体であるシリコンウェハを1枚ずつ成膜処理する枚
葉式のエピタキシャル成長装置を概略的に示したもので
あり、図2は、そのエピタキシャル成長装置の平面断面
図である。同図において、エピタキシャル成長装置1
は、石英ガラスで構成された処理チャンバ2を備えてお
り、この処理チャンバ2の側部の一部を形成するライナ
ー部2Aには、複数(ここでは5つ)のガス供給口3a
〜3eとガス排気口4とが対向して設けられている。
FIG. 1 schematically shows a single-wafer type epitaxial growth apparatus for forming a silicon wafer as an object to be processed one by one as a film formation apparatus according to the present invention, and FIG. FIG. 2 is a plan sectional view of the epitaxial growth apparatus. In the figure, an epitaxial growth apparatus 1
Has a processing chamber 2 made of quartz glass, and a liner portion 2A forming a part of a side portion of the processing chamber 2 has a plurality of (here, five) gas supply ports 3a.
3e and the gas exhaust port 4 are provided to face each other.

【0013】ガス供給口3a〜3eのうち、中央に位置
するガス供給口3cにはガス供給配管5aが接続され、
そのガス供給口3cの水平方向外側に位置するガス供給
口3b,3dにはガス供給配管5bが接続され、更に各
ガス供給口3b,3dの水平方向外側に位置するガス供
給口3a,3eにはガス供給配管5cが接続されてお
り、処理チャンバ2内に導入される反応ガスの流れが3
ゾーンに分けられている。また、ガス排気口4には、ガ
ス排気ダクト6が接続されている。
A gas supply pipe 5a is connected to a gas supply port 3c located at the center among the gas supply ports 3a to 3e.
A gas supply pipe 5b is connected to the gas supply ports 3b and 3d located outside the gas supply port 3c in the horizontal direction, and further connected to the gas supply ports 3a and 3e located outside the gas supply ports 3b and 3d in the horizontal direction. Is connected to a gas supply pipe 5c, and the flow of the reaction gas introduced into the processing chamber 2 is 3
It is divided into zones. A gas exhaust duct 6 is connected to the gas exhaust port 4.

【0014】処理チャンバ2内には、ウェハWを支持す
るためのウェハ支持部材であるサセプタ7が配設されて
いる。このサセプタ7は、炭化シリコンで被覆されたグ
ラファイト材料から成る円盤状のものであり、上面部に
ウェハWが置かれる凹状の載置部7aが設けられてい
る。また、サセプタ7は、処理チャンバ2の下部に立設
された石英ガラス製の支持シャフト8により裏面側から
三点で水平に支持されており、この支持シャフト8は図
示しない駆動モータにより回転駆動され、これによりサ
セプタ7が回転できるようになっている。
In the processing chamber 2, a susceptor 7, which is a wafer support member for supporting the wafer W, is provided. The susceptor 7 has a disk shape made of a graphite material coated with silicon carbide, and has a concave mounting portion 7a on which a wafer W is mounted on an upper surface portion. The susceptor 7 is horizontally supported at three points from the back side by a quartz glass support shaft 8 erected below the processing chamber 2, and the support shaft 8 is rotationally driven by a drive motor (not shown). This allows the susceptor 7 to rotate.

【0015】また、ライナー部2Aとサセプタ7との間
には、各ガス供給口3a〜3eに供給された反応ガスを
加熱するための予備加熱リング9が設けられており、載
置部7aに支持されたウェハWに対して効果的な熱分解
反応が行えるようにしている。
A preheating ring 9 for heating the reaction gas supplied to each of the gas supply ports 3a to 3e is provided between the liner section 2A and the susceptor 7, and a preheating ring 9 is provided on the mounting section 7a. An effective thermal decomposition reaction can be performed on the supported wafer W.

【0016】このような予備加熱リング9の上部には、
ガス供給口3a〜3eを形成する複数の側壁10の先端
からサセプタ7の載置部7a側に延びる6つのガイド板
11a〜11fが水平方向に並設されている。これらガ
イド板11a〜11fは、各ガス供給口3a〜3eから
処理チャンバ2内に導入された反応ガスを整流して、載
置部7aに置かれたウェハW表面の所定領域に導くもの
である。ガイド板11a〜11fのうち、最も外側に位
置するガイド板11a,11fは、略直方体形状をなし
ており、かつ対応する側壁10に対してほぼまっすぐに
配置されている。また、ガイド板11b〜11eは、水
平方向断面がテーパ状をなしており、対応する側壁10
に対してわずかに外側に傾けた状態で、サセプタ7側に
対して先太になるように配置されている。これにより、
隣接するガイド板間の水平方向の間隔が、サセプタ7側
に向かって徐々に狭くなっている。
On the upper part of such a preheating ring 9,
Six guide plates 11a to 11f extending from the tips of the plurality of side walls 10 forming the gas supply ports 3a to 3e to the mounting portion 7a side of the susceptor 7 are arranged side by side in the horizontal direction. These guide plates 11a to 11f rectify the reaction gas introduced into the processing chamber 2 from the respective gas supply ports 3a to 3e, and guide the reaction gas to a predetermined region on the surface of the wafer W placed on the mounting portion 7a. . Of the guide plates 11a to 11f, the outermost guide plates 11a and 11f have a substantially rectangular parallelepiped shape, and are arranged substantially straight with respect to the corresponding side wall 10. Each of the guide plates 11b to 11e has a tapered horizontal section, and the corresponding side wall 10 has a tapered shape.
Is slightly inclined outward with respect to the susceptor 7, and is arranged so as to become thicker with respect to the susceptor 7. This allows
The horizontal interval between adjacent guide plates gradually decreases toward the susceptor 7 side.

【0017】また、処理チャンバ2の上方及び下方に
は、サセプタ7の載置部7a上に置かれたウェハWを高
温に加熱するための複数本のハロゲンランプ(赤外線ラ
ンプまたは遠赤外線ランプ)12がそれぞれ放射状に配
置されている。
A plurality of halogen lamps (infrared lamps or far infrared lamps) 12 for heating the wafer W placed on the mounting portion 7a of the susceptor 7 to a high temperature are provided above and below the processing chamber 2. Are radially arranged.

【0018】以上のように構成したエピタキシャル成長
装置1において、サセプタ7の載置部7aにウェハWを
載置した後、ハロゲンランプ12のパワーを上げてウェ
ハWを処理温度まで加熱すると共に、サセプタ7を回転
させた状態で、トリクロルシラン(SiHCl3)ガス
やジクロルシラン(SiH2Cl2)ガス等の反応ガス
をガス供給配管5a〜5cにより各ガス供給口3a〜3
eから処理チャンバ2内に供給する。すると、予備加熱
リング9で加熱された反応ガスが、所定温度に加熱され
たウェハWの表面に沿って層流状態で流れ、ウェハW上
にシリコンの単結晶がエピタキシャル成長して薄膜が形
成される。
In the epitaxial growth apparatus 1 configured as described above, after the wafer W is mounted on the mounting portion 7a of the susceptor 7, the power of the halogen lamp 12 is increased to heat the wafer W to the processing temperature, and to heat the wafer W to the processing temperature. Is rotated, a reaction gas such as a trichlorosilane (SiHCl 3) gas or a dichlorosilane (SiH 2 Cl 2) gas is supplied to each of the gas supply ports 3 a to 3 by gas supply pipes 5 a to 5 c.
e to the processing chamber 2. Then, the reaction gas heated by the preheating ring 9 flows in a laminar state along the surface of the wafer W heated to a predetermined temperature, and a single crystal of silicon is epitaxially grown on the wafer W to form a thin film. .

【0019】ここで、比較例として従来のエピタキシャ
ル成長装置の一例を図3に示す。同図において、従来の
エピタキシャル成長装置100には、上記のガイド板1
1a〜11fcが設けられていない。エピタキシャル成
長装置100のその他の構成は、上述したエピタキシャ
ル成長装置1と同じである。
FIG. 3 shows an example of a conventional epitaxial growth apparatus as a comparative example. In FIG. 1, the conventional epitaxial growth apparatus 100 includes the above-described guide plate 1.
1a to 11fc are not provided. Other configurations of the epitaxial growth apparatus 100 are the same as those of the above-described epitaxial growth apparatus 1.

【0020】このような従来のエピタキシャル成長装置
100では、ハロゲンランプ12の設置位置や反応ガス
の流速等の要因によって不均一になりがちな薄膜の膜厚
分布を改善すべく、各ガス供給口3a〜3eから処理チ
ャンバ2内に導入される反応ガスの流量比を調整して、
ウェハの成膜処理を行っている。例えば、ウェハ表面に
形成される薄膜の膜厚分布が、図4(a)に示すよう
に、ウェハの内側領域A及び外側領域Bで薄膜過剰にな
り、内側領域Aと外側領域Bとの間の中間領域Cで薄膜
不足になる傾向にある場合には、ガス供給口3b,3d
に供給される反応ガスの流量をガス供給口3a,3c,
3eに供給される反応ガスの流量よりも多くすることに
よって、内側領域A及び外側領域Bでの薄膜の形成を抑
制し、中間領域Cでの薄膜の形成を促進するようにして
いる。なお、図4(a)は、ウェハを直径方向に切った
ときの、ウェハ表面に形成される薄膜Mの膜厚分布を示
している。
In such a conventional epitaxial growth apparatus 100, in order to improve the film thickness distribution of the thin film, which tends to become non-uniform due to factors such as the installation position of the halogen lamp 12 and the flow rate of the reaction gas, each of the gas supply ports 3a to 3a. 3e, by adjusting the flow ratio of the reaction gas introduced into the processing chamber 2;
The wafer is being formed. For example, as shown in FIG. 4A, the film thickness distribution of the thin film formed on the wafer surface is excessive in the inner region A and the outer region B of the wafer, and the thickness distribution between the inner region A and the outer region B is large. If there is a tendency for the thin film to be insufficient in the intermediate region C, the gas supply ports 3b and 3d
The flow rate of the reaction gas supplied to the gas supply ports 3a, 3c,
By increasing the flow rate of the reaction gas supplied to 3e, the formation of the thin film in the inner region A and the outer region B is suppressed, and the formation of the thin film in the intermediate region C is promoted. FIG. 4A shows a film thickness distribution of the thin film M formed on the wafer surface when the wafer is cut in the diameter direction.

【0021】しかし、この場合には、ガス供給配管5a
〜5cからガス供給口3a〜3eに吹き出された各反応
ガスが、ガス供給口3a〜3eの部分から拡散するた
め、図3の点線に示すように、隣接するガス吹出口から
の反応ガス同士が、実際に熱分解反応が行われる領域
(以下、反応領域という)で互いに混流してしまう。こ
のため、ウェハWにおける反応ガスの混流域で薄膜の形
成が最も促進されることになり、図4(a)に示すよう
な薄膜Mの膜厚分布を改善することが困難である。
However, in this case, the gas supply pipe 5a
Since the respective reaction gases blown out to the gas supply ports 3a to 3e from the gas supply ports 3a to 3e diffuse from the portions of the gas supply ports 3a to 3e, the reaction gases from the adjacent gas outlets as shown by dotted lines in FIG. However, they are mixed with each other in a region where the thermal decomposition reaction is actually performed (hereinafter, referred to as a reaction region). Therefore, the formation of the thin film is most promoted in the mixed region of the reaction gas on the wafer W, and it is difficult to improve the film thickness distribution of the thin film M as shown in FIG.

【0022】これに対し本実施形態では、予備加熱リン
グ9の上部に、側壁10の先端からサセプタ7側に延び
るガイド板11a〜11eを設けたので、ガス供給配管
5a〜5cからガス供給口3a〜3eに吹き出された各
反応ガスが、図2の点線で示すように、ガイド板11a
〜11eの部分、つまり比較例よりも反応ガスの流れ方
向下流側の位置から拡散する。したがって、反応ガス
は、図2の点線で示すように、反応領域から離れた位置
で互いに混流するようになる。このため、図4(a)に
示すような薄膜Mの膜厚分布を持つ場合には、上述した
ようにガス供給口3b,3dに供給される反応ガスの流
量をガス供給口3a,3c,3eに供給される反応ガス
の流量よりも多くすることで、ウェハWの内側領域A及
び外側領域Bでの薄膜の形成が確実に抑制される。その
結果、薄膜Mの膜厚分布は、図4(b)に示すようにほ
ぼ均一になる。具体例として、薄膜の膜厚誤差を1%以
下に抑えることができた。
On the other hand, in the present embodiment, since the guide plates 11a to 11e extending from the end of the side wall 10 to the susceptor 7 side are provided above the preheating ring 9, the gas supply pipes 5a to 5c are connected to the gas supply ports 3a. Each of the reaction gases blown out to the guide plates 11a to 3e as shown by the dotted line in FIG.
11e, that is, from the position on the downstream side in the flow direction of the reaction gas from the comparative example. Accordingly, the reactant gases are mixed with each other at a position distant from the reaction region, as shown by a dotted line in FIG. For this reason, when the thin film M has a film thickness distribution as shown in FIG. 4A, the flow rate of the reaction gas supplied to the gas supply ports 3b and 3d is changed as described above. By setting the flow rate of the reaction gas to be larger than that supplied to 3e, formation of a thin film in the inner region A and the outer region B of the wafer W is reliably suppressed. As a result, the film thickness distribution of the thin film M becomes substantially uniform as shown in FIG. As a specific example, the thickness error of the thin film could be suppressed to 1% or less.

【0023】以上、本発明の好適な実施形態について述
べたが、本発明は上記実施形態に限定されないことは言
うまでもない。例えば、上記実施形態では、ガイド板1
1a〜11eを予備加熱リング9まで延びるように構成
したが、サセプタ7における載置部7aの手前位置まで
延びるように構成してもよい。また、隣接するガイド板
間の間隔を、サセプタ7側に対して狭くなるようにした
が、その間隔は一定であってもかまわない。そのような
ガイド板の形状、寸法、取付姿勢、設置数等は、ウェハ
W表面に形成される薄膜の膜厚分布特性に応じて適宜設
定すればよい。
Although the preferred embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the above embodiment. For example, in the above embodiment, the guide plate 1
Although 1a to 11e are configured to extend to the preheating ring 9, they may be configured to extend to a position on the susceptor 7 before the mounting portion 7a. Further, the interval between the adjacent guide plates is narrowed with respect to the susceptor 7 side, but the interval may be constant. The shape, dimensions, mounting attitude, number of installations, and the like of such guide plates may be appropriately set according to the film thickness distribution characteristics of the thin film formed on the surface of the wafer W.

【0024】また、上記実施形態の成膜装置は、予備加
熱リングを有するエピタキシャル成長装置であるが、本
発明は、予備加熱リングが設けられていないエピタキシ
ャル成長装置にも適用可能である。また、本発明は、エ
ピタキシャル成長装置以外の成膜装置、例えばCVD装
置等にも適用可能である。
Although the film forming apparatus of the above embodiment is an epitaxial growth apparatus having a preheating ring, the present invention is also applicable to an epitaxial growth apparatus having no preheating ring. The present invention is also applicable to a film forming apparatus other than the epitaxial growth apparatus, for example, a CVD apparatus.

【0025】[0025]

【発明の効果】本発明によれば、処理チャンバ内に導入
された反応ガスを被処理体の表面に導くためのガイド部
材を設け、反応ガスの流量だけでなく、反応ガスの流れ
る方向をも制御できるようにしたので、ウェハ表面に形
成される薄膜の膜厚分布の均一性が向上する。
According to the present invention, a guide member for guiding the reaction gas introduced into the processing chamber to the surface of the object to be processed is provided, so that not only the flow rate of the reaction gas but also the direction in which the reaction gas flows can be controlled. Since the control can be performed, the uniformity of the film thickness distribution of the thin film formed on the wafer surface is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる成膜装置であるエピタキシャル
成長装置を概略的に示す説明図である。
FIG. 1 is an explanatory view schematically showing an epitaxial growth apparatus which is a film forming apparatus according to the present invention.

【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】従来におけるエピタキシャル成長装置の一例を
示す平面断面図である。
FIG. 3 is a plan sectional view showing an example of a conventional epitaxial growth apparatus.

【図4】(a)はウェハ表面に形成される薄膜の膜厚分
布の一例を示す図であり、(b)は図1に示すエピタキ
シャル成長装置を使用してウェハに薄膜を形成したとき
の膜厚分布を示す図である。
4A is a diagram showing an example of a film thickness distribution of a thin film formed on a wafer surface, and FIG. 4B is a diagram showing a film when a thin film is formed on a wafer using the epitaxial growth apparatus shown in FIG. It is a figure showing thickness distribution.

【符号の説明】[Explanation of symbols]

1…エピタキシャル成長装置(成膜装置)、2…処理チ
ャンバ、3a〜3e…ガス供給口、7…サセプタ(ウェ
ハ支持部材)、7a…載置部、9…予備加熱リング(加
熱部材)、10…側壁、11a〜11f…ガイド板(ガ
イド部材)、W…ウェハ(被処理体)。
DESCRIPTION OF SYMBOLS 1 ... Epitaxial growth apparatus (film-forming apparatus), 2 ... Processing chamber, 3a-3e ... Gas supply port, 7 ... Susceptor (wafer support member), 7a ... Placement part, 9 ... Preheating ring (heating member), 10 ... Side walls, 11a to 11f: guide plate (guide member), W: wafer (object to be processed).

フロントページの続き (72)発明者 高木 庸司 千葉県成田市新泉14−3野毛平工業団地内 アプライド マテリアルズ ジャパン 株式会社内 (72)発明者 有馬 靖二 千葉県成田市新泉14−3野毛平工業団地内 アプライド マテリアルズ ジャパン 株式会社内 Fターム(参考) 4K030 AA03 AA06 BA29 BB02 EA03 FA10 GA02 KA12 KA25 5F045 AA03 AB02 AC05 AF02 BB02 DP04 EF14 EK07 EK11 GB01Continuing on the front page (72) Inventor Youji Takagi 14-3 Shinzumi, Narita-shi, Chiba Pref. Within Applied Materials Japan Co., Ltd. (72) Inventor Yasuji Arima 14-3 Shin-izumi, Narita-shi, Chiba Pref. F-term (reference) 4K030 AA03 AA06 BA29 BB02 EA03 FA10 GA02 KA12 KA25 5F045 AA03 AB02 AC05 AF02 BB02 DP04 EF14 EK07 EK11 GB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応ガスを処理チャンバ内に導入して被
処理体の表面に沿って流し、熱分解反応させることで成
膜を行う成膜装置であって、 前記処理チャンバ内に導入された前記反応ガスを前記被
処理体の表面に導くためのガイド手段を備える成膜装
置。
1. A film forming apparatus for forming a film by introducing a reaction gas into a processing chamber, flowing the gas along a surface of an object to be processed, and performing a thermal decomposition reaction, wherein the film is introduced into the processing chamber. A film forming apparatus including a guide unit for guiding the reaction gas to the surface of the target object;
【請求項2】 ガス供給口を有する処理チャンバと、前
記処理チャンバ内に設置され、被処理体が置かれる載置
部を有するウェハ支持部材とを備え、反応ガスを前記ガ
ス供給口から前記処理チャンバ内に導入して前記被処理
体の表面に沿って流し、熱分解反応させることで成膜を
行う成膜装置であって、 前記ガス供給口から前記載置部に向かって延び、前記処
理チャンバ内に導入された前記反応ガスを前記被処理体
の表面に導くためのガイド部材を備える成膜装置。
2. A processing chamber having a gas supply port, and a wafer support member provided in the processing chamber and having a mounting portion on which an object to be processed is placed, wherein a reaction gas is supplied from the gas supply port to the processing chamber. A film forming apparatus configured to form a film by introducing into a chamber, flowing along a surface of the object to be processed, and causing a thermal decomposition reaction, wherein the film processing apparatus extends from the gas supply port toward the mounting unit, and performs the processing. A film forming apparatus including a guide member for guiding the reaction gas introduced into the chamber to the surface of the target object;
【請求項3】 前記処理チャンバ内における前記ウェハ
支持部材の外側には、前記ガス供給口から導入された前
記反応ガスを加熱するための加熱部材が設けられてお
り、前記加熱部材の上部に前記ガイド部材が設けられて
いる請求項2記載の成膜装置。
3. A heating member for heating the reaction gas introduced from the gas supply port is provided outside the wafer support member in the processing chamber, and the heating member is provided above the heating member. 3. The film forming apparatus according to claim 2, further comprising a guide member.
JP11136067A 1999-05-17 1999-05-17 Film-forming device Withdrawn JP2000331939A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11136067A JP2000331939A (en) 1999-05-17 1999-05-17 Film-forming device
PCT/JP2000/003165 WO2000070662A1 (en) 1999-05-17 2000-05-17 Device for film deposition
TW89109497A TW457559B (en) 1999-05-17 2000-05-17 Film-forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11136067A JP2000331939A (en) 1999-05-17 1999-05-17 Film-forming device

Publications (1)

Publication Number Publication Date
JP2000331939A true JP2000331939A (en) 2000-11-30

Family

ID=15166451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11136067A Withdrawn JP2000331939A (en) 1999-05-17 1999-05-17 Film-forming device

Country Status (3)

Country Link
JP (1) JP2000331939A (en)
TW (1) TW457559B (en)
WO (1) WO2000070662A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198316A (en) * 2000-12-27 2002-07-12 Shin Etsu Handotai Co Ltd Vapor phase growth apparatus and method for manufacturing epitaxial wafer
JP2002231641A (en) * 2001-01-31 2002-08-16 Shin Etsu Handotai Co Ltd Vapor phase growth system and epitaxial wafer manufacturing method
JP2002289597A (en) * 2001-03-23 2002-10-04 Tokyo Electron Ltd Heat treatment device and its method
WO2005059981A1 (en) * 2003-12-17 2005-06-30 Shin-Etsu Handotai Co., Ltd. Vapor growth device and production method for epitaxial wafer
WO2005059980A1 (en) * 2003-12-17 2005-06-30 Shin-Etsu Handotai Co., Ltd. Vapor growth device and porduction method for epitaxial wafer
JP2007035720A (en) * 2005-07-22 2007-02-08 Sumco Corp Epitaxial growth apparatus and epitaxial wafer manufacturing method
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
JP2013533641A (en) * 2010-07-29 2013-08-22 ローレンス アドヴァンスド セミコンダクター テクノロジーズ,エルエルシー Substrate processing apparatus and system
US20140134332A1 (en) * 2012-11-15 2014-05-15 Spansion Llc Distribution of Gas Over A Semiconductor Water in Batch Processing
WO2014151867A1 (en) * 2013-03-14 2014-09-25 Applied Materials, Inc. Film forming method using epitaxial growth and epitaxial growth apparatus
US20150020734A1 (en) * 2013-07-17 2015-01-22 Applied Materials, Inc. Structure for improved gas activation for cross-flow type thermal cvd chamber
KR101487411B1 (en) 2013-09-02 2015-01-29 주식회사 엘지실트론 A liner and an epitaxial reactor
US20150099065A1 (en) * 2012-06-07 2015-04-09 Soitec Gas injection components for deposition systems, deposition systems including such components, and related methods
KR20150074165A (en) * 2012-10-26 2015-07-01 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial chamber with customizable flow injection
US9096949B2 (en) 2013-03-27 2015-08-04 Applied Materials, Inc. Susceptor support portion and epitaxial growth apparatus including susceptor support portion
JP2016517633A (en) * 2013-03-14 2016-06-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition-deposited photoresist and manufacturing and lithography system therefor
KR20180012151A (en) * 2016-07-26 2018-02-05 에스케이실트론 주식회사 Apparatus for Fabricating Epitaxial Wafer
CN107761074A (en) * 2016-08-19 2018-03-06 应用材料公司 Top cone for epitaxial chamber
KR20180106964A (en) * 2017-03-17 2018-10-01 어플라이드 머티어리얼스, 인코포레이티드 Finned rotor cover
US10788744B2 (en) 2013-03-12 2020-09-29 Applied Materials, Inc. Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
CN113337810A (en) * 2021-05-26 2021-09-03 北京北方华创微电子装备有限公司 Lining device and semiconductor processing equipment
US20220205134A1 (en) * 2020-12-31 2022-06-30 Globalwafers Co., Ltd. Systems and methods for a preheat ring in a semiconductor wafer reactor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634631B (en) * 2017-06-30 2018-09-01 台灣積體電路製造股份有限公司 Heating apparatus
CN115584553A (en) * 2022-11-04 2023-01-10 西安奕斯伟材料科技有限公司 Preheating ring and wafer epitaxial growth equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811781A (en) * 1981-07-15 1983-01-22 Nippon Denso Co Ltd Plasma cvd device
JPH01315130A (en) * 1988-03-28 1989-12-20 Toshiba Corp Vapor growth apparatus
JP2765685B2 (en) * 1992-01-17 1998-06-18 シャープ株式会社 Photoexcited vapor phase epitaxy
JPH06232049A (en) * 1993-01-29 1994-08-19 Komatsu Electron Metals Co Ltd Semiconductor manufacturing device
EP0967633A1 (en) * 1993-07-30 1999-12-29 Applied Materials, Inc. Gas inlets for wafer processing chamber
US5551982A (en) * 1994-03-31 1996-09-03 Applied Materials, Inc. Semiconductor wafer process chamber with susceptor back coating
JPH09260230A (en) * 1996-03-22 1997-10-03 Toshiba Corp Semiconductor device manufacturing device and manufacture thereof

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198316A (en) * 2000-12-27 2002-07-12 Shin Etsu Handotai Co Ltd Vapor phase growth apparatus and method for manufacturing epitaxial wafer
JP4588894B2 (en) * 2001-01-31 2010-12-01 信越半導体株式会社 Vapor phase growth apparatus and epitaxial wafer manufacturing method
JP2002231641A (en) * 2001-01-31 2002-08-16 Shin Etsu Handotai Co Ltd Vapor phase growth system and epitaxial wafer manufacturing method
JP2002289597A (en) * 2001-03-23 2002-10-04 Tokyo Electron Ltd Heat treatment device and its method
JP4655395B2 (en) * 2001-03-23 2011-03-23 東京エレクトロン株式会社 Heat treatment apparatus and method
EP1703549A4 (en) * 2003-12-17 2009-09-02 Shinetsu Handotai Kk Vapor growth device and porduction method for epitaxial wafer
EP1703550A1 (en) * 2003-12-17 2006-09-20 Shin-Etsu Handotai Company Limited Vapor growth device and production method for epitaxial wafer
US8926753B2 (en) 2003-12-17 2015-01-06 Shin-Etsu Handotai Co., Ltd. Vapor phase growth apparatus and method of fabricating epitaxial wafer
EP1703550A4 (en) * 2003-12-17 2009-09-02 Shinetsu Handotai Kk Vapor growth device and production method for epitaxial wafer
EP1703549A1 (en) * 2003-12-17 2006-09-20 Shin-Etsu Handotai Company Limited Vapor growth device and porduction method for epitaxial wafer
WO2005059980A1 (en) * 2003-12-17 2005-06-30 Shin-Etsu Handotai Co., Ltd. Vapor growth device and porduction method for epitaxial wafer
WO2005059981A1 (en) * 2003-12-17 2005-06-30 Shin-Etsu Handotai Co., Ltd. Vapor growth device and production method for epitaxial wafer
JP2007035720A (en) * 2005-07-22 2007-02-08 Sumco Corp Epitaxial growth apparatus and epitaxial wafer manufacturing method
JP4655801B2 (en) * 2005-07-22 2011-03-23 株式会社Sumco Epitaxial growth apparatus and epitaxial wafer manufacturing method
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US8186077B2 (en) 2007-01-22 2012-05-29 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
JP2013533641A (en) * 2010-07-29 2013-08-22 ローレンス アドヴァンスド セミコンダクター テクノロジーズ,エルエルシー Substrate processing apparatus and system
US20150099065A1 (en) * 2012-06-07 2015-04-09 Soitec Gas injection components for deposition systems, deposition systems including such components, and related methods
KR102135229B1 (en) * 2012-10-26 2020-07-17 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial chamber with customizable flow injection
KR20150074165A (en) * 2012-10-26 2015-07-01 어플라이드 머티어리얼스, 인코포레이티드 Epitaxial chamber with customizable flow injection
JP2015534283A (en) * 2012-10-26 2015-11-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Epitaxial chamber with customizable flow injection
US20140134332A1 (en) * 2012-11-15 2014-05-15 Spansion Llc Distribution of Gas Over A Semiconductor Water in Batch Processing
US9493874B2 (en) * 2012-11-15 2016-11-15 Cypress Semiconductor Corporation Distribution of gas over a semiconductor wafer in batch processing
US10788744B2 (en) 2013-03-12 2020-09-29 Applied Materials, Inc. Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
US10072354B2 (en) 2013-03-14 2018-09-11 Applied Materials, Inc. Lower side wall for epitaxial growth apparatus
US11427928B2 (en) 2013-03-14 2022-08-30 Applied Materials, Inc. Lower side wall for epitaxtail growth apparatus
WO2014151867A1 (en) * 2013-03-14 2014-09-25 Applied Materials, Inc. Film forming method using epitaxial growth and epitaxial growth apparatus
JP2016517633A (en) * 2013-03-14 2016-06-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition-deposited photoresist and manufacturing and lithography system therefor
US9663873B2 (en) 2013-03-14 2017-05-30 Applied Materials, Inc. Ceiling portion for epitaxial growth apparatus
US9096949B2 (en) 2013-03-27 2015-08-04 Applied Materials, Inc. Susceptor support portion and epitaxial growth apparatus including susceptor support portion
WO2015009784A1 (en) * 2013-07-17 2015-01-22 Applied Materials, Inc. Structure for improved gas activation for cross-flow type thermal cvd chamber
US20150020734A1 (en) * 2013-07-17 2015-01-22 Applied Materials, Inc. Structure for improved gas activation for cross-flow type thermal cvd chamber
TWI648427B (en) * 2013-07-17 2019-01-21 應用材料股份有限公司 Structure for improved gas activation for cross-flow type thermal cvd chamber
KR101487411B1 (en) 2013-09-02 2015-01-29 주식회사 엘지실트론 A liner and an epitaxial reactor
KR20180012151A (en) * 2016-07-26 2018-02-05 에스케이실트론 주식회사 Apparatus for Fabricating Epitaxial Wafer
CN107761074A (en) * 2016-08-19 2018-03-06 应用材料公司 Top cone for epitaxial chamber
US10446420B2 (en) 2016-08-19 2019-10-15 Applied Materials, Inc. Upper cone for epitaxy chamber
US10978324B2 (en) 2016-08-19 2021-04-13 Applied Materials, Inc. Upper cone for epitaxy chamber
CN107761074B (en) * 2016-08-19 2021-05-25 应用材料公司 Upper cone for epitaxial chamber
KR20180106964A (en) * 2017-03-17 2018-10-01 어플라이드 머티어리얼스, 인코포레이티드 Finned rotor cover
KR102462355B1 (en) * 2017-03-17 2022-11-03 어플라이드 머티어리얼스, 인코포레이티드 Finned rotor cover
US20220205134A1 (en) * 2020-12-31 2022-06-30 Globalwafers Co., Ltd. Systems and methods for a preheat ring in a semiconductor wafer reactor
CN113337810B (en) * 2021-05-26 2022-04-22 北京北方华创微电子装备有限公司 Lining device and semiconductor processing equipment
CN113337810A (en) * 2021-05-26 2021-09-03 北京北方华创微电子装备有限公司 Lining device and semiconductor processing equipment

Also Published As

Publication number Publication date
WO2000070662A1 (en) 2000-11-23
TW457559B (en) 2001-10-01

Similar Documents

Publication Publication Date Title
JP2000331939A (en) Film-forming device
JP3696632B2 (en) Gas inlet for wafer processing chamber
JP4108748B2 (en) Cold wall vapor deposition
US4858558A (en) Film forming apparatus
TWI404819B (en) Coating apparatus and coating method
US20050221618A1 (en) System for controlling a plenum output flow geometry
WO2001004376A1 (en) A method of forming a silicon nitride layer on a semiconductor wafer
JPH06232060A (en) Method and device for growing epitaxial silicon layer
JP2005183510A (en) Vapor phase growing apparatus and method of manufacturing epitaxial wafer
US8257499B2 (en) Vapor phase deposition apparatus and vapor phase deposition method
JP2009164570A (en) Vapor-phase process device, vapor-phase process method, and substrate
TWI754765B (en) Inject assembly for epitaxial deposition processes
US4848272A (en) Apparatus for forming thin films
CN113287188B (en) Vapor phase growth device
JPH0492414A (en) Thin film formation device
JP2001110726A (en) Method and device for forming film
JPS62263629A (en) Vapor growth device
JP2001520456A (en) Method and apparatus for introducing a processing fluid onto a rotating substrate
JP2008294217A (en) Vapor phase growth device and vapor phase growth method
JPS59159980A (en) Vapor growth device
JP2001044125A (en) Device and method for epitaxial growth
JP3113478B2 (en) Semiconductor manufacturing equipment
CN111128696A (en) Method for producing epitaxial silicon wafer and epitaxial silicon wafer
JP2003142411A (en) Semiconductor manufacturing device
JP3731550B2 (en) Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801