JP2000329247A - Motor-driven expansion valve - Google Patents

Motor-driven expansion valve

Info

Publication number
JP2000329247A
JP2000329247A JP11138855A JP13885599A JP2000329247A JP 2000329247 A JP2000329247 A JP 2000329247A JP 11138855 A JP11138855 A JP 11138855A JP 13885599 A JP13885599 A JP 13885599A JP 2000329247 A JP2000329247 A JP 2000329247A
Authority
JP
Japan
Prior art keywords
valve
motor
orifice
refrigerant
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11138855A
Other languages
Japanese (ja)
Inventor
Katsuhisa Sugano
勝久 菅野
Hitoshi Umezawa
仁志 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP11138855A priority Critical patent/JP2000329247A/en
Publication of JP2000329247A publication Critical patent/JP2000329247A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a structure by driving a pressing member and a moving member to a valve main body having an orifice with an electric motor to open or close a valve member. SOLUTION: A pulse motor 30 moving a valve member 16 in the valve opening direction via a moving mechanism is fixed to the lower face of a motor fitting member 20, and a coupling piece 31a inserted into a coupling groove section 23c at the lower end of an adjusting shaft 23 is formed on the output shaft 31 of the pulse motor 30. When the rotation of the output shaft 31 is transferred to the adjusting shaft 23 to rotate the adjusting shaft 23, the valve member 16 is converted into a straight motion by a large-diameter screw section 23a and is lifted or lowered, and the valve member 16 approaches an orifice 15 or is separated from it to close or open a motor-driven expansion valve 10. The motor-driven expansion valve 10 is provided with a high-pressure side passage 12, a low-pressure side passage 13 and a low-pressure refrigerant passage 14 on a valve main body 11, its structure is simplified, and the pipe connection to a liquid receiver 4, an evaporator 6 and a refrigerant compressor 2 can be easily made.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の空気調和
装置等に使用される電動膨張弁に係り、特にオリフィス
の開口面積をモータにより調整する電動膨張弁に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric expansion valve used for an air conditioner of an automobile, and more particularly to an electric expansion valve for adjusting an opening area of an orifice by a motor.

【0002】[0002]

【従来の技術】従来、この種の膨張弁は、図3に示され
る自動車の空気調和装置等の冷凍サイクル1に使用され
るものである。すなわち、冷凍サイクル1はエンジンに
より駆動される冷媒圧縮機2と、冷媒圧縮機2の吐出側
に接続される凝縮機3と、凝縮機3に接続される受液器
4と、受液器4からの液相冷媒を気液2相冷媒へ断熱膨
張させる膨張弁5と、膨張弁5に接続される蒸発器6と
から構成され、膨張弁5は冷凍サイクル1内に位置して
いる。
2. Description of the Related Art Conventionally, this type of expansion valve is used for a refrigeration cycle 1 such as an air conditioner of an automobile shown in FIG. That is, the refrigeration cycle 1 includes a refrigerant compressor 2 driven by an engine, a condenser 3 connected to the discharge side of the refrigerant compressor 2, a liquid receiver 4 connected to the condenser 3, and a liquid receiver 4 An expansion valve 5 that adiabatically expands the liquid-phase refrigerant from the air into a gas-liquid two-phase refrigerant, and an evaporator 6 connected to the expansion valve 5. The expansion valve 5 is located in the refrigeration cycle 1.

【0003】前記の膨張弁5は、弁本体5aに液相冷媒
を流入する高圧側通路5bと断熱膨張された気液2相冷
媒が流出する低圧側通路5cとを設けてあり、高圧側通
路5bと低圧側通路5cとをオリフィス7により連通
し、オリフィス7を通過する冷媒量を調整する弁部材8
を備え、弁本体5aに低圧冷媒通路5dを貫通して形成
し、低圧冷媒通路5d内にプランジャ9aが摺動可能に
位置する感温駆動部材9を弁本体5aに固定し、弁部材
8を閉弁方向に押圧する圧縮コイルばね8aを設け、プ
ランジャ9aの摺動により弁部材8を開弁方向に押圧す
る作動棒9bを備えた構成からなる。
The expansion valve 5 has a high-pressure side passage 5b through which a liquid-phase refrigerant flows into a valve body 5a and a low-pressure side passage 5c through which an adiabatic expanded gas-liquid two-phase refrigerant flows out. A valve member 8 that communicates the low pressure side passage 5c with the low pressure side passage 5c through an orifice 7, and adjusts the amount of refrigerant passing through the orifice 7.
A low-pressure refrigerant passage 5d is formed through the valve main body 5a, and the temperature-sensitive drive member 9 in which the plunger 9a is slidably fixed in the low-pressure refrigerant passage 5d is fixed to the valve main body 5a. A compression coil spring 8a for pressing in the valve closing direction is provided, and an operating rod 9b for pressing the valve member 8 in the valve opening direction by sliding the plunger 9a is provided.

【0004】そして、感温駆動部材9のプランジャ9a
が低圧冷媒通路5d内の温度を感温部の上部気密室9c
へ伝達し、その温度に応じて上部気密室9cの圧力が変
化し、例えば温度が高い場合は上部気密室の圧力が上昇
し、感温部のダイヤフラム9dがプランジャ9aを押し
下げ、弁部材8を開弁方向に移動してオリフィス7の冷
媒通過量を多くして蒸発器6の温度を下げる。反対に温
度が低い場合は上部気密室9cの圧力が下降し、感温部
のダイヤフラム9dのプランジャ9aを押し下げる力が
弱まり、プランジャ9aは閉弁方向に押圧する圧縮コイ
ルばね8aにより上昇してオリフィス7の冷媒通過量が
少なくなり、蒸発器の6温度は上昇する。
The plunger 9a of the temperature-sensitive driving member 9
Adjusts the temperature in the low-pressure refrigerant passage 5d to the upper airtight chamber 9c of the temperature sensing part.
The pressure in the upper airtight chamber 9c changes according to the temperature. For example, when the temperature is high, the pressure in the upper airtight chamber rises, and the diaphragm 9d of the temperature sensing part pushes down the plunger 9a to push the valve member 8 down. By moving in the valve opening direction, the amount of refrigerant passing through the orifice 7 is increased to lower the temperature of the evaporator 6. On the other hand, when the temperature is low, the pressure of the upper airtight chamber 9c decreases, the force for pushing down the plunger 9a of the diaphragm 9d of the temperature sensing part weakens, and the plunger 9a rises due to the compression coil spring 8a pressing in the valve closing direction to increase the orifice. The refrigerant passing amount of the evaporator 7 decreases, and the temperature of the evaporator 6 increases.

【0005】このように、膨張弁5は低圧冷媒通路5d
内の温度により弁部材8を移動させてオリフィス7の開
口面積を変化させ、冷媒通過量を調整して蒸発器6の温
度を調整している。そして、この種の膨張弁5において
は、液相冷媒から気液2相冷媒へ断熱膨張させるオリフ
ィス7の開口面積は、生産段階において弁部材8を閉弁
方向に押圧する圧縮コイルばね8aのばね圧を調整する
ことにより行っている。
Thus, the expansion valve 5 is connected to the low-pressure refrigerant passage 5d.
The temperature of the evaporator 6 is adjusted by moving the valve member 8 to change the opening area of the orifice 7 and adjusting the amount of refrigerant passing therethrough. In this type of expansion valve 5, the opening area of the orifice 7 for adiabatically expanding the liquid-phase refrigerant into the gas-liquid two-phase refrigerant is determined by the spring of the compression coil spring 8a that presses the valve member 8 in the valve closing direction at the production stage. This is done by adjusting the pressure.

【0006】[0006]

【発明が解決しようとする課題】ところが、前記した膨
張弁は、感温駆動部材により弁部材をオリフィスに接近
あるいは離反させて冷媒通過量を調整し、蒸発器の温度
を自動的に調整しているため、構成が複雑となるという
問題点がある。また、モータにより冷媒通過量を調整す
る膨張弁があるが、例えば自動車の空気調和装置に用い
る場合に、受液器、蒸発器、冷媒圧縮機との配管が煩雑
になるという問題点がある。本発明は、このような問題
に鑑みてなされたものであって、その目的とするところ
は、構成が簡単となり、蒸発器との配管や蒸発器、冷媒
圧縮機との配管が容易に行える電動膨張弁を提供するこ
とにある。
However, in the above-mentioned expansion valve, the temperature-sensitive drive member moves the valve member toward or away from the orifice to adjust the amount of refrigerant passing therethrough, and automatically adjusts the temperature of the evaporator. Therefore, there is a problem that the configuration becomes complicated. Although there is an expansion valve that adjusts the amount of refrigerant passing through a motor, there is a problem in that, for example, when used in an air conditioner of an automobile, piping to a liquid receiver, an evaporator, and a refrigerant compressor becomes complicated. The present invention has been made in view of such a problem, and an object of the present invention is to simplify the configuration and to easily perform piping with an evaporator, evaporator, and refrigerant compressor. An object of the present invention is to provide an expansion valve.

【0007】[0007]

【課題を解決するための手段】前記目的を達成すべく、
本発明の電動膨張弁は、冷媒が流入する高圧側通路と冷
媒が流出する低圧側通路とを連通するオリフィスを備え
た弁本体と、前記オリフィスを流れる冷媒の量を調製す
る弁部材と、該弁部材を移動させる移動部材と、前記弁
部材を開弁方向に付勢する押圧部材とを備え、前記移動
部材が、電動モータにより駆動されて、前記弁部材を開
閉移動させることを特徴としている。そして、前記押圧
部材は圧縮コイルばねで構成され、前記移動機構は、前
記電動モータの回転運動を直進運動に変換するねじ機構
により構成されていることを特徴とする。
In order to achieve the above object,
The electric expansion valve of the present invention is a valve body having an orifice communicating a high-pressure side passage through which a refrigerant flows and a low-pressure side passage through which a refrigerant flows out, a valve member that adjusts an amount of the refrigerant flowing through the orifice, A moving member for moving the valve member, and a pressing member for urging the valve member in the valve opening direction, wherein the moving member is driven by an electric motor to open and close the valve member. . The pressing member is constituted by a compression coil spring, and the moving mechanism is constituted by a screw mechanism for converting a rotational movement of the electric motor into a linear movement.

【0008】このように構成された電動膨張弁は、弁部
材を電動モータで駆動し電動モータを一方に回転させて
弁部材をオリフィスに接近させ、冷媒の通過流量を減少
させることができ、電動モータを他方に回転させると弁
部材は押圧部材の開弁方向の付勢により離反してオリフ
ィスの開口面積を増加させ、冷媒の通過流量を増加させ
ることができる。このように電動モータを使用して弁部
材により冷媒の通過流量を容易に調整できるため、構成
が簡単となり、弁本体に高圧側通路、低圧側通路および
低圧冷媒通路を設けているので受液器、蒸発器および冷
媒圧縮機との配管接続が容易に行える。また、押圧部材
を圧縮コイルばねで構成し、移動機構は電動モータ即ち
ステッピングモータの回転を直進運動に変換するねじ機
構により構成することにより、スペース効率を良くする
ことができ小型化が図れる。
In the electric expansion valve constructed as described above, the valve member is driven by the electric motor and the electric motor is rotated to one side to bring the valve member closer to the orifice, thereby reducing the flow rate of the refrigerant. When the motor is rotated to the other side, the valve member separates due to the urging of the pressing member in the valve opening direction to increase the opening area of the orifice, thereby increasing the flow rate of the refrigerant. As described above, the flow rate of the refrigerant can be easily adjusted by the valve member using the electric motor, so that the configuration is simplified, and the high pressure side passage, the low pressure side passage, and the low pressure refrigerant passage are provided in the valve body. The piping connection with the evaporator and the refrigerant compressor can be easily performed. Further, by forming the pressing member by a compression coil spring and the moving mechanism by a screw mechanism for converting the rotation of the electric motor, that is, the stepping motor into a linear motion, space efficiency can be improved and the size can be reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明の電動膨張弁の一実
施形態を図面に基づき詳細に説明する。図1は、本実施
形態の電動膨張弁の冷凍サイクルにおける断面図であ
る。電動膨張弁10は、例えば自動車の空気調和装置に
おける冷凍サイクル1に使用されるものであり、冷凍サ
イクル1はエンジンにより駆動される冷媒圧縮機2と、
冷媒圧縮機2の吐出側に接続される凝縮機3と、凝縮機
3に接続される受液器4と、受液器4からの液相冷媒を
所定の開口面積のオリフィスで気液2相冷媒に減圧して
断熱膨張させる電動膨張弁10と、電動膨張弁10に接
続される蒸発器6とから構成され、蒸発器6の気相冷媒
を冷媒圧縮機2に戻して循環させている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the electric expansion valve of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of the electric expansion valve of the present embodiment in a refrigeration cycle. The electric expansion valve 10 is used, for example, for a refrigeration cycle 1 in an air conditioner of an automobile. The refrigeration cycle 1 includes a refrigerant compressor 2 driven by an engine,
A condenser 3 connected to the discharge side of the refrigerant compressor 2, a receiver 4 connected to the condenser 3, and a liquid-phase refrigerant from the receiver 4 through an orifice having a predetermined opening area for gas-liquid two-phase. It comprises an electric expansion valve 10 for adiabatically expanding the refrigerant by reducing the pressure of the refrigerant, and an evaporator 6 connected to the electric expansion valve 10. The vapor-phase refrigerant in the evaporator 6 is returned to the refrigerant compressor 2 and circulated.

【0010】電動膨張弁10は、弁本体11がアルミニ
ウム等の直方体形状の金属から構成され、弁本体11の
下部には液相冷媒の流入する高圧側通路12と、気液2
相冷媒が流出する低圧側通路13とを設けてある。高圧
側通路12は弁本体11の底面から穿設された穴部12
aと、この穴部に連通し弁本体の一方の側面に開口する
開口部12bとから構成されている。低圧側通路13は
高圧側通路12の上部に位置し、弁本体11の他方の側
面に開口している。また、弁本体11の上部には低圧冷
媒通路14を水平方向に貫通して形成してある。
The electric expansion valve 10 has a valve body 11 made of a rectangular parallelepiped metal such as aluminum. A high pressure side passage 12 into which a liquid-phase refrigerant flows, and a gas-liquid 2
A low-pressure side passage 13 through which the phase refrigerant flows out is provided. The high pressure side passage 12 has a hole 12 formed from the bottom of the valve body 11.
a and an opening 12b communicating with the hole and opening on one side of the valve body. The low-pressure side passage 13 is located above the high-pressure side passage 12 and opens on the other side surface of the valve body 11. A low-pressure refrigerant passage 14 is formed in the upper part of the valve body 11 so as to penetrate in the horizontal direction.

【0011】弁本体11の内部中心部には、高圧側通路
12と低圧側通路13とを連通するオリフィス15が形
成されている。オリフィス15は高圧側通路12の穴部
12aから形成される小径の円形穴であり、高圧側通路
12との接続部は円錐形にサライ加工した弁座15aが
形成されている。オリフィス15における冷媒の通過量
を調整する弁部材16は、弁座15aに着座してオリフ
ィス15を開閉する球状の弁部17と、弁部17を溶接
等により固着する受け軸18とから構成され、受け軸1
8の外周にはばね受け用の段部が形成されるとともに、
中心には下方が開口している駆動雌ねじ部が形成されて
いる。
An orifice 15 for communicating the high pressure side passage 12 and the low pressure side passage 13 is formed at the center of the inside of the valve body 11. The orifice 15 is a small-diameter circular hole formed from the hole portion 12a of the high-pressure side passage 12, and a connection portion with the high-pressure side passage 12 is formed with a conical valve seat 15a that is salified. The valve member 16 for adjusting the amount of the refrigerant passing through the orifice 15 is composed of a spherical valve portion 17 seated on a valve seat 15a to open and close the orifice 15, and a receiving shaft 18 for fixing the valve portion 17 by welding or the like. , Bearing shaft 1
A step portion for spring receiving is formed on the outer periphery of 8, and
At the center, a drive female screw portion having a lower opening is formed.

【0012】高圧側通路12の下端開口部の内周には取
付雌ねじ部が形成され、この取付雌ねじ部に高圧側通路
12の下端開口部を閉塞するモータ取付部材20の中心
突部外周の雄ねじ部が螺合して固定され、弁本体11と
モータ取付部材20との間にOリング21が装着されて
いる。モータ取付部材20には上部大径穴部22a、中
央小径穴部22b、下部大径穴部22cを有する中心穴
22が貫通して形成してあり、内部に調整軸23が位置
している。
An internal female thread is formed on the inner periphery of the lower end opening of the high-pressure side passage 12, and the external female screw on the outer periphery of the central projection of the motor mounting member 20 for closing the lower end opening of the high-pressure side passage 12 is formed in the internal female thread. The parts are screwed and fixed, and an O-ring 21 is mounted between the valve body 11 and the motor mounting member 20. A center hole 22 having an upper large-diameter hole 22a, a central small-diameter hole 22b, and a lower large-diameter hole 22c is formed through the motor mounting member 20, and an adjustment shaft 23 is located inside.

【0013】調整軸23は、上部の大径ねじ部23aと
下部の小径軸部23bとを有し、下端にはすり割り状の
係合溝部23cが形成されている。モータ取付部材20
の中央小径穴部22bと調整軸23の小径軸部23bと
の間に2重にOリング24が嵌合され、気密が確保され
ている。Oリング24は、その下方の止め輪により脱落
が防止されている。調整軸23の大径ねじ部23aには
受け軸18が螺合しており、受け軸18の外径はモータ
取付部材20の上部大径穴部22aの内径より小さく設
定され、受け軸18は上部大径穴部22a内に位置して
いる。
The adjusting shaft 23 has an upper large-diameter screw portion 23a and a lower small-diameter shaft portion 23b, and a slot-shaped engaging groove 23c is formed at the lower end. Motor mounting member 20
The O-ring 24 is doubly fitted between the central small-diameter hole portion 22b of the above and the small-diameter shaft portion 23b of the adjustment shaft 23, thereby ensuring airtightness. The O-ring 24 is prevented from falling off by a retaining ring below the O-ring 24. The receiving shaft 18 is screwed into the large-diameter screw portion 23a of the adjusting shaft 23, and the outer diameter of the receiving shaft 18 is set smaller than the inner diameter of the upper large-diameter hole portion 22a of the motor mounting member 20. It is located in the upper large-diameter hole portion 22a.

【0014】そして、調整軸23の大径ねじ部23aと
小径軸部23bとの段部が、モータ取付部材20の中央
小径穴部22bの端面に当接し、調整軸23の下方移動
を阻止している。受け軸18の外周のばね受け用の段部
と高圧側通路12の上部角部との間には押圧部材である
圧縮コイルばね26が配設され、弁部材16をオリフィ
ス15と離反する方向に、すなわち開弁方向に付勢して
いる。高圧側通路12は、前記のように弁部材16およ
び弁部材を開弁方向に付勢する圧縮コイルばね26が位
置する弁室として構成されている。
The step between the large-diameter screw portion 23a and the small-diameter shaft portion 23b of the adjustment shaft 23 abuts against the end face of the central small-diameter hole portion 22b of the motor mounting member 20 to prevent the adjustment shaft 23 from moving downward. ing. A compression coil spring 26, which is a pressing member, is disposed between the spring receiving step on the outer periphery of the receiving shaft 18 and the upper corner of the high-pressure side passage 12, and moves the valve member 16 away from the orifice 15. That is, it is biased in the valve opening direction. As described above, the high-pressure side passage 12 is configured as a valve chamber in which the valve member 16 and the compression coil spring 26 that urges the valve member in the valve opening direction are located.

【0015】モータ取付部材20の下面には弁部材16
を移動機構を介して閉弁方向に移動するパルスモータ3
0が固定され、パルスモータ30の出力軸31には調整
軸23の下端の係合溝部23cに挿入される係合片31
aが形成されている。このようにパルスモータ30の出
力軸31の回転が調整軸23に伝達され、調整軸23が
回転すると弁部材16が大径ねじ部23aにより直進運
動に変換されて上昇または下降し、弁部材16をオリフ
ィス15に対して接近あるいは離反させて、閉弁あるい
は開弁するように構成されている。
On the lower surface of the motor mounting member 20, a valve member 16 is provided.
Motor 3 that moves the valve in the valve closing direction via a moving mechanism
0 is fixed and the output shaft 31 of the pulse motor 30 has an engagement piece 31 inserted into the engagement groove 23 c at the lower end of the adjustment shaft 23.
a is formed. As described above, the rotation of the output shaft 31 of the pulse motor 30 is transmitted to the adjustment shaft 23, and when the adjustment shaft 23 rotates, the valve member 16 is converted into linear motion by the large-diameter screw portion 23a and moves up or down. Is moved toward or away from the orifice 15 to close or open the valve.

【0016】モータとして、本実施形態ではパルスモー
タ30を使用している。パルスモータ30はモータドラ
イバを有するコントローラ(図示せず)により制御さ
れ、コントローラには蒸発器等に設置された温度センサ
(図示せず)からの出力が供給される。なお、モータは
パルスモータに限られるものでなくサーボモータ等適宜
のものを用いてもよく、また出力軸はモータから直結さ
れたものではなく、減速機構を介して減速されたもので
もよい。
In this embodiment, a pulse motor 30 is used as a motor. The pulse motor 30 is controlled by a controller (not shown) having a motor driver, and an output from a temperature sensor (not shown) provided in an evaporator or the like is supplied to the controller. The motor is not limited to the pulse motor, but may be an appropriate motor such as a servo motor. The output shaft may not be directly connected to the motor but may be decelerated via a speed reduction mechanism.

【0017】前記の如く構成された電動膨張弁10の動
作について以下に説明する。冷凍サイクル1において、
エンジンにより駆動される冷媒圧縮機2で圧縮された高
圧の冷媒は凝縮機3に吐出され、凝縮機3で放熱、凝縮
されて受液器4に液相冷媒が貯留され、受液器4からの
液相冷媒は電動膨張弁10の高圧側通路12に供給され
る。電動膨張弁10において、液相冷媒はオリフィス1
5を通過するときに断熱膨張して気液2相冷媒となり低
圧側通路13から蒸発器6に供給される。気液2相冷媒
は蒸発器6内で蒸発して気相冷媒となり蒸発器6を低温
状態とする。そして、蒸発器6内の気相冷媒は低圧冷媒
通路14を通って冷媒圧縮機2に戻り、冷媒は冷凍サイ
クル1内で循環する。
The operation of the electric expansion valve 10 configured as described above will be described below. In refrigeration cycle 1,
The high-pressure refrigerant compressed by the refrigerant compressor 2 driven by the engine is discharged to the condenser 3, radiated and condensed by the condenser 3, and the liquid-phase refrigerant is stored in the liquid receiver 4. Is supplied to the high-pressure side passage 12 of the electric expansion valve 10. In the electric expansion valve 10, the liquid-phase refrigerant is
5, adiabatically expands into a gas-liquid two-phase refrigerant and is supplied to the evaporator 6 from the low-pressure side passage 13. The gas-liquid two-phase refrigerant evaporates in the evaporator 6 to become a gas-phase refrigerant, and keeps the evaporator 6 at a low temperature. Then, the gas-phase refrigerant in the evaporator 6 returns to the refrigerant compressor 2 through the low-pressure refrigerant passage 14, and the refrigerant circulates in the refrigeration cycle 1.

【0018】このように構成される冷凍サイクル1にお
いて、蒸発器6の温度を高温側、あるいは低温側へ調整
したい場合には、パルスモータ30を回転駆動させて調
整を行う。例えば、パルスモータ30をX方向に正転さ
せると、出力軸31の係合片31aが回転して調整軸2
3を正転させる。そして、調整軸23の大径ねじ部23
aに螺合している例えば外径六角で回転しない弁部材1
6が圧縮コイルばね26に押されて下降し、オリフィス
15の開口面積を大きくする。これによりオリフィス1
5を通過する冷媒の通過量が増加し、蒸発器6の温度は
低温側に調整される。
In the refrigeration cycle 1 configured as described above, when it is desired to adjust the temperature of the evaporator 6 to the high temperature side or the low temperature side, the pulse motor 30 is rotated to perform the adjustment. For example, when the pulse motor 30 is rotated forward in the X direction, the engagement piece 31a of the output shaft 31 rotates to rotate the adjustment shaft 2
Turn 3 forward. Then, the large-diameter thread portion 23 of the adjustment shaft 23
a non-rotating valve member 1 which is screwed into a
The orifice 15 is lowered by being pressed by the compression coil spring 26 to increase the opening area of the orifice 15. This makes orifice 1
The amount of refrigerant passing through 5 increases, and the temperature of evaporator 6 is adjusted to a lower temperature.

【0019】パルスモータ30を反対に逆転させると、
出力軸31の係合片31aが回転して調整軸23を逆転
させ、調整軸23に螺合している弁部材16が圧縮コイ
ルばね26に抗して上昇し、オリフィス15の開口面積
を小さくする。これによりオリフィス15を通過する冷
媒の通過量が減少し、蒸発器6の温度は高温側に調整さ
れる。なお、弁部材16をオリフィス15に当接させて
閉弁することも可能である。
When the pulse motor 30 is reversely rotated,
The engagement piece 31a of the output shaft 31 rotates to reverse the adjustment shaft 23, and the valve member 16 screwed to the adjustment shaft 23 rises against the compression coil spring 26 to reduce the opening area of the orifice 15. I do. As a result, the amount of refrigerant passing through the orifice 15 decreases, and the temperature of the evaporator 6 is adjusted to a higher temperature. It is also possible to close the valve by bringing the valve member 16 into contact with the orifice 15.

【0020】このようにして、パルスモータ30を作動
させることにより弁部材16を上昇あるいは下降させ、
オリフィス15の開口面積を増減させて冷媒の通過流量
を変化させ、蒸発器6の温度を調整することができる。
パルスモータ30は、その回転をパルスにより正確に制
御できるため、冷媒の相対的な通過流量を正確に調整す
ることができる。また、本発明の電動膨張弁は、弁本体
11に高圧側通路12、低圧側通路13および低圧冷媒
通路14を設けているため構成が簡単となり、受液器
4、蒸発器6および冷媒圧縮機2との配管接続が容易に
行える。
In this way, by operating the pulse motor 30, the valve member 16 is raised or lowered,
The temperature of the evaporator 6 can be adjusted by increasing or decreasing the opening area of the orifice 15 to change the flow rate of the refrigerant.
Since the rotation of the pulse motor 30 can be accurately controlled by a pulse, the relative flow rate of the refrigerant can be accurately adjusted. Further, the electric expansion valve of the present invention has a simple structure because the high pressure side passage 12, the low pressure side passage 13, and the low pressure refrigerant passage 14 are provided in the valve body 11, and the liquid receiver 4, the evaporator 6, and the refrigerant compressor are provided. 2 can be easily connected.

【0021】つぎに本発明の電動膨張弁の他の実施形態
を図面に基づき詳細に説明する。図2は他の実施形態の
冷凍サイクルにおける断面図である。この実施形態は前
記した実施形態に対して、弁部材を閉弁方向に移動する
移動機構が変更されているので、その構成について詳細
に述べるとともに、他の実質的に同等な構成については
前記の実施形態と同じ参照符号を付して詳細な説明は省
略する。
Next, another embodiment of the electric expansion valve of the present invention will be described in detail with reference to the drawings. FIG. 2 is a sectional view of a refrigeration cycle according to another embodiment. In this embodiment, the moving mechanism for moving the valve member in the valve closing direction is changed from the above-described embodiment, so that the configuration thereof will be described in detail, and the other substantially equivalent configurations will be described above. The same reference numerals as in the embodiment are assigned and detailed description is omitted.

【0022】弁本体11の高圧側通路12の下端開口の
穴部12aの内周に形成された取付雌ねじ部には、下端
開口部を閉塞する円柱状のモータ取付部材40が外周ね
じ部により螺着されており、Oリング40aにより気密
が保たれている。モータ取付部材40は上半部が弁本体
11内に位置しており、下半部は弁本体11から突出し
てその外周ねじ部にパルスモータ50がナット50aを
介して取付けられている。
A cylindrical motor mounting member 40 for closing the lower end opening is screwed into the mounting female screw formed on the inner periphery of the hole 12a at the lower end opening of the high pressure side passage 12 of the valve body 11 by the outer peripheral thread. The O-ring 40a keeps airtight. The motor mounting member 40 has an upper half located in the valve main body 11, a lower half protruding from the valve main body 11, and a pulse motor 50 mounted on an outer peripheral thread thereof via a nut 50a.

【0023】モータ取付部材40は中心に貫通穴41が
穿設されており、貫通穴41にはOリング42を介して
上下方向に摺動可能に調整軸43が装着されている。ま
た、モータ取付部材40の下面には六角穴44が形成さ
れ、この六角穴に六角レンチを挿入してモータ取付部材
40を弁本体11に取付けることができる。調整軸43
の上端には弁部材16の受け軸18の下方開口の円錐穴
45が挿入され対接している。そして、弁部材16の受
け軸18の段部と高圧側通路12の上部角部との間に圧
縮コイルばね26が配設されている。
A through hole 41 is formed at the center of the motor mounting member 40, and an adjustment shaft 43 is mounted in the through hole 41 via an O-ring 42 so as to be slidable in the vertical direction. Further, a hexagonal hole 44 is formed on the lower surface of the motor mounting member 40, and the motor mounting member 40 can be mounted on the valve body 11 by inserting a hexagonal wrench into the hexagonal hole. Adjusting shaft 43
A conical hole 45 is formed at the upper end of the lower end of the receiving shaft 18 of the valve member 16 so as to be in contact therewith. A compression coil spring 26 is arranged between the stepped portion of the receiving shaft 18 of the valve member 16 and the upper corner of the high-pressure side passage 12.

【0024】パルスモータ50は上方に取付軸部51が
突出しており、この取付軸部の中心には軸穴52aとね
じ穴52bとから構成される中心穴52が形成されてい
る。パルスモータ50の出力軸に連動する駆動軸53は
上部の軸部、下部の駆動ねじ部および上端に溶着された
駆動球部から構成され、軸部は中心穴52の軸穴52a
に挿入され、駆動ねじ部はねじ穴52bに螺合してい
る。そして、パルスモータ50の出力軸が回転すると駆
動軸53は駆動ねじ部とねじ穴52bとにより上下方向
に移動し、上端の駆動球部を介して調整軸43を上下動
させる構成である。なお、図示していないが、パルスモ
ータ50の出力軸と駆動軸53とは、前記した実施形態
と同様に係合片と係合溝のような構成を用いてもよい。
The pulse motor 50 has a mounting shaft 51 projecting upward, and a center hole 52 formed of a shaft hole 52a and a screw hole 52b is formed at the center of the mounting shaft. The drive shaft 53 interlocking with the output shaft of the pulse motor 50 is composed of an upper shaft portion, a lower drive screw portion, and a drive ball portion welded to the upper end.
And the drive screw portion is screwed into the screw hole 52b. When the output shaft of the pulse motor 50 rotates, the drive shaft 53 moves up and down by the drive screw portion and the screw hole 52b, and moves the adjustment shaft 43 up and down via the drive ball portion at the upper end. Although not shown, the output shaft of the pulse motor 50 and the drive shaft 53 may have a configuration such as an engagement piece and an engagement groove as in the above-described embodiment.

【0025】前記のように構成される図2の実施形態に
おいては、パルスモータ50の出力軸が回転すると駆動
軸53が連動して回転され、駆動軸53は駆動ねじ部に
より上下動して駆動球部が調整軸43を上下動させる。
これにより弁部材16が上下動してオリフィス15に接
離し、オリフィス15の開口面積を変化させて冷媒の通
過流量を調整する。
In the embodiment of FIG. 2 configured as described above, when the output shaft of the pulse motor 50 rotates, the drive shaft 53 is rotated in conjunction therewith, and the drive shaft 53 is driven up and down by a drive screw. The sphere moves the adjustment shaft 43 up and down.
As a result, the valve member 16 moves up and down to come into contact with and separate from the orifice 15, and the opening area of the orifice 15 is changed to adjust the flow rate of the refrigerant.

【0026】パルスモータ50がX方向に正転すると駆
動軸53は上方に移動し、調整軸43は圧縮コイルばね
26の付勢力に抗してを上方に移動し、弁部材16がオ
リフィス15に接近するためオリフィス15の開口面積
は小さくなり、冷媒の通過流量が少なくなって蒸発器6
は高温側に調整される。反対にパルスモータ50が逆転
すると駆動軸53は下方に移動し、調整軸43は圧縮コ
イルばね26の付勢力に押されて下方に移動し、弁部材
16がオリフィス15から離反するためオリフィス15
の開口面積は大きくなり、冷媒の通過流量が増加して蒸
発器6は低温側に調整される。
When the pulse motor 50 rotates forward in the X direction, the drive shaft 53 moves upward, the adjustment shaft 43 moves upward against the urging force of the compression coil spring 26, and the valve member 16 moves to the orifice 15. Because of the approach, the opening area of the orifice 15 is reduced, and the flow rate of the refrigerant is reduced.
Is adjusted to the high temperature side. On the other hand, when the pulse motor 50 rotates in the reverse direction, the drive shaft 53 moves downward, the adjustment shaft 43 moves downward by the urging force of the compression coil spring 26, and the valve member 16 separates from the orifice 15, so that the orifice 15
Of the evaporator 6 is adjusted to a lower temperature side.

【0027】このようにパルスモータ50と圧縮コイル
ばね26により弁部材16をオリフィス15に接離させ
てオリフィスの開口面積を調整し、冷媒の通過流量を調
整することができるため、構成を簡単にすることができ
る。開口面積の調整は、パルスモータ50をパルスによ
り制御するため、正確に行うことができる。
As described above, the valve member 16 is brought into contact with or separated from the orifice 15 by the pulse motor 50 and the compression coil spring 26 to adjust the opening area of the orifice, and the flow rate of the refrigerant can be adjusted. can do. The opening area can be adjusted accurately because the pulse motor 50 is controlled by the pulse.

【0028】また、この実施形態の電動膨張弁も、弁本
体11に高圧側通路12、低圧側通路13および低圧冷
媒通路14を設けているため、受液器4、蒸発器6およ
び冷媒圧縮機2との配管接続が容易に行える。押圧部材
を圧縮コイルばねで構成して内部にモータの回転を直進
運動に変換するねじ機構を設けているので、スペース効
率を良くすることができ小型化が図れる。
Also, in the electric expansion valve of this embodiment, since the high pressure side passage 12, the low pressure side passage 13 and the low pressure refrigerant passage 14 are provided in the valve body 11, the liquid receiver 4, the evaporator 6, and the refrigerant compressor are provided. 2 can be easily connected. Since the pressing member is constituted by a compression coil spring and a screw mechanism for converting the rotation of the motor into a linear motion is provided inside, the space efficiency can be improved and the size can be reduced.

【0029】[0029]

【発明の効果】以上の説明から理解できるように、本発
明の電動膨張弁は、電動モータを一方に回転させて弁部
材を接近させてオリフィスの開口面積を減少させ、他方
に回転させることにより開弁方向に付勢された押圧部材
により弁部材を離反させてオリフィスの開口面積を増加
させることができるため、構成を簡単にすることができ
る。また、弁本体には高圧側通路、低圧側通路および低
圧冷媒通路を設けているため、受液器、蒸発器および冷
媒圧縮機との配管接続が容易に行える。
As can be understood from the above description, the electric expansion valve of the present invention is constructed by rotating the electric motor to one side to approach the valve member to reduce the opening area of the orifice, and rotate the electric motor to the other side. Since the valve member can be separated by the pressing member urged in the valve opening direction to increase the opening area of the orifice, the configuration can be simplified. Further, since the high pressure side passage, the low pressure side passage, and the low pressure refrigerant passage are provided in the valve body, the pipe connection with the liquid receiver, the evaporator, and the refrigerant compressor can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電動膨張弁の一実施形態の冷凍サ
イクルにおける断面図。
FIG. 1 is a cross-sectional view of a refrigeration cycle of an embodiment of an electric expansion valve according to the present invention.

【図2】本発明に係る電動膨張弁の他の実施形態の冷凍
サイクルにおける断面図。
FIG. 2 is a sectional view of a refrigeration cycle of another embodiment of the electric expansion valve according to the present invention.

【図3】従来の膨張弁の冷凍サイクルにおける断面図。FIG. 3 is a cross-sectional view of a conventional expansion valve in a refrigeration cycle.

【符号の説明】[Explanation of symbols]

10 電動膨張弁 11 弁本体 12 高圧側通路 13 低圧側通路 14 低圧冷媒通路 15 オリフィス 16 弁部材 20、40 モータ取付部材 23、43 調整軸 26 圧縮コイルばね 30、50 パルスモータ 51 取付軸部 52 中心穴 53 駆動軸 Reference Signs List 10 electric expansion valve 11 valve main body 12 high pressure side passage 13 low pressure side passage 14 low pressure refrigerant passage 15 orifice 16 valve member 20, 40 motor mounting member 23, 43 adjusting shaft 26 compression coil spring 30, 50 pulse motor 51 mounting shaft 52 center Hole 53 Drive shaft

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒が流入する高圧側通路と冷媒が流出
する低圧側通路とを連通するオリフィスを備えた弁本体
と、前記オリフィスを流れる冷媒の量を調整する弁部材
と、該弁部材を移動させる移動部材と、前記弁部材を開
弁方向に付勢する押圧部材と、を備えた電動膨張弁にお
いて、 前記移動部材は、電動モータにより駆動されて、前記弁
部材を開閉移動させることを特徴とする電動膨張弁。
1. A valve body having an orifice communicating a high-pressure side passage through which a refrigerant flows and a low-pressure side passage through which a refrigerant flows out, a valve member for adjusting an amount of the refrigerant flowing through the orifice, and the valve member. In an electric expansion valve including a moving member to be moved and a pressing member for urging the valve member in a valve opening direction, the moving member is driven by an electric motor to open and close the valve member. A characteristic electric expansion valve.
【請求項2】 前記押圧部材は、圧縮コイルばねで構成
され、前記移動部材は、前記電動モータの回転運動を直
進運動に変換するねじ機構により構成されていることを
特徴とする請求項1に記載の電動膨張弁。
2. The apparatus according to claim 1, wherein said pressing member is constituted by a compression coil spring, and said moving member is constituted by a screw mechanism for converting a rotational movement of said electric motor into a linear movement. The electric expansion valve according to any one of the preceding claims.
【請求項3】 前記電動モータは、ステッピングモータ
であることを特徴とする請求項1又は2に記載の電動膨
張弁。
3. The electric expansion valve according to claim 1, wherein the electric motor is a stepping motor.
JP11138855A 1999-05-19 1999-05-19 Motor-driven expansion valve Pending JP2000329247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138855A JP2000329247A (en) 1999-05-19 1999-05-19 Motor-driven expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138855A JP2000329247A (en) 1999-05-19 1999-05-19 Motor-driven expansion valve

Publications (1)

Publication Number Publication Date
JP2000329247A true JP2000329247A (en) 2000-11-30

Family

ID=15231737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138855A Pending JP2000329247A (en) 1999-05-19 1999-05-19 Motor-driven expansion valve

Country Status (1)

Country Link
JP (1) JP2000329247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139040A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Cut-off valve
WO2020054251A1 (en) * 2018-09-13 2020-03-19 株式会社不二工機 Combination valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139040A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Cut-off valve
WO2020054251A1 (en) * 2018-09-13 2020-03-19 株式会社不二工機 Combination valve

Similar Documents

Publication Publication Date Title
US20090020716A1 (en) Motor driven valve and cooling/heating system
JP5292537B2 (en) Expansion device
WO2019098149A1 (en) Capacity control valve and capacity control valve control method
US20040177632A1 (en) Expansion valve
WO2020054251A1 (en) Combination valve
JP5083107B2 (en) Expansion valve and vapor compression refrigeration cycle provided with the same
JP4881137B2 (en) Flow control valve and refrigeration cycle
JP2001050617A (en) Expansion valve
JP4142290B2 (en) Expansion valve
EP0931991A2 (en) Supercritical refrigerating system
US6416032B2 (en) Expansion valve of an air conditioning system in an automobile
JP3467989B2 (en) Vapor compression refrigeration cycle
EP1380801B1 (en) Expansion valve
JP2000329247A (en) Motor-driven expansion valve
JPH10205927A (en) Electric motor-operated expansion valve
KR101128396B1 (en) Capacity control valve of variable displacement compressor
JPH10220926A (en) Motor expansion valve
JP3152908B2 (en) Expansion valve
JP2004198064A (en) Expansion valve
JP4043195B2 (en) Expansion valve
JP3726015B2 (en) Expansion valve
JP2008261281A (en) Variable displacement compressor
JPH11108502A (en) Temperature type expansion valve
JP2011163313A (en) Capacity control valve for variable displacement compressor, and assembling method of the same
JP2021127845A (en) Expansion valve and refrigeration cycle device