WO2020054251A1 - Combination valve - Google Patents

Combination valve Download PDF

Info

Publication number
WO2020054251A1
WO2020054251A1 PCT/JP2019/030513 JP2019030513W WO2020054251A1 WO 2020054251 A1 WO2020054251 A1 WO 2020054251A1 JP 2019030513 W JP2019030513 W JP 2019030513W WO 2020054251 A1 WO2020054251 A1 WO 2020054251A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
passage
valve body
refrigerant
orifice
Prior art date
Application number
PCT/JP2019/030513
Other languages
French (fr)
Japanese (ja)
Inventor
望月 淳
晃平 福山
Original Assignee
株式会社不二工機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社不二工機 filed Critical 株式会社不二工機
Publication of WO2020054251A1 publication Critical patent/WO2020054251A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a composite valve used for a refrigeration cycle of a car air conditioner or the like, and particularly to a composite valve in which a check valve is integrally provided with an expansion valve.
  • a refrigeration cycle of a car air conditioner or the like generally includes a compressor driven by an engine, a condenser connected to a discharge side of the compressor, a receiver connected to the condenser, and a liquid phase from the receiver. It comprises an expansion valve for adiabatically expanding the refrigerant into a gas-liquid two-phase refrigerant, and an evaporator connected to the expansion valve (for example, see Patent Document 1 below).
  • the refrigerant pressurized by the compressor is sent to a condenser and converted into a high-pressure liquid-phase refrigerant, and the liquid-phase refrigerant is decompressed by an expansion valve and adiabatically expanded, and the flow rate is adjusted to an evaporator.
  • the low-pressure refrigerant, which has been sent and exchanged heat by the evaporator, is returned to the compressor.
  • the expansion valve used in such a refrigeration cycle has a high-pressure side passage (inlet passage) through which a liquid-phase refrigerant flows into the valve body and a low-pressure side passage (outlet passage) through which adiabatic expanded gas-liquid two-phase refrigerant flows out.
  • the orifice communicates with the high-pressure passage and the low-pressure passage through an orifice, and includes a valve body for adjusting the amount of refrigerant passing through the orifice (in other words, the opening area or opening of the orifice). (Return passage).
  • the expansion valve changes the opening area or opening degree of the orifice by moving the valve body in the valve opening direction or the valve closing direction according to the temperature in the low-pressure refrigerant passage, and adjusts the amount of refrigerant passing through the orifice.
  • the temperature of the evaporator is automatically adjusted.
  • An electric (electronically controlled) expansion valve using the electric motor includes a can, a rotor disposed at a predetermined gap on an inner periphery of the can, and a can. It is possible to use an electric motor having a driving mechanism such as an electric motor as a driving source and a screw feed mechanism for driving the valve body to open and close by utilizing the rotation of the rotor. .
  • the control of the electric expansion valve is performed, for example, by detecting the temperature of the refrigerant passing through the low-pressure refrigerant passage with a temperature sensor, and opening the expansion valve based on information on the detected temperature in a controller having a microcomputer.
  • a control signal for adjusting the degree is generated and supplied to the electric motor, whereby the rotor is rotated to move the valve body in the valve opening direction or the valve closing direction, thereby opening the orifice.
  • the area, that is, the amount of refrigerant passing through the orifice is controlled.
  • the rotation of the electric motor can be controlled accurately, by adjusting the amount of refrigerant passing through the orifice using the electric motor as described above, the structure is simple and the control is easy, and the liquid receiving device and the evaporation Pipe connection with the compressor and the compressor can be easily performed.
  • the electric expansion valve As described above, besides the electric type (electric actuator) mainly including an electric motor as a driving source, the electromagnetic expansion valve (electromagnetic type actuator) mainly including a solenoid. ) As a driving source.
  • the expansion valve used in such a refrigeration cycle lowers the pressure of the refrigerant (reduces the pressure) and sends it to the evaporator.
  • the low-pressure refrigerant tends to vaporize by removing heat from the surroundings, and cools the periphery (peripheral parts) when the refrigerant vaporizes. At this time, the evaporator itself is at a considerably low temperature.
  • the expansion valve When dehumidification is not required during the heating operation or when cooling is not required during battery cooling, the expansion valve is closed to stop the refrigerant from flowing into the evaporator, but the evaporator is completely cooled as described above. If the expansion valve is suddenly closed during the dehumidifying or cooling operation in a dehumidified state, the refrigerant may be drawn in from the pipe connected to the evaporator outlet side and flow backward, and the refrigerant in the circuit may run short. In addition, the phenomenon that the refrigerant flows backward in the evaporator may be caused not only by the expansion valve but also by the operation of components that expand the refrigerant in the refrigeration cycle. In order to prevent such a backflow phenomenon, it is conceivable to attach a component having a function of stopping the backflow of the refrigerant, such as a check valve, to a pipe connected to the evaporator outlet side.
  • a component having a function of stopping the backflow of the refrigerant such
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composite valve having both functions of an expansion valve and a check valve in a small space.
  • a composite valve basically includes an inlet passage through which a refrigerant flows, an outlet passage through which a refrigerant flows, and an orifice formed between the inlet passage and the outlet passage.
  • a return passage is provided to pass through, and a check valve for preventing backflow of the refrigerant in the return passage is provided integrally in the return passage.
  • the inlet passage through which the refrigerant flows from the condenser the outlet passage through which the refrigerant flows toward the evaporator, the orifice formed between the inlet passage and the outlet passage, and the compression from the evaporator.
  • an inflow opening of the inlet passage and an outlet opening of the return passage are opened on one side surface of the valve body, and an outflow opening of the outlet passage and an inlet opening of the return passage are connected to the valve body. Is opened on the other side different from the one side.
  • the one side surface and the other side surface of the valve main body are arranged to face each other.
  • the check valve is inserted from the outlet opening of the return passage into the inside of the return passage.
  • the drive source is disposed on a surface of the valve body that is located on the opposite side of the return passage from the inlet passage and the outlet passage.
  • the check valve for preventing the backflow of the refrigerant passing through the return passage is integrally disposed, so that, for example, air for a car air conditioner or the like is provided.
  • a compound valve having both functions of an expansion valve and a check valve can be installed in a small space without adding a new check valve on a layout.
  • the check valve is inserted from the outlet side opening of the return passage (the opening on the side opposite to the evaporator side) inside the return passage, so that it is easy to assemble (installation workability) and maintainability. And the like can be improved.
  • the upper right perspective view of one embodiment of the compound valve concerning the present invention The upper left perspective view of one embodiment of the compound valve concerning the present invention.
  • the right view of one embodiment of the compound valve concerning the present invention The left view of one embodiment of the compound valve concerning the present invention.
  • 1 is a partially cutaway front view of a combined valve according to an embodiment of the present invention, in a state where a check valve is opened.
  • FIG. 3 is a partially cutaway front view of the embodiment of the composite valve according to the present invention in a state where a check valve is closed.
  • FIGS. 1 to 6 are respectively an upper right perspective view, an upper left perspective view, a right side view, a left side view, and a partially cutaway front view of the composite valve of the present embodiment (a state in which a check valve is opened, and FIGS. (The check valve is closed). 5 and 6 also show a circuit diagram of a refrigeration cycle in which the composite valve of the present embodiment is used.
  • the combined valve 10 of the illustrated embodiment is used, for example, for a refrigeration cycle 1 in a car air conditioner.
  • the refrigeration cycle 1 includes a compressor 2 driven by an engine and a condenser connected to a discharge side of the compressor 2.
  • a liquid receiving device 4 connected to the condenser 3, a composite valve 10 connected to the liquid receiving device 4, and an evaporator 5 connected to the composite valve 10.
  • the phase refrigerant is circulated back to the compressor 2 through the composite valve 10.
  • the composite valve 10 reduces the pressure of the liquid-phase refrigerant from the liquid receiver 4 to a gas-liquid two-phase refrigerant through an orifice having a predetermined opening area, and adiabatically expands the expansion valve 20 and prevents the refrigerant from flowing back to the evaporator 5. It has (and has) both functions of the check valve 30 (detailed later).
  • the composite valve 10 has a rectangular parallelepiped valve body 11 made of metal such as aluminum or resin.
  • a high-pressure side inlet passage 12 composed of a relatively small-diameter lateral hole into which a liquid-phase refrigerant flows
  • a low-pressure side exit passage 13 composed of a relatively large-diameter lateral hole through which a gas-liquid two-phase refrigerant flows out.
  • the inflow opening (right end opening) of the inlet passage 12 opens on the right side surface 11 a of the valve body 11, and the outflow opening (left end opening) of the outlet passage 13 opens on the left side surface 11 b of the valve body 11.
  • the inlet passage 12 (the center axis thereof) and the outlet passage 13 (the center axis thereof) are provided offset from each other in the vertical direction, and the outlet passage 13 is located below the inlet passage 12 and is located on the other side of the valve body 11. It is open on the side (opposing surface).
  • the low-pressure gas-phase refrigerant from the evaporator 5 is returned to the compressor 2 (that is, A return passage 14 for passing the refrigerant returning from the evaporator 5 to the compressor 2) is formed so as to penetrate in the horizontal direction (lateral direction).
  • the inlet side opening (left end opening) of the return passage 14 opens on the left side surface 11 b of the valve body 11, and the outlet side opening (right end opening) of the return passage 14 opens on the right side surface 11 a of the valve body 11. ing.
  • an orifice communicating between the inlet passage 12 and the outlet passage 13 is formed inside (between the inlet passage 12 and the outlet passage 13 in) the valve body 11, and the amount of refrigerant passing through the orifice (In other words, as a valve element for adjusting the opening area or opening of the orifice) or an urging member for urging the valve element in a direction of pressing against the orifice or in a direction away from the orifice (that is, a valve closing direction or a valve opening direction). are disposed.
  • the valve body 11 On the upper surface of the valve body 11 (the surface located on the opposite side of the return passage 14 with respect to the inlet passage 12 and the outlet passage 13 in the valve body 11), the valve body is opened or closed with respect to the orifice.
  • An electric motor (stepping motor) 21 as a driving source is fixed, and an output shaft of the electric motor 21 is connected to the valve body.
  • the electric motor 21 includes, for example, a can attached to the valve body 11, a rotor arranged at a predetermined gap on the inner periphery of the can, a stator externally fitted to the can, and the like. And a drive mechanism such as a screw feed mechanism that drives the opening and closing of the valve body using the rotation of the output shaft of the motor.
  • valve body When the output shaft of the electric motor 21 rotates, the valve body is converted into linear motion by a driving mechanism such as a screw feed mechanism and moves up or down, and the valve body approaches or separates from the orifice to close or close the valve.
  • the valve is configured to open.
  • the control of the composite valve 10 is performed, for example, by detecting the temperature of the refrigerant passing through a return passage 14 provided in the lower part of the valve body 11 with a temperature sensor, and using a controller incorporating a microcomputer to obtain information on the detected temperature.
  • a control signal for adjusting the opening of the (orifice of) the composite valve 10 is supplied to the electric motor 21 on the basis of the above, whereby the rotor is rotated, and the valve body is moved in the valve opening direction or The orifice is moved in the valve closing direction, whereby the opening area of the orifice, that is, the amount of refrigerant passing through the orifice is controlled.
  • the liquid-phase refrigerant from the receiver 4 is formed by the inlet passage 12, the outlet passage 13, the orifice formed between the inlet passage 12 and the outlet passage 13, the valve body, the electric motor 21, and the like.
  • the expansion valve 20 is configured to decompress the gas into a gas-liquid two-phase refrigerant and perform adiabatic expansion.
  • the output shaft of the electric motor 21 is not directly connected to the valve body, but may be provided with a reduction mechanism for reducing the rotation of the rotor and transmitting the rotation to the valve body.
  • the gas-liquid two-phase refrigerant evaporates in the evaporator 5 to become a gas-phase refrigerant, and brings the evaporator 5 to a low temperature state. Then, the gas-phase refrigerant in the evaporator 5 returns to the compressor 2 through the return passage 14, and the refrigerant circulates in the refrigeration cycle 1.
  • the electric motor 21 is rotationally driven in accordance with the temperature in the return passage 14, the valve body is moved in the valve opening direction or the valve closing direction, and the opening area of the orifice is increased or decreased.
  • the temperature of the evaporator 5 is automatically adjusted.
  • the check valve 30 for preventing the backflow of the refrigerant is provided in the return passage 14 provided at the lower part of the valve body 11.
  • annular valve seat 37 forming the check valve 30 together with a check valve body 38 described later is integrally formed on the inner periphery of the return passage 14.
  • the check valve body 38, a compression coil spring 39 as an urging member for urging the check valve body 38 toward the valve seat 37, and a check valve body supporting the right end of the compression coil spring 39 A stopper 31 is provided to limit the amount of movement of the 38 to the right.
  • the stopper 31 is disposed and fixed to a reduced diameter portion 33 provided on the inner periphery of the return passage 14 (on the right side of the valve seat 37). .
  • the check valve body 38 integrally includes a disc-shaped small-diameter portion 38a, a disc-shaped large-diameter portion 38b, and an O-ring 38c mounted therebetween.
  • a first guide bar 38d protrudes leftward (the entrance side of the return passage 14) from the small disc-shaped portion 38a, and a second guide bar extends rightward (the exit side of the return passage 14) from the large disc-shaped portion 38b.
  • the bar 38e protrudes.
  • a plurality of first guide bars 38d are provided near the outer edge of the left side surface of the disc-shaped small-diameter portion 38a with a predetermined gap in the circumferential direction (in the example shown, three at 120 ° angular intervals).
  • the guide bar 38 d (outer periphery) is in contact with the inner periphery of the valve seat 37. The movement of the check valve body 38 in the left-right direction is guided by the first guide bar 38d.
  • a plurality of second guide bars 38e are provided in the vicinity of the center of the right side surface of the disc-shaped large-diameter portion 38b at predetermined angular intervals in the circumferential direction (in the illustrated example, at 120 ° angular intervals).
  • the three guide bars 38e are disposed inside the compression coil spring 39, and are formed in a flow hole (in the illustrated example, a substantially fan-shaped flow path having a central angle of about 120 °) formed in the stopper 31. Hole 32).
  • the movement of the check valve body 38 in the left-right direction is guided by the second guide bar 38e, and the tilt of the check valve body 38 and the rotation of the return passage 14 (the check valve 30) around the central axis are performed. Is prevented.
  • the outer shape (outer diameter) of the check valve body 38 and the compression coil spring 39 is set smaller than the reduced diameter portion 33 of the return passage 14.
  • the check valve 30 in the composite valve 10 allows the flow of the refrigerant from the inlet-side opening (evaporator 5) to the outlet-side opening (compressor 2), while allowing the refrigerant to flow from the outlet-side opening (compressor 2) to the inlet.
  • the flow (backflow) of the refrigerant toward the side opening (evaporator 5) is shut off. In other words, one direction from the inlet side opening (evaporator 5) to the outlet side opening (compressor 2).
  • the refrigerant is circulated only in the
  • the valve body 11 has, in addition to the inlet passage 12, the outlet passage 13, and the return passage 14, the vicinity of the upper and lower centers thereof (that is, the portion between the inlet passage 12, the outlet passage 13, and the return passage 14).
  • two mounting holes 15 are formed in the front-rear direction and are provided with horizontal through holes for inserting bolts for mounting the valve body 11 to the evaporator 5 and other components.
  • One (non-through) screw hole 16 is provided at the center in the front-rear direction.
  • the check valve 30 for preventing the backflow of the refrigerant passing through the return passage 14 is provided in the return passage 14 provided through the valve body 11. Because they are arranged integrally, for example, in an air conditioner such as a car air conditioner, without adding a new check valve on the layout (in other words, without changing the existing installation space, piping system, etc.), The combined valve 10 having both functions of the expansion valve 20 and the check valve 30 can be installed in a small space.
  • the check valve 30 is inserted from the outlet side opening of the return passage 14 (the opening on the side opposite to the evaporator 5 side) to the inner periphery of the return passage 14, so that the check valve 30 can be assembled easily (installation work). ), Maintainability and the like can be improved.
  • an electric motor is used as a driving source for driving the valve body with respect to the orifice by an electric driving force (an electric actuator)
  • an electric actuator an electric actuator
  • an electromagnetic actuator electromagnettic actuator having a solenoid as a main part can be used as a drive source.
  • check valve 30 disposed in the return passage 14 is, of course, not limited to the above embodiment.
  • the composite valve for the refrigeration cycle of a car air conditioner or the like has been exemplified, but the composite valve according to the present invention can of course be applied to a heat pump type cooling / heating system or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Check Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

Provided is a combination valve that achieves space saving and functions as both an expansion valve and a check valve. This combination valve is provided with: a valve body (11) that has an entrance passageway (12) through which a refrigerant flows in, an exit passageway (13) through which a refrigerant flows out, and an orifice formed between the entrance passageway (12) and the exit passageway (13); a valving element that adjusts the amount of a refrigerant passing through the orifice; an electric motor (drive source) (21) that drives, by an electric driving force, the valving element with respect to the orifice; and a return passageway (14) provided so as to penetrate the valve body (11), wherein a check valve (30) is integrally disposed inside the return passageway (14) in order to prevent backward flow of a refrigerant in the return passageway (14).

Description

複合弁Compound valve
 本発明は、カーエアコン等の冷凍サイクルに使用される複合弁に係り、特に、膨張弁に逆止弁が一体に装備された複合弁に関する。 The present invention relates to a composite valve used for a refrigeration cycle of a car air conditioner or the like, and particularly to a composite valve in which a check valve is integrally provided with an expansion valve.
 カーエアコン等の冷凍サイクルは、一般に、エンジンにより駆動される圧縮機と、圧縮機の吐出側に接続される凝縮機と、凝縮機に接続される受液器と、受液器からの液相冷媒を気液2相冷媒へ断熱膨張させる膨張弁と、膨張弁に接続される蒸発器とから構成されている(例えば、下記特許文献1参照)。 A refrigeration cycle of a car air conditioner or the like generally includes a compressor driven by an engine, a condenser connected to a discharge side of the compressor, a receiver connected to the condenser, and a liquid phase from the receiver. It comprises an expansion valve for adiabatically expanding the refrigerant into a gas-liquid two-phase refrigerant, and an evaporator connected to the expansion valve (for example, see Patent Document 1 below).
 かかる冷凍サイクルは、圧縮機で加圧された冷媒を凝縮器に送って高圧の液相冷媒に変換し、この液相冷媒を膨張弁で減圧して断熱膨張するとともに流量調節して蒸発器へ送り、蒸発器で熱交換を行なって蒸発した低圧の冷媒を圧縮機に戻すように構成されている。 In such a refrigeration cycle, the refrigerant pressurized by the compressor is sent to a condenser and converted into a high-pressure liquid-phase refrigerant, and the liquid-phase refrigerant is decompressed by an expansion valve and adiabatically expanded, and the flow rate is adjusted to an evaporator. The low-pressure refrigerant, which has been sent and exchanged heat by the evaporator, is returned to the compressor.
 かかる冷凍サイクルに使用される膨張弁は、弁本体に液相冷媒を流入する高圧側通路(入口通路)と断熱膨張された気液2相冷媒が流出する低圧側通路(出口通路)とが設けられ、高圧側通路と低圧側通路とをオリフィスにより連通し、オリフィスを通過する冷媒量(換言すれば、オリフィスの開口面積もしくは開度)を調整する弁体を備え、弁本体に低圧冷媒通路(戻り通路)を貫通して形成した構成となっている。 The expansion valve used in such a refrigeration cycle has a high-pressure side passage (inlet passage) through which a liquid-phase refrigerant flows into the valve body and a low-pressure side passage (outlet passage) through which adiabatic expanded gas-liquid two-phase refrigerant flows out. The orifice communicates with the high-pressure passage and the low-pressure passage through an orifice, and includes a valve body for adjusting the amount of refrigerant passing through the orifice (in other words, the opening area or opening of the orifice). (Return passage).
 そして、前記膨張弁は、低圧冷媒通路内の温度に応じて弁体を開弁方向又は閉弁方向に移動させてオリフィスの開口面積もしくは開度を変化させ、オリフィスの冷媒通過量を調整して蒸発器の温度を自動的に調整している。 The expansion valve changes the opening area or opening degree of the orifice by moving the valve body in the valve opening direction or the valve closing direction according to the temperature in the low-pressure refrigerant passage, and adjusts the amount of refrigerant passing through the orifice. The temperature of the evaporator is automatically adjusted.
 また、下記特許文献1では、前記したオリフィスの冷媒通過量の調整を電動モータを使用して行うようになっている。この電動モータを使用した電気式(電子制御式)の膨張弁(以下、電気式膨張弁と称する)は、キャン、該キャンの内周に所定の間隙をあけて配在されたロータ、及びキャンに外嵌されたステータ等からなる、駆動源としての電動モータ、前記ロータの回転を利用して前記弁体を開閉駆動するねじ送り機構等の駆動機構等を備えた電動弁を用いることができる。 In Patent Document 1 below, the adjustment of the amount of refrigerant passing through the orifice is performed using an electric motor. An electric (electronically controlled) expansion valve using the electric motor (hereinafter referred to as an electric expansion valve) includes a can, a rotor disposed at a predetermined gap on an inner periphery of the can, and a can. It is possible to use an electric motor having a driving mechanism such as an electric motor as a driving source and a screw feed mechanism for driving the valve body to open and close by utilizing the rotation of the rotor. .
 この電気式膨張弁の制御は、例えば、低圧冷媒通路を通過する冷媒の温度を温度センサで検出し、マイクロコンピュータを内蔵するコントローラにおいて、その検出された温度の情報に基づいて当該膨張弁の開度を調整するための制御信号を生成して前記電動モータに供給し、これによって、前記ロータが回転されて前記弁体が開弁方向又は閉弁方向に移動せしめられ、これによって前記オリフィスの開口面積、つまり、前記オリフィスの冷媒通過量が制御される。 The control of the electric expansion valve is performed, for example, by detecting the temperature of the refrigerant passing through the low-pressure refrigerant passage with a temperature sensor, and opening the expansion valve based on information on the detected temperature in a controller having a microcomputer. A control signal for adjusting the degree is generated and supplied to the electric motor, whereby the rotor is rotated to move the valve body in the valve opening direction or the valve closing direction, thereby opening the orifice. The area, that is, the amount of refrigerant passing through the orifice is controlled.
 電動モータは、その回転を正確に制御できるため、上記した如くに電動モータを使用してオリフィスの冷媒通過量を調整することにより、構成が簡単で制御が容易となり、かつ、受液器、蒸発器、および圧縮機との配管接続が容易に行える。 Since the rotation of the electric motor can be controlled accurately, by adjusting the amount of refrigerant passing through the orifice using the electric motor as described above, the structure is simple and the control is easy, and the liquid receiving device and the evaporation Pipe connection with the compressor and the compressor can be easily performed.
 なお、電気式膨張弁としては、上記した如くの、駆動源として電動モータを主要部とする電動式のもの(電動式アクチュエータ)の他、ソレノイドを主要部とする電磁式のもの(電磁式アクチュエータ)を駆動源とするものもある。 As the electric expansion valve, as described above, besides the electric type (electric actuator) mainly including an electric motor as a driving source, the electromagnetic expansion valve (electromagnetic type actuator) mainly including a solenoid. ) As a driving source.
特開2000-329247号公報JP 2000-329247 A
 上記したように、かかる冷凍サイクルに用いられる膨張弁は、冷媒の圧力を低くして(減圧して)蒸発器に送る。圧力の低い冷媒は、周囲から熱を奪って気化しやすくなっていて、気化したときに周辺(周辺部品)を冷やす。このときは、蒸発器自体もかなりの低温となっている。 膨 張 As described above, the expansion valve used in such a refrigeration cycle lowers the pressure of the refrigerant (reduces the pressure) and sends it to the evaporator. The low-pressure refrigerant tends to vaporize by removing heat from the surroundings, and cools the periphery (peripheral parts) when the refrigerant vaporizes. At this time, the evaporator itself is at a considerably low temperature.
 暖房運転時に除湿が不要なときや、バッテリ冷却中に冷房が不要になったとき等には、膨張弁を閉じて蒸発器への冷媒流入を停止するが、前記した如くに蒸発器が冷え切った状態において除湿、冷房運転時に突然膨張弁を閉じると、蒸発器出口側に接続された配管から冷媒が呼び込まれて逆流し、回路内の冷媒が不足してしまう可能性がある。また、蒸発器での冷媒が逆流する現象は、膨張弁だけでなく、冷凍サイクル内の冷媒を膨張させる部品の動作によっても引き起こされる可能性がある。このような逆流現象を防ぐために、蒸発器出口側に接続された配管に逆止弁等の冷媒の逆流を止める機能を持つ部品を取り付けることが考えられる。 When dehumidification is not required during the heating operation or when cooling is not required during battery cooling, the expansion valve is closed to stop the refrigerant from flowing into the evaporator, but the evaporator is completely cooled as described above. If the expansion valve is suddenly closed during the dehumidifying or cooling operation in a dehumidified state, the refrigerant may be drawn in from the pipe connected to the evaporator outlet side and flow backward, and the refrigerant in the circuit may run short. In addition, the phenomenon that the refrigerant flows backward in the evaporator may be caused not only by the expansion valve but also by the operation of components that expand the refrigerant in the refrigeration cycle. In order to prevent such a backflow phenomenon, it is conceivable to attach a component having a function of stopping the backflow of the refrigerant, such as a check valve, to a pipe connected to the evaporator outlet side.
 しかしながら、例えばカーエアコン等の空気調和機においては、周辺に配管等が張り巡らされており、膨張弁を設置する部位(スペース)や配管系統は予め定められているので、新たに逆止弁を追加することはレイアウト上難しい。 However, for example, in an air conditioner such as a car air conditioner, pipes and the like are provided around the periphery, and a portion (space) and a pipe system in which the expansion valve is installed are predetermined, so that a new check valve is required. It is difficult to add in layout.
 本発明は、上記事情に鑑みてなされたもので、その目的とするところは、省スペースで膨張弁と逆止弁双方の機能を持ち合わせた複合弁を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composite valve having both functions of an expansion valve and a check valve in a small space.
 前記課題を解決すべく、本発明に係る複合弁は、基本的に、冷媒が流入する入口通路、冷媒が流出する出口通路、及び前記入口通路と前記出口通路の間に形成されたオリフィスを有する弁本体と、前記オリフィスを通過する冷媒量を調整する弁体と、電気的駆動力によって前記弁体を前記オリフィスに対して駆動する駆動源とを備えるとともに、前記弁本体を貫通して冷媒が通過する戻り通路が設けられ、前記戻り通路内に、該戻り通路における冷媒の逆流を防止する逆止弁が一体に配設されていることを特徴としている。 In order to solve the above problems, a composite valve according to the present invention basically includes an inlet passage through which a refrigerant flows, an outlet passage through which a refrigerant flows, and an orifice formed between the inlet passage and the outlet passage. A valve body, a valve body that adjusts the amount of refrigerant passing through the orifice, and a drive source that drives the valve body with respect to the orifice by an electric driving force, and the refrigerant penetrates the valve body. A return passage is provided to pass through, and a check valve for preventing backflow of the refrigerant in the return passage is provided integrally in the return passage.
 より具体的な好ましい態様では、凝縮器からの冷媒が流入する入口通路、蒸発器へ向かう冷媒が流出する出口通路、前記入口通路と前記出口通路の間に形成されたオリフィス、及び蒸発器から圧縮機へ戻る冷媒が通過する戻り通路を有する弁本体と、前記オリフィスを通過する冷媒量を調整する弁体と、前記戻り通路を通過する冷媒の温度に基づいて電気的駆動力によって前記弁体を前記オリフィスに対して駆動する駆動源と、前記戻り通路内に一体に配設され、該戻り通路における冷媒の逆流を防止する逆止弁とを備えることを特徴としている。 In a more specific preferred embodiment, the inlet passage through which the refrigerant flows from the condenser, the outlet passage through which the refrigerant flows toward the evaporator, the orifice formed between the inlet passage and the outlet passage, and the compression from the evaporator. A valve body having a return passage through which the refrigerant returning to the machine passes, a valve body for adjusting the amount of the refrigerant passing through the orifice, and the valve body being electrically driven based on the temperature of the refrigerant passing through the return passage. It is characterized by comprising a drive source for driving the orifice, and a check valve disposed integrally in the return passage to prevent a backflow of the refrigerant in the return passage.
 好ましい態様では、前記入口通路の流入開口及び前記戻り通路の出口側開口が、前記弁本体の一側面に開口せしめられ、前記出口通路の流出開口及び前記戻り通路の入口側開口が、前記弁本体の前記一側面と異なる他側面に開口せしめられる。 In a preferred aspect, an inflow opening of the inlet passage and an outlet opening of the return passage are opened on one side surface of the valve body, and an outflow opening of the outlet passage and an inlet opening of the return passage are connected to the valve body. Is opened on the other side different from the one side.
 更に好ましい態様では、前記弁本体における前記一側面と前記他側面とが対向配置される。 In a further preferred aspect, the one side surface and the other side surface of the valve main body are arranged to face each other.
 他の好ましい態様では、前記逆止弁は、前記戻り通路の出口側開口から前記戻り通路の内側に挿入されて配設される。 In another preferred embodiment, the check valve is inserted from the outlet opening of the return passage into the inside of the return passage.
 別の好ましい態様では、前記駆動源は、前記弁本体において前記入口通路及び前記出口通路に対して前記戻り通路とは反対側に位置する面に配設される。 In another preferred aspect, the drive source is disposed on a surface of the valve body that is located on the opposite side of the return passage from the inlet passage and the outlet passage.
 本発明によれば、弁本体を貫通して設けられた戻り通路内に、当該戻り通路を通過する冷媒の逆流を防止する逆止弁が一体に配設されるので、例えばカーエアコン等の空気調和機において、レイアウト上で新たに逆止弁を追加することなく、省スペースで膨張弁と逆止弁双方の機能を持ち合わせた複合弁を設置することができる。 According to the present invention, in the return passage provided through the valve body, the check valve for preventing the backflow of the refrigerant passing through the return passage is integrally disposed, so that, for example, air for a car air conditioner or the like is provided. In the harmony machine, a compound valve having both functions of an expansion valve and a check valve can be installed in a small space without adding a new check valve on a layout.
 また、逆止弁は、戻り通路の出口側開口(蒸発器側とは反対側の開口)から戻り通路の内側に挿入されて配設されるので、組付性(取付作業性)、メンテナンス性等を向上できるといった効果もある。 In addition, the check valve is inserted from the outlet side opening of the return passage (the opening on the side opposite to the evaporator side) inside the return passage, so that it is easy to assemble (installation workability) and maintainability. And the like can be improved.
本発明に係る複合弁の一実施形態の右上斜視図。The upper right perspective view of one embodiment of the compound valve concerning the present invention. 本発明に係る複合弁の一実施形態の左上斜視図。The upper left perspective view of one embodiment of the compound valve concerning the present invention. 本発明に係る複合弁の一実施形態の右側面図。The right view of one embodiment of the compound valve concerning the present invention. 本発明に係る複合弁の一実施形態の左側面図。The left view of one embodiment of the compound valve concerning the present invention. 本発明に係る複合弁の一実施形態の、逆止弁が開かれている状態の部分切欠き正面図。1 is a partially cutaway front view of a combined valve according to an embodiment of the present invention, in a state where a check valve is opened. 本発明に係る複合弁の一実施形態の、逆止弁が閉じられている状態の部分切欠き正面図。FIG. 3 is a partially cutaway front view of the embodiment of the composite valve according to the present invention in a state where a check valve is closed.
 以下、本発明の実施形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1~図6はそれぞれ、本実施形態の複合弁の右上斜視図、左上斜視図、右側面図、左側面図、及び部分切欠き正面図(逆止弁が開かれている状態、及び、逆止弁が閉じられている状態)である。なお、図5及び図6は、本実施形態の複合弁が使用されている冷凍サイクルの回路図を併せて示している。 FIGS. 1 to 6 are respectively an upper right perspective view, an upper left perspective view, a right side view, a left side view, and a partially cutaway front view of the composite valve of the present embodiment (a state in which a check valve is opened, and FIGS. (The check valve is closed). 5 and 6 also show a circuit diagram of a refrigeration cycle in which the composite valve of the present embodiment is used.
 なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際に冷凍サイクルに組み込まれた状態での位置、方向を指すとは限らない。 In this specification, descriptions indicating positions and directions such as up and down, left and right, front and back, etc. are provided for convenience according to the drawings in order to avoid complicating the description, and are described in a state where they are actually incorporated in a refrigeration cycle. It does not necessarily indicate the position and direction at.
 図示実施形態の複合弁10は、例えばカーエアコンにおける冷凍サイクル1に使用されるものであり、冷凍サイクル1は、エンジンにより駆動される圧縮機2と、圧縮機2の吐出側に接続される凝縮機3と、凝縮機3に接続される受液器4と、受液器4に接続される複合弁10と、複合弁10に接続される蒸発器5とから構成され、蒸発器5の気相冷媒を複合弁10を通して圧縮機2に戻して循環させている。複合弁10は、受液器4からの液相冷媒を所定の開口面積のオリフィスで気液2相冷媒に減圧して断熱膨張させる膨張弁20と、蒸発器5への冷媒の逆流を防止する逆止弁30の双方の機能を持ち合わせている(併せ持っている)(後で詳述)。 The combined valve 10 of the illustrated embodiment is used, for example, for a refrigeration cycle 1 in a car air conditioner. The refrigeration cycle 1 includes a compressor 2 driven by an engine and a condenser connected to a discharge side of the compressor 2. A liquid receiving device 4 connected to the condenser 3, a composite valve 10 connected to the liquid receiving device 4, and an evaporator 5 connected to the composite valve 10. The phase refrigerant is circulated back to the compressor 2 through the composite valve 10. The composite valve 10 reduces the pressure of the liquid-phase refrigerant from the liquid receiver 4 to a gas-liquid two-phase refrigerant through an orifice having a predetermined opening area, and adiabatically expands the expansion valve 20 and prevents the refrigerant from flowing back to the evaporator 5. It has (and has) both functions of the check valve 30 (detailed later).
 複合弁10は、アルミニウム等の金属あるいは樹脂等により直方体形状に形成された弁本体11を有する。弁本体11の上部に、液相冷媒が流入する比較的小径の横穴からなる高圧側入口通路12と、気液2相冷媒が流出する比較的大径の横穴からなる低圧側出口通路13とが設けられている。入口通路12の流入開口(右端部開口)は、弁本体11の右側面11aに開口し、出口通路13の流出開口(左端部開口)は、弁本体11の左側面11bに開口している。入口通路12(の中心軸)と出口通路13(の中心軸)は上下方向でオフセットして設けられており、出口通路13は入口通路12の下側に位置して、弁本体11の他方の側面(対向面)に開口している。また、弁本体11の下部には、前記した入口通路12及び出口通路13とは別に(非連通となるように)、蒸発器5からの低圧の気相冷媒を圧縮機2に戻す(つまり、蒸発器5から圧縮機2へ戻る冷媒を通過させる)ための戻り通路14が水平方向(横方向)に貫通して形成されている。この戻り通路14の入口側開口(左端部開口)は、弁本体11の左側面11bに開口し、戻り通路14の出口側開口(右端部開口)は、弁本体11の右側面11aに開口している。 The composite valve 10 has a rectangular parallelepiped valve body 11 made of metal such as aluminum or resin. In the upper part of the valve body 11, a high-pressure side inlet passage 12 composed of a relatively small-diameter lateral hole into which a liquid-phase refrigerant flows, and a low-pressure side exit passage 13 composed of a relatively large-diameter lateral hole through which a gas-liquid two-phase refrigerant flows out. Is provided. The inflow opening (right end opening) of the inlet passage 12 opens on the right side surface 11 a of the valve body 11, and the outflow opening (left end opening) of the outlet passage 13 opens on the left side surface 11 b of the valve body 11. The inlet passage 12 (the center axis thereof) and the outlet passage 13 (the center axis thereof) are provided offset from each other in the vertical direction, and the outlet passage 13 is located below the inlet passage 12 and is located on the other side of the valve body 11. It is open on the side (opposing surface). In the lower part of the valve body 11, apart from the above-mentioned inlet passage 12 and outlet passage 13 (so as not to communicate), the low-pressure gas-phase refrigerant from the evaporator 5 is returned to the compressor 2 (that is, A return passage 14 for passing the refrigerant returning from the evaporator 5 to the compressor 2) is formed so as to penetrate in the horizontal direction (lateral direction). The inlet side opening (left end opening) of the return passage 14 opens on the left side surface 11 b of the valve body 11, and the outlet side opening (right end opening) of the return passage 14 opens on the right side surface 11 a of the valve body 11. ing.
 図示は省略するが、弁本体11の内部(における入口通路12と出口通路13との間)には、入口通路12と出口通路13とを連通するオリフィスが形成され、オリフィスにおける冷媒の通過量(換言すれば、オリフィスの開口面積もしくは開度)を調整する弁体や弁体をオリフィスに押し付ける方向又はオリフィスと離反する方向(すなわち、閉弁方向又は開弁方向)に付勢する付勢部材としての圧縮コイルばねが配設されている。 Although not shown, an orifice communicating between the inlet passage 12 and the outlet passage 13 is formed inside (between the inlet passage 12 and the outlet passage 13 in) the valve body 11, and the amount of refrigerant passing through the orifice ( In other words, as a valve element for adjusting the opening area or opening of the orifice) or an urging member for urging the valve element in a direction of pressing against the orifice or in a direction away from the orifice (that is, a valve closing direction or a valve opening direction). Are disposed.
 弁本体11の上面(弁本体11において入口通路12及び出口通路13に対して戻り通路14とは反対側に位置する面)には、前記弁体をオリフィスに対して開弁方向もしくは閉弁方向に駆動する、駆動源としての電動モータ(ステッピングモータ)21が固定され、この電動モータ21の出力軸が前記弁体に連結されている。電動モータ21は、例えば、弁本体11に取り付けられたキャン、該キャンの内周に所定の間隙をあけて配在されたロータ、及びキャンに外嵌されたステータ等からなるとともに、前記ロータ(の出力軸)の回転を利用して前記弁体を開閉駆動するねじ送り機構等の駆動機構を備える。このような電動モータ21の出力軸が回転すると弁体がねじ送り機構等の駆動機構により直線運動に変換されて上昇または下降し、弁体をオリフィスに対して接近あるいは離反させて、閉弁あるいは開弁するように構成されている。 On the upper surface of the valve body 11 (the surface located on the opposite side of the return passage 14 with respect to the inlet passage 12 and the outlet passage 13 in the valve body 11), the valve body is opened or closed with respect to the orifice. An electric motor (stepping motor) 21 as a driving source is fixed, and an output shaft of the electric motor 21 is connected to the valve body. The electric motor 21 includes, for example, a can attached to the valve body 11, a rotor arranged at a predetermined gap on the inner periphery of the can, a stator externally fitted to the can, and the like. And a drive mechanism such as a screw feed mechanism that drives the opening and closing of the valve body using the rotation of the output shaft of the motor. When the output shaft of the electric motor 21 rotates, the valve body is converted into linear motion by a driving mechanism such as a screw feed mechanism and moves up or down, and the valve body approaches or separates from the orifice to close or close the valve. The valve is configured to open.
 この複合弁10の制御は、例えば、弁本体11の下部に設けられた戻り通路14を通過する冷媒の温度を温度センサで検出し、マイクロコンピュータを内蔵するコントローラにおいて、その検出された温度の情報に基づいて当該複合弁10(のオリフィス)の開度を調整するための制御信号を生成して前記電動モータ21に供給し、これによって、前記ロータが回転されて前記弁体が開弁方向又は閉弁方向に移動せしめられ、これによって前記オリフィスの開口面積、つまり、前記オリフィスの冷媒通過量が制御される。 The control of the composite valve 10 is performed, for example, by detecting the temperature of the refrigerant passing through a return passage 14 provided in the lower part of the valve body 11 with a temperature sensor, and using a controller incorporating a microcomputer to obtain information on the detected temperature. A control signal for adjusting the opening of the (orifice of) the composite valve 10 is supplied to the electric motor 21 on the basis of the above, whereby the rotor is rotated, and the valve body is moved in the valve opening direction or The orifice is moved in the valve closing direction, whereby the opening area of the orifice, that is, the amount of refrigerant passing through the orifice is controlled.
 本実施形態においては、前記した入口通路12、出口通路13、入口通路12と出口通路13との間に形成されたオリフィス、弁体、電動モータ21等で、受液器4からの液相冷媒を気液2相冷媒に減圧して断熱膨張させる膨張弁20が構成される。 In the present embodiment, the liquid-phase refrigerant from the receiver 4 is formed by the inlet passage 12, the outlet passage 13, the orifice formed between the inlet passage 12 and the outlet passage 13, the valve body, the electric motor 21, and the like. The expansion valve 20 is configured to decompress the gas into a gas-liquid two-phase refrigerant and perform adiabatic expansion.
 なお、電動モータ21の出力軸は弁体に直結されたものではなく、ロータの回転を減速して弁体に伝達する減速機構を備えたものであっても良い。 The output shaft of the electric motor 21 is not directly connected to the valve body, but may be provided with a reduction mechanism for reducing the rotation of the rotor and transmitting the rotation to the valve body.
 前記の如く構成された複合弁10における膨張弁20の機能について説明する。冷凍サイクル1において、エンジンにより駆動される圧縮機2で圧縮された高圧の冷媒は凝縮機3に吐出され、凝縮機3で放熱、凝縮されて受液器4に液相冷媒が貯留され、受液器4からの液相冷媒は複合弁10の入口通路12に供給される。複合弁10において、液相冷媒はオリフィスを通過するときに断熱膨張して気液2相冷媒となり、出口通路13から蒸発器5に供給される。気液2相冷媒は蒸発器5内で蒸発して気相冷媒となり、蒸発器5を低温状態とする。そして、蒸発器5内の気相冷媒は戻り通路14を通って圧縮機2に戻り、冷媒は冷凍サイクル1内で循環する。 The function of the expansion valve 20 in the composite valve 10 configured as described above will be described. In the refrigeration cycle 1, high-pressure refrigerant compressed by a compressor 2 driven by an engine is discharged to a condenser 3, radiated and condensed by the condenser 3, and a liquid-phase refrigerant is stored in a liquid receiver 4. The liquid-phase refrigerant from the liquid container 4 is supplied to the inlet passage 12 of the composite valve 10. In the composite valve 10, the liquid-phase refrigerant adiabatically expands as it passes through the orifice to become a gas-liquid two-phase refrigerant, and is supplied from the outlet passage 13 to the evaporator 5. The gas-liquid two-phase refrigerant evaporates in the evaporator 5 to become a gas-phase refrigerant, and brings the evaporator 5 to a low temperature state. Then, the gas-phase refrigerant in the evaporator 5 returns to the compressor 2 through the return passage 14, and the refrigerant circulates in the refrigeration cycle 1.
 このように構成される冷凍サイクル1において、戻り通路14内の温度に応じて電動モータ21を回転駆動させ、弁体を開弁方向又は閉弁方向に移動させ、オリフィスの開口面積を増減させてオリフィスを通過する冷媒の通過量を変化させることにより、蒸発器5の温度が自動的に調整される。 In the refrigeration cycle 1 configured as described above, the electric motor 21 is rotationally driven in accordance with the temperature in the return passage 14, the valve body is moved in the valve opening direction or the valve closing direction, and the opening area of the orifice is increased or decreased. By changing the amount of the refrigerant passing through the orifice, the temperature of the evaporator 5 is automatically adjusted.
 また、本実施形態においては、弁本体11の下部に設けられた戻り通路14に、冷媒の逆流を防止する逆止弁30が配設されている。 In the present embodiment, the check valve 30 for preventing the backflow of the refrigerant is provided in the return passage 14 provided at the lower part of the valve body 11.
 詳しくは、図5及び図6を参照すればよく分かるように、戻り通路14の内周に、後述する逆止弁体38とともに逆止弁30を構成する円環状の弁座37が一体に形成されるとともに、逆止弁体38と、逆止弁体38を弁座37側に付勢する付勢部材としての圧縮コイルばね39と、圧縮コイルばね39の右端を支持して逆止弁体38の右方への移動量を制限するストッパ31とが設けられ、ストッパ31は、戻り通路14の内周(における弁座37より右側)に設けられた縮径部33に配置固定されている。 5 and 6, an annular valve seat 37 forming the check valve 30 together with a check valve body 38 described later is integrally formed on the inner periphery of the return passage 14. The check valve body 38, a compression coil spring 39 as an urging member for urging the check valve body 38 toward the valve seat 37, and a check valve body supporting the right end of the compression coil spring 39 A stopper 31 is provided to limit the amount of movement of the 38 to the right. The stopper 31 is disposed and fixed to a reduced diameter portion 33 provided on the inner periphery of the return passage 14 (on the right side of the valve seat 37). .
 逆止弁体38は、円板状小径部38aと円板状大径部38bと、これらの間に装着されたOリング38cとを一体的に備える。円板状小径部38aから左方(戻り通路14の入口側)に第1のガイドバー38dが突出し、円板状大径部38bから右方(戻り通路14の出口側)に第2のガイドバー38eが突出している。逆止弁体38におけるOリング38cが前記弁座37に当接することにより、逆止弁体38と弁座37との間がシールされるようになっている。 The check valve body 38 integrally includes a disc-shaped small-diameter portion 38a, a disc-shaped large-diameter portion 38b, and an O-ring 38c mounted therebetween. A first guide bar 38d protrudes leftward (the entrance side of the return passage 14) from the small disc-shaped portion 38a, and a second guide bar extends rightward (the exit side of the return passage 14) from the large disc-shaped portion 38b. The bar 38e protrudes. When the O-ring 38c of the check valve body 38 contacts the valve seat 37, the space between the check valve body 38 and the valve seat 37 is sealed.
 第1のガイドバー38dは、円板状小径部38aの左側面の外縁付近に、円周方向に所定の隙間を隔てて複数本(図示例では、120°の角度間隔を隔てて3本)配置され、各ガイドバー38d(の外周)は弁座37の内周と当接している。この第1のガイドバー38dにより、逆止弁体38の左右方向への移動がガイドされる。 A plurality of first guide bars 38d are provided near the outer edge of the left side surface of the disc-shaped small-diameter portion 38a with a predetermined gap in the circumferential direction (in the example shown, three at 120 ° angular intervals). The guide bar 38 d (outer periphery) is in contact with the inner periphery of the valve seat 37. The movement of the check valve body 38 in the left-right direction is guided by the first guide bar 38d.
 また、第2のガイドバー38eは、円板状大径部38bの右側面の中央付近に、円周方向に所定の隙間を隔てて複数本(図示例では、120°の角度間隔を隔てて3本)配置され、各ガイドバー38eは、圧縮コイルばね39の内側に配在されるとともにストッパ31に穿設された流通孔(図示例では、中心角が約120°の概略扇形状の流通孔)32に緩やかに挿通されている。この第2のガイドバー38eにより、逆止弁体38の左右方向への移動がガイドされるとともに、逆止弁体38の傾きや戻り通路14(逆止弁30)の中心軸周りでの回転が防止される。 Further, a plurality of second guide bars 38e are provided in the vicinity of the center of the right side surface of the disc-shaped large-diameter portion 38b at predetermined angular intervals in the circumferential direction (in the illustrated example, at 120 ° angular intervals). The three guide bars 38e are disposed inside the compression coil spring 39, and are formed in a flow hole (in the illustrated example, a substantially fan-shaped flow path having a central angle of about 120 °) formed in the stopper 31. Hole 32). The movement of the check valve body 38 in the left-right direction is guided by the second guide bar 38e, and the tilt of the check valve body 38 and the rotation of the return passage 14 (the check valve 30) around the central axis are performed. Is prevented.
 上記構成を有する逆止弁30は、その逆止弁体38及び圧縮コイルばね39の外形(外径)が戻り通路14の縮径部33より小さく設定されている。その組み立てに際しては、戻り通路14における出口側開口(右端部開口)から、逆止弁体38、圧縮コイルばね39、ストッパ31をその順で戻り通路14の内側に挿入し、ストッパ31を戻り通路14の縮径部33に配置固定する。これにより、当該逆止弁30を戻り通路14の内周に一体に設置することができる。 外形 In the check valve 30 having the above configuration, the outer shape (outer diameter) of the check valve body 38 and the compression coil spring 39 is set smaller than the reduced diameter portion 33 of the return passage 14. When assembling, the check valve body 38, the compression coil spring 39, and the stopper 31 are inserted into the return passage 14 in that order from the outlet side opening (right end opening) in the return passage 14, and the stopper 31 is inserted into the return passage 14. 14 and fixed to the reduced diameter portion 33. Thereby, the check valve 30 can be installed integrally on the inner periphery of the return passage 14.
 上記構成とされた複合弁10における逆止弁30の機能について説明する。図6に示される状態において、蒸発器5側から入口側開口を介して冷媒が流入し、その流体圧が圧縮コイルばね39の付勢力を上回ると、図5に示すように、逆止弁体38のOリング38cが弁座37から(右方に)離間し、出口側開口を介して圧縮機2側へ冷媒が流れる。 The function of the check valve 30 in the composite valve 10 having the above configuration will be described. In the state shown in FIG. 6, when the refrigerant flows from the evaporator 5 side through the inlet side opening and the fluid pressure exceeds the urging force of the compression coil spring 39, as shown in FIG. The O-ring 38c is separated from the valve seat 37 (to the right), and the refrigerant flows toward the compressor 2 via the outlet-side opening.
 一方、図6に示すように、圧縮機2側から出口側開口を介して冷媒が流入しても、圧縮コイルばね39(の付勢力)によって逆止弁体38のOリング38cが(右方から)弁座37に付勢されて逆止弁30が閉じているため、入口側開口を介して蒸発器5側へ冷媒が流れることはない。 On the other hand, as shown in FIG. 6, even if the refrigerant flows in from the compressor 2 side through the outlet side opening, the O-ring 38 c of the check valve body 38 (the right side) is actuated by (the urging force of) the compression coil spring 39. Since the check valve 30 is closed by being biased by the valve seat 37, the refrigerant does not flow toward the evaporator 5 through the inlet-side opening.
 つまり、複合弁10における逆止弁30は、入口側開口(蒸発器5)から出口側開口(圧縮機2)へ向かう冷媒の流れを許容する一方で、出口側開口(圧縮機2)から入口側開口(蒸発器5)へ向かう冷媒の流れ(逆流)を遮断するようになっており、更に換言すれば、入口側開口(蒸発器5)から出口側開口(圧縮機2)への一方向にのみ冷媒を流通させるようになっている。 That is, the check valve 30 in the composite valve 10 allows the flow of the refrigerant from the inlet-side opening (evaporator 5) to the outlet-side opening (compressor 2), while allowing the refrigerant to flow from the outlet-side opening (compressor 2) to the inlet. The flow (backflow) of the refrigerant toward the side opening (evaporator 5) is shut off. In other words, one direction from the inlet side opening (evaporator 5) to the outlet side opening (compressor 2). The refrigerant is circulated only in the
 なお、弁本体11には、前記した入口通路12、出口通路13、戻り通路14に加えて、その上下中央付近(すなわち、入口通路12及び出口通路13と戻り通路14との間の部分)に、弁本体11を蒸発器5や他部品等に取り付けるためのボルトを挿通する横貫通穴からなる取付穴15が前後方向に並んで2箇所設けられるとともに、配管継手を固定するための有底(非貫通)のねじ穴16が前後方向中央に1箇所設けられている。 The valve body 11 has, in addition to the inlet passage 12, the outlet passage 13, and the return passage 14, the vicinity of the upper and lower centers thereof (that is, the portion between the inlet passage 12, the outlet passage 13, and the return passage 14). At the same time, two mounting holes 15 are formed in the front-rear direction and are provided with horizontal through holes for inserting bolts for mounting the valve body 11 to the evaporator 5 and other components. One (non-through) screw hole 16 is provided at the center in the front-rear direction.
 以上で説明したように、本実施形態の複合弁10は、弁本体11を貫通して設けられた戻り通路14内に、該戻り通路14を通過する冷媒の逆流を防止する逆止弁30が一体に配設されるので、例えばカーエアコン等の空気調和機において、レイアウト上で新たに逆止弁を追加することなく(言い換えれば、既存の設置スペースや配管系統等を変更せずに)、省スペースで膨張弁20と逆止弁30双方の機能を持ち合わせた複合弁10を設置することができる。 As described above, in the composite valve 10 of the present embodiment, the check valve 30 for preventing the backflow of the refrigerant passing through the return passage 14 is provided in the return passage 14 provided through the valve body 11. Because they are arranged integrally, for example, in an air conditioner such as a car air conditioner, without adding a new check valve on the layout (in other words, without changing the existing installation space, piping system, etc.), The combined valve 10 having both functions of the expansion valve 20 and the check valve 30 can be installed in a small space.
 また、逆止弁30は、戻り通路14の出口側開口(蒸発器5側とは反対側の開口)から戻り通路14の内周に挿入されて配設されるので、組付性(取付作業性)、メンテナンス性等を向上できるといった効果もある。 Further, the check valve 30 is inserted from the outlet side opening of the return passage 14 (the opening on the side opposite to the evaporator 5 side) to the inner periphery of the return passage 14, so that the check valve 30 can be assembled easily (installation work). ), Maintainability and the like can be improved.
 なお、上記実施形態においては、電気的駆動力によって弁体をオリフィスに対して駆動する駆動源として電動モータを使用したもの(電動式アクチュエータ)を例示したが、本発明はこれに限られることはなく、駆動源としてソレノイドを主要部とする電磁式のもの(電磁式アクチュエータ)を使用することもできる。 In the above-described embodiment, an example in which an electric motor is used as a driving source for driving the valve body with respect to the orifice by an electric driving force (an electric actuator) has been described, but the present invention is not limited to this. Instead, an electromagnetic actuator (electromagnetic actuator) having a solenoid as a main part can be used as a drive source.
 また、戻り通路14に配設される逆止弁30の具体的構成も、上記実施形態に限定されないことは当然である。 The specific configuration of the check valve 30 disposed in the return passage 14 is, of course, not limited to the above embodiment.
 また、上記実施形態においては、カーエアコン等の冷凍サイクル用の複合弁を例示したが、本発明に係る複合弁は、ヒートポンプ式冷暖房システム等にも適用できることは勿論である。 Also, in the above embodiment, the composite valve for the refrigeration cycle of a car air conditioner or the like has been exemplified, but the composite valve according to the present invention can of course be applied to a heat pump type cooling / heating system or the like.
1   冷凍サイクル
10  複合弁
11  弁本体
11a 弁本体の右側面
11b 弁本体の左側面
12  入口通路
13  出口通路
14  戻り通路
15  取付穴
16  ねじ穴
20  膨張弁
21  電動モータ(駆動源)
30  逆止弁
31  ストッパ
32  流通孔
33  縮径部
37  弁座
38  逆止弁体
38a 円板状小径部
38b 円板状大径部
38c Oリング
38d 第1のガイドバー
38e 第2のガイドバー
39  圧縮コイルばね
Reference Signs List 1 Refrigeration cycle 10 Composite valve 11 Valve body 11a Right side face of valve body 11b Left side face of valve body 12 Inlet passage 13 Outlet passage 14 Return passage 15 Mounting hole 16 Screw hole 20 Expansion valve 21 Electric motor (drive source)
Reference Signs List 30 Check valve 31 Stopper 32 Flow hole 33 Reduced diameter portion 37 Valve seat 38 Check valve body 38a Disc-shaped small diameter portion 38b Disc-shaped large diameter portion 38c O-ring 38d First guide bar 38e Second guide bar 39 Compression coil spring

Claims (6)

  1.  冷媒が流入する入口通路、冷媒が流出する出口通路、及び前記入口通路と前記出口通路の間に形成されたオリフィスを有する弁本体と、前記オリフィスを通過する冷媒量を調整する弁体と、電気的駆動力によって前記弁体を前記オリフィスに対して駆動する駆動源とを備えるとともに、
     前記弁本体を貫通して冷媒が通過する戻り通路が設けられ、前記戻り通路内に、該戻り通路における冷媒の逆流を防止する逆止弁が一体に配設されていることを特徴とする複合弁。
    A valve body having an inlet passage through which the refrigerant flows in, an outlet passage through which the refrigerant flows out, and an orifice formed between the inlet passage and the outlet passage; a valve body for adjusting an amount of the refrigerant passing through the orifice; A drive source for driving the valve body with respect to the orifice by a dynamic driving force,
    A return passage through which the refrigerant passes through the valve body; and a check valve for preventing the backflow of the refrigerant in the return passage is integrally provided in the return passage. valve.
  2.  凝縮器からの冷媒が流入する入口通路、蒸発器へ向かう冷媒が流出する出口通路、前記入口通路と前記出口通路の間に形成されたオリフィス、及び蒸発器から圧縮機へ戻る冷媒が通過する戻り通路を有する弁本体と、
     前記オリフィスを通過する冷媒量を調整する弁体と、
     前記戻り通路を通過する冷媒の温度に基づいて電気的駆動力によって前記弁体を前記オリフィスに対して駆動する駆動源と、
     前記戻り通路内に一体に配設され、該戻り通路における冷媒の逆流を防止する逆止弁とを備えることを特徴とする複合弁。
    An inlet passage through which the refrigerant flows from the condenser, an outlet passage through which the refrigerant flows toward the evaporator, an orifice formed between the inlet passage and the outlet passage, and a return through which the refrigerant returning from the evaporator to the compressor passes. A valve body having a passage;
    A valve body for adjusting the amount of refrigerant passing through the orifice,
    A drive source for driving the valve body with respect to the orifice by an electric driving force based on the temperature of the refrigerant passing through the return passage;
    A non-return valve integrally disposed in the return passage and preventing a backflow of the refrigerant in the return passage.
  3.  前記入口通路の流入開口及び前記戻り通路の出口側開口が、前記弁本体の一側面に開口せしめられ、前記出口通路の流出開口及び前記戻り通路の入口側開口が、前記弁本体の前記一側面と異なる他側面に開口せしめられていることを特徴とする請求項1又は2に記載の複合弁。 An inlet opening of the inlet passage and an outlet opening of the return passage are opened on one side of the valve body, and an outlet opening of the outlet passage and an inlet opening of the return passage are provided on the one side of the valve body. The composite valve according to claim 1, wherein the composite valve is opened on another side different from that of the composite valve.
  4.  前記弁本体における前記一側面と前記他側面とが対向配置されていることを特徴とする請求項3に記載の複合弁。 The composite valve according to claim 3, wherein the one side surface and the other side surface of the valve main body are arranged to face each other.
  5.  前記逆止弁は、前記戻り通路の出口側開口から前記戻り通路の内側に挿入されて配設されていることを特徴とする請求項1から4のいずれか一項に記載の複合弁。 The composite valve according to any one of claims 1 to 4, wherein the check valve is inserted and disposed inside the return passage from an outlet opening of the return passage.
  6.  前記駆動源は、前記弁本体において前記入口通路及び前記出口通路に対して前記戻り通路とは反対側に位置する面に配設されていることを特徴とする請求項1から5のいずれか一項に記載の複合弁。 The said drive source is arrange | positioned at the surface located in the said valve body in the opposite side to the said return passage with respect to the said inlet passage and the said outlet passage, The Claim 1 characterized by the above-mentioned. A composite valve according to the item.
PCT/JP2019/030513 2018-09-13 2019-08-02 Combination valve WO2020054251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171421A JP2020041658A (en) 2018-09-13 2018-09-13 Composite valve
JP2018-171421 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020054251A1 true WO2020054251A1 (en) 2020-03-19

Family

ID=69776569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030513 WO2020054251A1 (en) 2018-09-13 2019-08-02 Combination valve

Country Status (2)

Country Link
JP (1) JP2020041658A (en)
WO (1) WO2020054251A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697027B2 (en) 2001-07-31 2010-04-13 Donnelly Corporation Vehicular video system
US7881496B2 (en) 2004-09-30 2011-02-01 Donnelly Corporation Vision system for vehicle
WO2008024639A2 (en) 2006-08-11 2008-02-28 Donnelly Corporation Automatic headlamp control system
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
WO2012075250A1 (en) 2010-12-01 2012-06-07 Magna Electronics Inc. System and method of establishing a multi-camera image using pixel remapping
WO2012145822A1 (en) 2011-04-25 2012-11-01 Magna International Inc. Method and system for dynamically calibrating vehicular cameras
WO2013016409A1 (en) 2011-07-26 2013-01-31 Magna Electronics Inc. Vision system for vehicle
US10946799B2 (en) 2015-04-21 2021-03-16 Magna Electronics Inc. Vehicle vision system with overlay calibration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329247A (en) * 1999-05-19 2000-11-30 Fuji Koki Corp Motor-driven expansion valve
JP2004270975A (en) * 2003-03-06 2004-09-30 Tgk Co Ltd Flow rate control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329247A (en) * 1999-05-19 2000-11-30 Fuji Koki Corp Motor-driven expansion valve
JP2004270975A (en) * 2003-03-06 2004-09-30 Tgk Co Ltd Flow rate control valve

Also Published As

Publication number Publication date
JP2020041658A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2020054251A1 (en) Combination valve
EP3018434B1 (en) Electromagnetic valve
JP5022120B2 (en) Motorized valves for air conditioning systems
EP2889553B1 (en) Flow control valve, refrigerating system and method for controlling the same
EP2700853B1 (en) Control valve
EP2573438A1 (en) Pilot operated solenoid valve
JP2010038455A (en) Expansion valve and vapor compression refrigerating cycle equipped with the same
JP5544469B2 (en) Combined valve and vehicle air conditioner
JP5572807B2 (en) Control valve and vehicle air conditioner
JP5604626B2 (en) Expansion valve
JP2012061911A (en) Air conditioner for vehicle and control valve
JP2006199183A (en) Expansion device
JP2010048498A (en) Refrigerating cycle
JP5699267B2 (en) Control valve
WO2018016219A1 (en) Ejector-type refrigeration cycle
JP5499299B2 (en) Control valve and vehicle air conditioner
JP2011255689A (en) Air conditioner for vehicle and control valve
JP5613879B2 (en) Control valve and vehicle air conditioner
JP5629856B2 (en) Control valve
JP6442424B2 (en) Heat pump equipment
WO2018047563A1 (en) Ejector
WO2017212864A1 (en) Pressure-reducing device
JP2005201484A (en) Refrigerating cycle
JP3152908B2 (en) Expansion valve
JP2012082908A (en) Stacked valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858914

Country of ref document: EP

Kind code of ref document: A1