WO2017212864A1 - Pressure-reducing device - Google Patents

Pressure-reducing device Download PDF

Info

Publication number
WO2017212864A1
WO2017212864A1 PCT/JP2017/017973 JP2017017973W WO2017212864A1 WO 2017212864 A1 WO2017212864 A1 WO 2017212864A1 JP 2017017973 W JP2017017973 W JP 2017017973W WO 2017212864 A1 WO2017212864 A1 WO 2017212864A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
refrigerant
support member
sectional area
pressure
Prior art date
Application number
PCT/JP2017/017973
Other languages
French (fr)
Japanese (ja)
Inventor
大介 中島
池上 真
山田 悦久
陽一郎 河本
照之 堀田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017212864A1 publication Critical patent/WO2017212864A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof

Definitions

  • the present disclosure relates to a decompression unit applied to a vapor compression refrigeration cycle apparatus.
  • Patent Document 1 discloses an ejector as decompression means applied to a vapor compression refrigeration cycle apparatus.
  • coolant which flowed out from the evaporator is attracted
  • coolant Then, the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant is increased in the diffuser passage, and flows out to the suction side of the compressor.
  • a substantially conical passage forming member that is, a valve body portion
  • a refrigerant passage having an annular cross section is formed between the inner wall surface of the body and the conical side surface of the passage forming member.
  • a portion on the most upstream side of the refrigerant flow is used as a nozzle passage, and a portion on the downstream side of the refrigerant flow in the nozzle passage is used as a diffuser passage.
  • the ejector of Patent Document 1 includes a drive unit that displaces the passage forming member to change the passage sectional area of the refrigerant passage (that is, the nozzle passage and the diffuser passage).
  • the passage sectional area of the refrigerant passage that is, the nozzle passage and the diffuser passage.
  • the passage forming member is provided with a columnar shaft, and the body is provided with a cylindrical support member that supports the shaft so as to be slidable.
  • the central axis of the support member is arranged coaxially with the central axis of the internal space of the body.
  • the cross-sectional shape of the refrigerant passage formed in an annular cross section may become uneven in the circumferential direction. For this reason, even if the drive unit attempts to change the passage cross-sectional area in the throat portion (that is, the minimum passage cross-sectional area portion) of the nozzle passage according to the load variation of the applied refrigeration cycle apparatus, The area may become unstable. As a result, the flow rate of the refrigerant flowing through the nozzle passage may become unstable.
  • Such a problem is not limited to the ejector, and the valve body portion is arranged in the space forming the throttle passage, and the valve body portion is displaced to change the passage cross-sectional area of the circular throttle passage. The same can occur in the decompression device.
  • This indication aims at providing the decompression device which can change the passage sectional area of a refrigerant passage with sufficient accuracy according to the driving force outputted from the drive part in view of the above-mentioned point.
  • the decompression device is applied to a vapor compression refrigeration cycle apparatus.
  • the decompression device includes a body, a valve body portion, a drive portion, and a support member.
  • the body has a rotator-shaped decompression space that decompresses the refrigerant flowing into the body. At least a part of the valve body is disposed inside the decompression space.
  • the driving unit outputs a driving force that displaces the valve body.
  • the support member has a rotating body shape and supports the valve body portion so as to be slidable.
  • a refrigerant passage formed between the inner peripheral surface of the part of the body forming the decompression space and the outer peripheral surface of the valve body portion is a throttle passage that functions as a throttle for decompressing the refrigerant.
  • the central axis of the support member is arranged coaxially with the central axis of the decompression space.
  • the body has a minimum passage cross-sectional area where the cross-sectional area of the throttle passage is the smallest.
  • the support member has a sliding region in which the valve body portion slides. In the direction perpendicular to the axial direction of the decompression space, the minimum passage cross-sectional area portion and the sliding region overlap.
  • the minimum passage cross-sectional area overlaps with the sliding region, so that the central axis of the valve body portion is relative to the central axis of the support member.
  • the distance between the rotation center and the minimum passage cross-sectional area when tilting can be shortened.
  • the rotation center is a point on the central axis of the support member, and can be defined as the axial center point of the sliding region.
  • the drive unit displaces the valve body, even if the displacement direction of the valve body is inclined with respect to the decompression space and the central axis of the support member, the sectional shape of the throttle passage is not circumferential. The degree of uniformity can be reduced.
  • the minimum passage cross-sectional area and the rotation center overlap is not limited to the arrangement in which the minimum passage cross-sectional area and the rotation center completely coincide with each other. Even a slight deviation within a range that does not cause instability of the refrigerant flow rate is included in the polymerization.
  • FIGS. 1 and 2 A first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • the decompression device 13 of the present embodiment is applied to a vapor compression refrigeration cycle device 10 as shown in FIG.
  • the refrigeration cycle apparatus 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is an air-conditioning target space. Therefore, the cooling target fluid of the refrigeration cycle apparatus 10 of the present embodiment is blown air.
  • R134a is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is configured to increase the pressure until the refrigerant is sucked into the high-pressure refrigerant and discharged.
  • the compressor 11 is disposed in an engine room together with an engine (internal combustion engine) that outputs a driving force for vehicle travel. Further, the compressor 11 is an engine-driven compressor that is driven by a rotational driving force output from the engine via a pulley, a belt, or the like.
  • a swash plate type variable displacement compressor configured such that the refrigerant discharge capacity can be adjusted by changing the discharge capacity is adopted as the compressor 11.
  • the compressor 11 has a discharge capacity control valve (not shown) for changing the discharge capacity.
  • the operation of the discharge capacity control valve is controlled by a control current output from a control device described later.
  • the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 is a heat exchanger for heat radiation that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown by the cooling fan 12d. .
  • the radiator 12 is arranged on the vehicle front side in the engine room.
  • the radiator 12 is configured as a so-called subcool type condenser having a condensing unit 12a, a receiver unit 12b, and a supercooling unit 12c.
  • the condensing unit 12a is a heat exchange unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d, and dissipates the high-pressure gas-phase refrigerant to condense.
  • the receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
  • the supercooling unit 12c is a heat exchange unit for supercooling that causes the liquid phase refrigerant that has flowed out of the receiver unit 12b and the outside air blown from the cooling fan 12d to exchange heat, thereby supercooling the liquid phase refrigerant.
  • the cooling fan 12d is an electric blower in which the rotation speed (that is, the amount of blown air) is controlled by a control voltage output from the control device.
  • a refrigerant inlet 30a of the decompression device 13 is connected to the refrigerant outlet side of the supercooling portion 12c of the radiator 12.
  • the decompression device 13 decompresses the supercooled high-pressure liquid-phase refrigerant that has flowed out of the radiator 12 and flows it downstream.
  • a specific configuration of the decompression device 13 will be described with reference to FIG.
  • the up and down arrows in FIG. 2 indicate the up and down directions when the decompression device 13 is mounted on the vehicle.
  • the decompression device 13 includes a body 30 formed by combining a plurality of metal components (in this embodiment, aluminum alloy).
  • the body 30 may be made of resin.
  • the body 30 is formed with a refrigerant inlet 30a through which the refrigerant that has flowed out of the radiator 12 flows into the inside, and a refrigerant outlet 30b through which the refrigerant flows out from the inside.
  • a decompression space 30c is formed in the body 30 to depressurize the refrigerant flowing into the interior from the refrigerant inlet 30a.
  • the decompression space 30c is formed in a rotating body shape in which the tops of two frustoconical spaces arranged on the same axis are coupled to each other via a cylindrical space.
  • a minimum passage cross-sectional area portion 30d that reduces the passage cross-sectional area of the throttle passage 13a, which will be described later, is formed at the central portion in the axial direction of the portion of the body 30 that forms the decompression space 30c.
  • the rotating body shape is a three-dimensional shape formed when a plane figure is rotated around one straight line (center axis) on the same plane.
  • a valve body 31 formed in a truncated cone shape is disposed inside the decompression space 30c.
  • the valve body 31 changes the passage cross-sectional area of the refrigerant passage (that is, the throttle passage) 13a formed inside the decompression device 13 by being displaced in the direction of the central axis CL of the decompression space 30c.
  • the valve body portion 31 is formed of a truncated cone-shaped member made of resin (in this embodiment, made of nylon 6 or nylon 66) having resistance to the refrigerant.
  • the valve element 31 is formed in a truncated cone shape whose outer diameter decreases toward the downstream side of the refrigerant flow. More specifically, in the decompression device 13 of the present embodiment, the refrigerant inlet 30a is disposed below the refrigerant outlet 30b. Therefore, the valve body 31 is formed in a rotating body shape that tapers from the lower side toward the upper side. Furthermore, the valve body 31 is disposed on the lower side of the decompression space 30c.
  • a refrigerant passage having an annular shape in the axially vertical cross section is formed between the inner peripheral surface of the part forming the decompression space 30c of the body 30 and the outer peripheral surface of the valve body 31.
  • the refrigerant passage is a throttle passage 13a that functions as a throttle for decompressing the refrigerant.
  • the passage sectional area decreases from the refrigerant flow upstream side (lower side in the present embodiment) toward the minimum passage sectional area 30d.
  • a columnar insertion hole 31a is formed on the top side (in the present embodiment, the upper side) of the valve body 31.
  • the central axis of the insertion hole 31 a is arranged coaxially with the central axis of the valve body portion 31.
  • a support member 32 is inserted into the insertion hole 31a. The support member 32 slidably supports the valve body portion 31 and suppresses the displacement direction of the valve body portion 31 from being inclined with respect to the central axis CL direction of the decompression space 30c.
  • the support member 32 is formed of a cylindrical member made of metal (in this embodiment, stainless steel). Therefore, the support member 32 is formed in a rotating body shape. Then, the valve body 31 slides on the support member 32 by inserting one end of the support member 32 (the end on the lower side in the present embodiment) into the insertion hole 31a of the valve body 31. It is supported movably. Therefore, in this embodiment, the area
  • the minimum passage cross-sectional area 30d when viewed from a direction perpendicular to the central axis CL, is positioned so as to overlap with the sliding region 32a. More specifically, when viewed from a direction perpendicular to the central axis CL, the minimum passage cross-sectional area 30d is the center of rotation when the central axis of the valve body 31 is inclined with respect to the central axis of the support member 32. Polymerized with CP.
  • the rotation center CP is a point on the central axis of the support member 32 and can be defined as the axial center point of the sliding region 32a.
  • the minimum passage cross-sectional area 30d is overlapped with the rotation center CP means that the minimum passage cross-sectional area 30d and the rotation center CP completely coincide when viewed from the direction perpendicular to the central axis CL. It is not limited to arrange
  • the other end of the support member 32 is fixed to the body 30.
  • the support member 32 is fixed so that the central axis of the support member 32 is arranged coaxially with the central axis CL of the decompression space 30 c of the body 30.
  • the central axis of the valve body 31 supported by the support member 32 can be arranged coaxially with the central axis CL of the decompression space 30c.
  • the operating rod 31b of the valve body 31 is disposed inside the support member 32.
  • the actuating bar 31 b transmits the driving force output from the driving unit 34 to the valve body 31.
  • the actuating rod 31b is formed of a columnar member made of metal (in this embodiment, the same stainless steel as the support member 32).
  • the operating rod 31b is integrated as a part of the valve body 31 by one end being insert-molded in the valve body 31.
  • the central axis of the operating rod 31b is integrated so as to be arranged coaxially with the central axis of the valve body 31.
  • the other end of the actuating bar 31 b is connected to the drive unit 34.
  • the outer diameter of the operating rod 31b is formed smaller than the inner diameter of the support member 32. For this reason, the support member 32 and the operating rod 31b do not slide. Further, an O-ring as a seal member is interposed between the body 30 and the operating rod 31b, so that the refrigerant does not leak from the gap between the body 30 and the operating rod 31b.
  • the driving unit 34 outputs a driving force that displaces the valve body 31 in the axial direction.
  • the drive unit 34 changes the passage sectional area of the throttle passage 13a such as the minimum passage sectional area 30d by displacing the valve body 31 in the axial direction.
  • the drive unit 34 of the present embodiment has a stepping motor. The operation of the drive unit 34 is controlled by a control signal (control pulse) output from the control device.
  • the refrigerant inlet side of the evaporator 14 is connected to the refrigerant outlet 30 b of the decompression device 13.
  • the evaporator 14 performs heat exchange between the low-pressure refrigerant decompressed by the decompression device 13 and the blown air blown from the blower fan 14a into the vehicle interior, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is an exchanger.
  • the blower fan 14a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device.
  • the refrigerant outlet side of the evaporator 14 is connected to the suction port side of the compressor 11.
  • a control device (not shown) includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. This control device performs various calculations and processes based on a control program stored in the ROM. Then, the operation of the above-described various electric actuators 11, 12d, 14a, 34, etc. is controlled.
  • the control device is connected to a plurality of air conditioning control sensor groups such as an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, an evaporator temperature sensor, an evaporator pressure sensor, and a discharge pressure sensor.
  • a detection value is input.
  • the inside air temperature sensor is an inside air temperature detecting unit that detects the temperature inside the vehicle.
  • the outside air temperature sensor is an outside air temperature detecting unit that detects the outside air temperature.
  • a solar radiation sensor is a solar radiation amount detection part which detects the solar radiation amount in a vehicle interior.
  • An evaporator temperature sensor is an evaporator temperature detection part which detects the temperature of the evaporator 14 exit side refrigerant
  • the evaporator pressure sensor is an evaporator pressure detector that detects the pressure of the refrigerant on the outlet side of the evaporator 14.
  • the discharge pressure sensor is an outlet-side pressure detection unit that detects the pressure of the radiator 12 outlet-side refrigerant.
  • an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
  • control device of the present embodiment is configured integrally with a control unit that controls the operation of various control target devices connected to the output side of the control device.
  • the configuration (hardware and software) for controlling the operation constitutes a dedicated control unit for each control target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 by controlling the operation of the discharge capacity control valve of the compressor 11 constitutes the discharge capacity control unit.
  • the control device operates the discharge capacity control valve of the compressor 11, the cooling fan 12d, the blower fan 14a, and the like. Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it. At this time, the control device increases the refrigerant discharge capacity of the compressor 11 as the heat load of the refrigeration cycle apparatus 10 increases.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12, exchanges heat with the outside air blown from the cooling fan 12d, radiates heat, and becomes a supercooled liquid phase refrigerant.
  • the supercooled liquid phase refrigerant flowing out of the radiator 12 is decompressed by the decompression device 13 and becomes a low-pressure refrigerant.
  • the controller reduces the pressure reducing device so that the superheat degree of the refrigerant on the outlet side of the evaporator 14 calculated from the detected value of the evaporator temperature sensor and the detected value of the evaporator pressure sensor approaches the predetermined reference superheat degree KSH.
  • the operation of the 13 drive units 34 is controlled. That is, the control device adjusts the passage cross-sectional area of the minimum passage cross-sectional area 30d of the throttle passage 13a so that the superheat degree of the evaporator 14 outlet-side refrigerant approaches the reference superheat degree KSH.
  • the low-pressure refrigerant decompressed by the decompression device 13 flows into the evaporator 14, absorbs heat from the blown air blown by the blower fan 14a, and evaporates. Thereby, blowing air is cooled.
  • the refrigerant flowing out of the evaporator 14 is sucked into the compressor 11 and compressed again.
  • the refrigeration cycle apparatus 10 operates as described above and can cool the blown air blown into the vehicle interior.
  • the decompression device 13 of the present embodiment since there is a gap between the outer peripheral surface of the support member 32 and the inner peripheral surface of the insertion hole 31a of the valve body portion 31, as described above,
  • the displacement direction may be inclined with respect to the central axis of the support member 32.
  • the cross-sectional shape of the throttle passage 13a formed in an annular cross-section becomes uneven in the circumferential direction.
  • the minimum passage cross-sectional area 30d overlaps with the sliding region 32a. For this reason, the distance between the rotation center CP and the minimum passage cross-sectional area 30d when the central axis of the valve body 31 is inclined with respect to the central axis of the support member 32 can be shortened.
  • the passage sectional area in the minimum passage sectional area 30d of the throttle passage 13a can be accurately changed according to the driving force output from the driving unit 34.
  • the passage cross-sectional area of the minimum passage cross-sectional area portion 30d of the throttle passage 13a is the minimum passage cross-sectional area that determines the flow rate of the refrigerant flowing through the throttle passage 13a. Therefore, the ability to reduce the degree to which the cross-sectional shape of the minimum passage cross-sectional area 30d of the throttle passage 13a becomes uneven in the circumferential direction is extremely effective for stabilizing the flow rate of the refrigerant flowing through the decompression device 13.
  • the sectional shape of the throttle passage 13a since the minimum passage cross-sectional area 30d and the rotation center CP are arranged so as to overlap when viewed from the direction perpendicular to the central axis CL, the sectional shape of the throttle passage 13a.
  • the degree of non-uniformity in the circumferential direction can be effectively reduced, and the passage cross-sectional area in the minimum passage cross-sectional area 30d of the throttle passage 13a can be changed with higher accuracy.
  • This embodiment demonstrates the example which changed the valve body part 31 and the support member 32 with respect to 1st Embodiment. More specifically, in this embodiment, as shown in FIG. 3, an insertion hole 31 a is formed on the bottom surface of the valve body portion 31 (the lower surface in the present embodiment). The valve body 31 is slidably supported by the support member 32 by inserting one end of the support member 32 (the upper end in the present embodiment) into the insertion hole 31a. ing.
  • the operating rod 31b is formed in a shape extending from the valve body portion 31 toward one axial side of the central axis CL (in the present embodiment, the upper side).
  • the support member 32 is formed in a shape extending from the valve body portion 31 toward the other axial side of the central axis CL (in the present embodiment, the lower side).
  • the other end of the support member 32 is fixed to the bottom surface of the body 30. At this time, the support member 32 is fixed so that the central axis of the support member 32 is arranged coaxially with the central axis CL of the decompression space 30 c of the body 30.
  • a coil spring 35 which is an elastic member that applies a load in a direction to reduce the passage cross-sectional area of the minimum passage cross-sectional area 30d to the valve body 31, is accommodated in the support member 32.
  • the coil spring 35 also functions as a vibration suppressing member that attenuates the vibration of the valve body 31 caused by pressure pulsation when the refrigerant is depressurized or vibration transmitted from the outside.
  • the minimum passage cross-sectional area 30d when viewed from a direction perpendicular to the central axis CL, is positioned within a range where it overlaps with the sliding region 32a. More specifically, when viewed from a direction perpendicular to the central axis CL, the minimum passage cross-sectional area 30d is the center of rotation when the central axis of the valve body 31 is inclined with respect to the central axis of the support member 32. Arranged to polymerize with CP. Other configurations and operations are the same as those in the first embodiment.
  • the refrigerant inlet 30a may be disposed below the refrigerant outlet 30b. That is, as shown in FIG. 4, the refrigerant may flow in the opposite direction to the first and second embodiments.
  • the decompression space 30c is formed in a rotating body shape in which the top sides of the two truncated cone-shaped spaces arranged coaxially are coupled to each other via a cylindrical space.
  • the shape of the decompression space 30c is not limited to this. If the minimum passage cross-sectional area 30d can be formed, for example, as shown in FIG. 4, it is a rotating body shape in which the top sides of two frustoconical spaces arranged coaxially are directly coupled to each other. Also good.
  • valve body part 31 is not limited to this.
  • it may be formed in a spherical shape, or may be formed in a hemispherical shape, a cylindrical shape, or the like.
  • the valve body portion 31 may be formed of metal.
  • the support member 32 is formed in a cylindrical shape.
  • the support member 32 is not limited to a cylindrical shape as long as it is formed in a rotating body shape.
  • the support member 32 may be formed in a columnar shape.
  • the above-mentioned embodiment demonstrated the example which slid the inner peripheral surface of the insertion hole 31a of the valve body part 31 and the outer peripheral surface of the support member 32, the valve body part 31, the support member 32, and The sliding portion is not limited to this.
  • the outer peripheral surface of the operating rod 31 b that is a part of the valve body 31 and the support member 32 without sliding the inner peripheral surface of the insertion hole 31 a and the outer peripheral surface of the support member 32. You may make it slide with an inner peripheral surface.
  • the drive unit is not limited thereto.
  • a temperature sensing unit that detects the degree of superheat of the evaporator 14 outlet-side refrigerant based on the temperature and pressure of the evaporator 14 outlet-side refrigerant so that the superheat degree of the evaporator 14 outlet-side refrigerant approaches the reference superheat degree.
  • a mechanical drive mechanism for adjusting the valve opening degree may be used.
  • such a mechanical drive mechanism includes an enclosed space forming member that forms an enclosed space in which a temperature sensitive medium that changes in pressure according to the temperature of the refrigerant on the outlet side of the evaporator 14 is enclosed, and a temperature sensitive medium.
  • a pressure responsive member that displaces according to the pressure difference between the pressure of the evaporator 14 outlet side refrigerant, and a drive mechanism that transmits the displacement of the pressure responsive member to the valve body 31 can be employed.
  • Each component apparatus which comprises the refrigerating-cycle apparatus 10 is not limited to what was disclosed by the above-mentioned embodiment.
  • a normal radiator including only the condensing unit 12a may be employed.
  • a receiver-integrated condenser that integrates a receiver (receiver) that separates the gas-liquid of the refrigerant radiated by this radiator and stores excess liquid phase refrigerant is adopted. Also good.
  • R134a is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. can be employed.
  • a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • the refrigeration cycle apparatus 10 according to the present disclosure is applied to a vehicle air conditioner
  • application of the refrigeration cycle apparatus 10 is not limited to this.
  • the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.
  • the radiator 12 of the refrigeration cycle apparatus 10 including the decompression device 13 is an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and the evaporator 14 cools the blown air.
  • Use side heat exchanger the evaporator 14 may be used as an outdoor heat exchanger that absorbs heat from a heat source such as outside air, and the radiator 12 may be used as a use side heat exchanger that heats a heated fluid such as air or water.

Abstract

Provided is a pressure-reducing device comprising a body (30), a valve body (31), a drive section (34), and a support member (32). The body has a rotator-shaped pressure-reducing space (30c) for reducing the pressure of a refrigerant having flowed therein. A part of the valve body is disposed within the pressure-reducing space. The drive section outputs drive force for displacing the valve body. The support member is rotator-shaped and supports the valve body in a slidable manner. A refrigerant passage formed between the outer peripheral surface of the valve body and the inner peripheral surface of the portion of the body, which forms the pressure-reducing space, is a throttle passage (13a) functioning as a throttle for reducing the pressure of a refrigerant. The center axis of the support member is disposed coaxially with the center axis (CL) of the pressure-reducing space. The body has a smallest passage cross-sectional area section (30d) at which the cross-sectional area of the throttle passage is smallest. The support member has a slide region (32a) on which the valve body slides. The smallest passage cross-sectional area section and the slide region overlap each other in the direction perpendicular to the axial direction of the pressure-reducing space.

Description

減圧装置Decompressor 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年6月6日に出願された日本出願番号2016-112857号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-112857 filed on June 6, 2016, the contents of which are incorporated herein by reference.
 本開示は、蒸気圧縮式の冷凍サイクル装置に適用される減圧手段に関する。 The present disclosure relates to a decompression unit applied to a vapor compression refrigeration cycle apparatus.
 従来、特許文献1に、蒸気圧縮式の冷凍サイクル装置に適用される減圧手段としてのエジェクタが開示されている。この特許文献1のエジェクタでは、高圧冷媒を減圧させるノズル通路から噴射される噴射冷媒の吸引作用によって、ボデーに形成された冷媒吸引口および吸引用通路を介して蒸発器から流出した冷媒を吸引する。そして、ディフューザ通路にて、噴射冷媒と吸引冷媒との混合冷媒を昇圧させて、圧縮機の吸入側へ流出させる。 Conventionally, Patent Document 1 discloses an ejector as decompression means applied to a vapor compression refrigeration cycle apparatus. In the ejector of this patent document 1, the refrigerant | coolant which flowed out from the evaporator is attracted | sucked through the refrigerant | coolant suction port formed in the body and the suction | inhalation channel | path by the attraction | suction effect | action of the injection refrigerant injected from the nozzle channel | path which pressure-reduces high pressure refrigerant | coolant . Then, the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant is increased in the diffuser passage, and flows out to the suction side of the compressor.
 より具体的には、特許文献1のエジェクタでは、ボデーの内部に形成された回転体形状の内部空間に、略円錐形状の通路形成部材(すなわち、弁体部)を配置している。これにより、ボデーの内壁面と通路形成部材の円錐状側面との間に断面円環状の冷媒通路を形成している。そして、この冷媒通路のうち、冷媒流れ最上流側の部位をノズル通路として利用し、ノズル通路の冷媒流れ下流側の部位をディフューザ通路として利用している。 More specifically, in the ejector of Patent Document 1, a substantially conical passage forming member (that is, a valve body portion) is disposed in a rotating body-shaped internal space formed inside the body. Thus, a refrigerant passage having an annular cross section is formed between the inner wall surface of the body and the conical side surface of the passage forming member. Of these refrigerant passages, a portion on the most upstream side of the refrigerant flow is used as a nozzle passage, and a portion on the downstream side of the refrigerant flow in the nozzle passage is used as a diffuser passage.
 さらに、特許文献1のエジェクタは、通路形成部材を変位させて、冷媒通路(すなわち、ノズル通路およびディフューザ通路)の通路断面積を変化させる駆動部を備えている。これにより、特許文献1のエジェクタでは、適用された冷凍サイクル装置の負荷変動に応じて冷媒通路の通路断面積を変化させ、サイクルを循環する循環冷媒流量に応じてエジェクタを適切に作動させようとしている。 Furthermore, the ejector of Patent Document 1 includes a drive unit that displaces the passage forming member to change the passage sectional area of the refrigerant passage (that is, the nozzle passage and the diffuser passage). Thereby, in the ejector of patent document 1, it is going to change the passage cross-sectional area of a refrigerant path according to the load fluctuation | variation of the applied refrigeration cycle apparatus, and to operate an ejector appropriately according to the circulating refrigerant flow rate which circulates through a cycle. Yes.
 より具体的には、通路形成部材には、円柱状のシャフトが設けられており、ボデーには、シャフトを摺動可能の支持する円筒状の支持部材が設けられている。そして、支持部材の中心軸をボデーの内部空間の中心軸と同軸上に配置している。これにより、駆動部が通路形成部材を変位させる際に、内部空間の軸方向に変位させて、冷媒通路の通路断面積を変化させるようにしている。 More specifically, the passage forming member is provided with a columnar shaft, and the body is provided with a cylindrical support member that supports the shaft so as to be slidable. The central axis of the support member is arranged coaxially with the central axis of the internal space of the body. Thereby, when the drive unit displaces the passage forming member, the passage is displaced in the axial direction of the internal space to change the passage sectional area of the refrigerant passage.
特開2015-137565号公報Japanese Patent Laying-Open No. 2015-137565
 しかし、本願の発明者らの検討によると、特許文献1のエジェクタのように、通路形成部材のシャフトが支持部材に摺動可能に支持される構成では、シャフトの外周面と支持部材の内周面との間に隙間が形成されてしまう。このため、通路形成部材およびシャフトの変位方向が、内部空間の中心軸に対して傾いてしまうことがある。 However, according to the study of the inventors of the present application, in the configuration in which the shaft of the passage forming member is slidably supported by the support member as in the ejector of Patent Document 1, the outer peripheral surface of the shaft and the inner periphery of the support member are used. A gap is formed between the surfaces. For this reason, the displacement direction of a channel | path formation member and a shaft may incline with respect to the central axis of internal space.
 このような傾きが生じると、断面円環状に形成される冷媒通路の断面形状が周方向に不均一となってしまうおそれがある。このため、駆動部が、適用された冷凍サイクル装置の負荷変動に応じて、ノズル通路の喉部(すなわち、最小通路断面積部)における通路断面積を変化させようとしても、喉部における通路断面積が不安定になってしまうおそれがある。その結果、ノズル通路を流通する冷媒流量が不安定になってしまうおそれがある。 If such an inclination occurs, the cross-sectional shape of the refrigerant passage formed in an annular cross section may become uneven in the circumferential direction. For this reason, even if the drive unit attempts to change the passage cross-sectional area in the throat portion (that is, the minimum passage cross-sectional area portion) of the nozzle passage according to the load variation of the applied refrigeration cycle apparatus, The area may become unstable. As a result, the flow rate of the refrigerant flowing through the nozzle passage may become unstable.
 このような問題は、エジェクタに限定されることなく、絞り通路を形成する空間内に弁体部を配置し、弁体部を変位させることによって、断面円環状の絞り通路の通路断面積を変化させる減圧装置においても同様に生じ得る。 Such a problem is not limited to the ejector, and the valve body portion is arranged in the space forming the throttle passage, and the valve body portion is displaced to change the passage cross-sectional area of the circular throttle passage. The same can occur in the decompression device.
 本開示は、上記点に鑑み、駆動部から出力された駆動力に応じて、冷媒通路の通路断面積を精度良く変更可能な減圧装置を提供することを目的とする。 This indication aims at providing the decompression device which can change the passage sectional area of a refrigerant passage with sufficient accuracy according to the driving force outputted from the drive part in view of the above-mentioned point.
 本開示の一態様による減圧装置は、蒸気圧縮式の冷凍サイクル装置に適用される。減圧装置は、ボデーと、弁体部と、駆動部と、支持部材と、を備える。ボデーは、内部へ流入した冷媒を減圧させる回転体形状の減圧用空間を有する。弁体部の少なくとも一部は、減圧用空間の内部に配置されている。駆動部は、弁体部を変位させる駆動力を出力する。支持部材は回転体形状を有し、弁体部を摺動可能に支持する。ボデーのうち減圧用空間を形成する部位の内周面と弁体部の外周面との間に形成される冷媒通路は、冷媒を減圧させる絞りとして機能する絞り通路である。支持部材の中心軸は、減圧用空間の中心軸と同軸上に配置されている。ボデーは、絞り通路の断面積が最も縮小する最小通路断面積部を有する。支持部材は、弁体部が摺動する摺動領域を有する。減圧用空間の軸方向に垂直な方向において、最小通路断面積部と摺動領域とが重合する。 The decompression device according to one aspect of the present disclosure is applied to a vapor compression refrigeration cycle apparatus. The decompression device includes a body, a valve body portion, a drive portion, and a support member. The body has a rotator-shaped decompression space that decompresses the refrigerant flowing into the body. At least a part of the valve body is disposed inside the decompression space. The driving unit outputs a driving force that displaces the valve body. The support member has a rotating body shape and supports the valve body portion so as to be slidable. A refrigerant passage formed between the inner peripheral surface of the part of the body forming the decompression space and the outer peripheral surface of the valve body portion is a throttle passage that functions as a throttle for decompressing the refrigerant. The central axis of the support member is arranged coaxially with the central axis of the decompression space. The body has a minimum passage cross-sectional area where the cross-sectional area of the throttle passage is the smallest. The support member has a sliding region in which the valve body portion slides. In the direction perpendicular to the axial direction of the decompression space, the minimum passage cross-sectional area portion and the sliding region overlap.
 これによれば、減圧用空間の軸方向に垂直な方向から見たときに、最小通路断面積部が摺動領域と重合するので、支持部材の中心軸に対して弁体部の中心軸が傾斜してしまう際の回転中心と最小通路断面積部との距離を短縮化させることができる。 According to this, when viewed from the direction perpendicular to the axial direction of the decompression space, the minimum passage cross-sectional area overlaps with the sliding region, so that the central axis of the valve body portion is relative to the central axis of the support member. The distance between the rotation center and the minimum passage cross-sectional area when tilting can be shortened.
 ここで、回転中心とは、支持部材の中心軸上の点であって、摺動領域の軸方向中央点と定義することができる。 Here, the rotation center is a point on the central axis of the support member, and can be defined as the axial center point of the sliding region.
 従って、駆動部が弁体部を変位させる際に、減圧用空間および支持部材の中心軸に対して、弁体部の変位方向が傾いてしまっても、絞り通路の断面形状が周方向に不均一となってしまう度合を小さくすることができる。 Therefore, when the drive unit displaces the valve body, even if the displacement direction of the valve body is inclined with respect to the decompression space and the central axis of the support member, the sectional shape of the throttle passage is not circumferential. The degree of uniformity can be reduced.
 その結果、一態様によれば、駆動部から出力された駆動力に応じて、絞り通路の通路断面積を精度良く変更可能な減圧装置を提供することができる。 As a result, according to one aspect, it is possible to provide a decompression device that can accurately change the passage cross-sectional area of the throttle passage according to the driving force output from the drive unit.
 さらに、絞り通路の断面形状が周方向に不均一となってしまう度合を小さくして、絞り通路の通路断面積をより一層精度良く変更するためには、減圧用空間の軸方向に垂直な方向から見たときに、最小通路断面積部と回転中心が重合することが望ましい。 Furthermore, in order to reduce the degree to which the cross-sectional shape of the throttle passage becomes uneven in the circumferential direction and change the passage cross-sectional area of the throttle passage more accurately, the direction perpendicular to the axial direction of the decompression space When viewed from the above, it is desirable that the minimum passage cross-sectional area and the rotation center overlap.
 ここで、「最小通路断面積部と回転中心が重合する」とは、最小通路断面積部と回転中心が完全に一致するように配置されていることに限定されない。冷媒流量の不安定化を招かない程度の範囲で僅かにずれていても、重合することに含まれる。 Here, “the minimum passage cross-sectional area and the rotation center overlap” is not limited to the arrangement in which the minimum passage cross-sectional area and the rotation center completely coincide with each other. Even a slight deviation within a range that does not cause instability of the refrigerant flow rate is included in the polymerization.
第1実施形態の冷凍サイクル装置の全体構成図である。It is a whole lineblock diagram of the refrigerating cycle device of a 1st embodiment. 第1実施形態の減圧装置の軸方向断面図である。It is an axial sectional view of the decompression device of a 1st embodiment. 第2実施形態の減圧装置の軸方向断面図である。It is an axial sectional view of a decompression device of a 2nd embodiment. 他の実施形態の減圧装置の軸方向断面図である。It is an axial sectional view of the decompression device of other embodiments.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 図1、図2を用いて、本開示の第1実施形態を説明する。本実施形態の減圧装置13は、図1に示すように、蒸気圧縮式の冷凍サイクル装置10に適用されている。この冷凍サイクル装置10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、本実施形態の冷凍サイクル装置10の冷却対象流体は、送風空気である。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. The decompression device 13 of the present embodiment is applied to a vapor compression refrigeration cycle device 10 as shown in FIG. The refrigeration cycle apparatus 10 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is an air-conditioning target space. Therefore, the cooling target fluid of the refrigeration cycle apparatus 10 of the present embodiment is blown air.
 また、本実施形態の冷凍サイクル装置10では、冷媒として、R134aを採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。この冷媒には、圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 Further, in the refrigeration cycle apparatus 10 of the present embodiment, R134a is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured. This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。圧縮機11は、車両走行用の駆動力を出力するエンジン(内燃機関)とともにエンジンルーム内に配置されている。さらに、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動されるエンジン駆動式の圧縮機である。 Among the components of the refrigeration cycle apparatus 10, the compressor 11 is configured to increase the pressure until the refrigerant is sucked into the high-pressure refrigerant and discharged. The compressor 11 is disposed in an engine room together with an engine (internal combustion engine) that outputs a driving force for vehicle travel. Further, the compressor 11 is an engine-driven compressor that is driven by a rotational driving force output from the engine via a pulley, a belt, or the like.
 より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された斜板式の可変容量型圧縮機を採用している。この圧縮機11では、吐出容量を変化させるための図示しない吐出容量制御弁を有している。吐出容量制御弁は、後述する制御装置から出力される制御電流によって、その作動が制御される。 More specifically, in the present embodiment, a swash plate type variable displacement compressor configured such that the refrigerant discharge capacity can be adjusted by changing the discharge capacity is adopted as the compressor 11. The compressor 11 has a discharge capacity control valve (not shown) for changing the discharge capacity. The operation of the discharge capacity control valve is controlled by a control current output from a control device described later.
 圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dによって送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両前方側に配置されている。 The refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat exchanger for heat radiation that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown by the cooling fan 12d. . The radiator 12 is arranged on the vehicle front side in the engine room.
 より具体的には、放熱器12は、凝縮部12a、レシーバ部12b、および過冷却部12cを有する、いわゆるサブクール型の凝縮器として構成されている。 More specifically, the radiator 12 is configured as a so-called subcool type condenser having a condensing unit 12a, a receiver unit 12b, and a supercooling unit 12c.
 凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。過冷却部12cは、レシーバ部12bから流出した液相冷媒と冷却ファン12dから送風された外気とを熱交換させ、液相冷媒を過冷却する過冷却用の熱交換部である。 The condensing unit 12a is a heat exchange unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d, and dissipates the high-pressure gas-phase refrigerant to condense. The receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant. The supercooling unit 12c is a heat exchange unit for supercooling that causes the liquid phase refrigerant that has flowed out of the receiver unit 12b and the outside air blown from the cooling fan 12d to exchange heat, thereby supercooling the liquid phase refrigerant.
 冷却ファン12dは、制御装置から出力される制御電圧によって回転数(すなわち、送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒出口側には、減圧装置13の冷媒流入口30aが接続されている。 The cooling fan 12d is an electric blower in which the rotation speed (that is, the amount of blown air) is controlled by a control voltage output from the control device. A refrigerant inlet 30a of the decompression device 13 is connected to the refrigerant outlet side of the supercooling portion 12c of the radiator 12.
 減圧装置13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させて下流側へ流出させるものである。減圧装置13の具体的構成については、図2を用いて説明する。なお、図2における上下の各矢印は、減圧装置13を車両に搭載した状態における上下の各方向を示している。 The decompression device 13 decompresses the supercooled high-pressure liquid-phase refrigerant that has flowed out of the radiator 12 and flows it downstream. A specific configuration of the decompression device 13 will be described with reference to FIG. In addition, the up and down arrows in FIG. 2 indicate the up and down directions when the decompression device 13 is mounted on the vehicle.
 減圧装置13は、図2に示すように、複数の金属製(本実施形態では、アルミニウム合金製)の構成部材を組み合わせることによって形成されたボデー30を備えている。ボデー30は、樹脂にて形成されていてもよい。ボデー30には、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口30a、および内部から冷媒を流出させる冷媒流出口30bが形成されている。 As shown in FIG. 2, the decompression device 13 includes a body 30 formed by combining a plurality of metal components (in this embodiment, aluminum alloy). The body 30 may be made of resin. The body 30 is formed with a refrigerant inlet 30a through which the refrigerant that has flowed out of the radiator 12 flows into the inside, and a refrigerant outlet 30b through which the refrigerant flows out from the inside.
 ボデー30の内部には、冷媒流入口30aから内部へ流入した冷媒を減圧させる減圧用空間30cが形成されている。減圧用空間30cは、同軸上に配置された2つの円錐台状の空間の頂部側同士を円柱状の空間を介して結合させた回転体形状に形成されている。さらに、ボデー30の減圧用空間30cを形成する部位の軸方向中央部には、後述する絞り通路13aの通路断面積を最も縮小させる最小通路断面積部30dが形成されている。 A decompression space 30c is formed in the body 30 to depressurize the refrigerant flowing into the interior from the refrigerant inlet 30a. The decompression space 30c is formed in a rotating body shape in which the tops of two frustoconical spaces arranged on the same axis are coupled to each other via a cylindrical space. Further, a minimum passage cross-sectional area portion 30d that reduces the passage cross-sectional area of the throttle passage 13a, which will be described later, is formed at the central portion in the axial direction of the portion of the body 30 that forms the decompression space 30c.
 なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)周りに回転させた際に形成される立体形状である。 In addition, the rotating body shape is a three-dimensional shape formed when a plane figure is rotated around one straight line (center axis) on the same plane.
 減圧用空間30cの内部には、円錐台状に形成された弁体部31が配置されている。弁体部31は、減圧用空間30cの中心軸CL方向に変位することで、減圧装置13の内部に形成される冷媒通路(すなわち、絞り通路)13aの通路断面積を変化させるものである。弁体部31は、冷媒に対して耐性を有する樹脂製(本実施形態では、ナイロン6またはナイロン66製)の円錐台状部材で形成されている。 A valve body 31 formed in a truncated cone shape is disposed inside the decompression space 30c. The valve body 31 changes the passage cross-sectional area of the refrigerant passage (that is, the throttle passage) 13a formed inside the decompression device 13 by being displaced in the direction of the central axis CL of the decompression space 30c. The valve body portion 31 is formed of a truncated cone-shaped member made of resin (in this embodiment, made of nylon 6 or nylon 66) having resistance to the refrigerant.
 弁体部31は、冷媒流れ下流側へ向かって外径が縮小する円錐台状に形成されている。より詳細には、本実施形態の減圧装置13では、冷媒流入口30aが冷媒流出口30bよりも下方側に配置されている。従って、弁体部31は、下方側から上方側へ向かって先細る回転体形状に形成されている。さらに、弁体部31は、減圧用空間30cのうち、下方側に配置されている。 The valve element 31 is formed in a truncated cone shape whose outer diameter decreases toward the downstream side of the refrigerant flow. More specifically, in the decompression device 13 of the present embodiment, the refrigerant inlet 30a is disposed below the refrigerant outlet 30b. Therefore, the valve body 31 is formed in a rotating body shape that tapers from the lower side toward the upper side. Furthermore, the valve body 31 is disposed on the lower side of the decompression space 30c.
 このため、ボデー30の減圧用空間30cを形成する部位の内周面と弁体部31の外周面との間には、軸方向垂直断面の形状が円環状となる冷媒通路が形成される。この冷媒通路は、冷媒を減圧させる絞りとして機能する絞り通路13aである。絞り通路13aでは、冷媒流れ上流側(本実施形態では、下方側)から最小通路断面積部30dへ向かって通路断面積が減少している。 For this reason, a refrigerant passage having an annular shape in the axially vertical cross section is formed between the inner peripheral surface of the part forming the decompression space 30c of the body 30 and the outer peripheral surface of the valve body 31. The refrigerant passage is a throttle passage 13a that functions as a throttle for decompressing the refrigerant. In the throttle passage 13a, the passage sectional area decreases from the refrigerant flow upstream side (lower side in the present embodiment) toward the minimum passage sectional area 30d.
 また、弁体部31の頂部側(本実施形態では、上方側)には、円柱状の挿入穴31aが形成されている。挿入穴31aの中心軸は、弁体部31の中心軸と同軸上に配置されている。挿入穴31aには、支持部材32が挿入されている。支持部材32は、弁体部31を摺動可能に支持して、弁体部31の変位方向が減圧用空間30cの中心軸CL方向に対して傾いてしまうことを抑制するものである。 Further, a columnar insertion hole 31a is formed on the top side (in the present embodiment, the upper side) of the valve body 31. The central axis of the insertion hole 31 a is arranged coaxially with the central axis of the valve body portion 31. A support member 32 is inserted into the insertion hole 31a. The support member 32 slidably supports the valve body portion 31 and suppresses the displacement direction of the valve body portion 31 from being inclined with respect to the central axis CL direction of the decompression space 30c.
 より具体的には、支持部材32は、金属製(本実施形態では、ステンレス製)の円筒状部材で形成されている。従って、支持部材32は回転体形状に形成されている。そして、支持部材32の一方の端部(本実施形態では、下方側の端部)が、弁体部31の挿入穴31aに挿入されていることによって、弁体部31が支持部材32に摺動可能に支持されている。従って、本実施形態では、支持部材32の外周面のうち、挿入穴31aの内周面と摺動し得る領域が摺動領域32aとなる。 More specifically, the support member 32 is formed of a cylindrical member made of metal (in this embodiment, stainless steel). Therefore, the support member 32 is formed in a rotating body shape. Then, the valve body 31 slides on the support member 32 by inserting one end of the support member 32 (the end on the lower side in the present embodiment) into the insertion hole 31a of the valve body 31. It is supported movably. Therefore, in this embodiment, the area | region which can slide with the internal peripheral surface of the insertion hole 31a among the outer peripheral surfaces of the supporting member 32 becomes the sliding area | region 32a.
 さらに、図2に示すように、中心軸CLに垂直な方向から見たときに、最小通路断面積部30dは、摺動領域32aと重合するように位置付けられている。より詳細には、中心軸CLに垂直な方向から見たときに、最小通路断面積部30dは、弁体部31の中心軸が支持部材32の中心軸に対して傾いてしまう際の回転中心CPと重合配置されている。 Furthermore, as shown in FIG. 2, when viewed from a direction perpendicular to the central axis CL, the minimum passage cross-sectional area 30d is positioned so as to overlap with the sliding region 32a. More specifically, when viewed from a direction perpendicular to the central axis CL, the minimum passage cross-sectional area 30d is the center of rotation when the central axis of the valve body 31 is inclined with respect to the central axis of the support member 32. Polymerized with CP.
 ここで、回転中心CPは、支持部材32の中心軸上の点であって、摺動領域32aの軸方向中央点と定義することができる。また、「最小通路断面積部30dが回転中心CPと重合されている」とは、中心軸CLに垂直な方向から見たときに、最小通路断面積部30dと回転中心CPが完全に一致するように配置されていることに限定されない。後述するように冷媒流量の不安定化を招かない範囲であれば僅かにずれていても重合するように配置されていることに含まれる。 Here, the rotation center CP is a point on the central axis of the support member 32 and can be defined as the axial center point of the sliding region 32a. Further, “the minimum passage cross-sectional area 30d is overlapped with the rotation center CP” means that the minimum passage cross-sectional area 30d and the rotation center CP completely coincide when viewed from the direction perpendicular to the central axis CL. It is not limited to arrange | positioning. As described later, it is included in the arrangement so as to be polymerized even if it is slightly deviated as long as the refrigerant flow rate is not destabilized.
 また、支持部材32の他方の端部は、ボデー30に固定されている。この際、支持部材32は、支持部材32の中心軸がボデー30の減圧用空間30cの中心軸CLと同軸上に配置されるように固定されている。 Further, the other end of the support member 32 is fixed to the body 30. At this time, the support member 32 is fixed so that the central axis of the support member 32 is arranged coaxially with the central axis CL of the decompression space 30 c of the body 30.
 このため、理想的には、支持部材32に支持される弁体部31の中心軸は、減圧用空間30cの中心軸CLと同軸上に配置することができる。ところが、実際には、支持部材32の外周面と弁体部31の挿入穴31aの内周面との間には隙間が存在するので、弁体部31の変位方向が、支持部材32の中心軸に対して傾いてしまうこともある。 For this reason, ideally, the central axis of the valve body 31 supported by the support member 32 can be arranged coaxially with the central axis CL of the decompression space 30c. However, in practice, there is a gap between the outer peripheral surface of the support member 32 and the inner peripheral surface of the insertion hole 31 a of the valve body portion 31, so that the displacement direction of the valve body portion 31 is the center of the support member 32. It may tilt with respect to the axis.
 支持部材32の内部には、弁体部31の作動棒31bが配置されている。作動棒31bは、駆動部34から出力された駆動力を弁体部31に伝達するものである。作動棒31bは、金属製(本実施形態では、支持部材32と同じステンレス製)の円柱状部材で形成されている。 The operating rod 31b of the valve body 31 is disposed inside the support member 32. The actuating bar 31 b transmits the driving force output from the driving unit 34 to the valve body 31. The actuating rod 31b is formed of a columnar member made of metal (in this embodiment, the same stainless steel as the support member 32).
 作動棒31bは、一方の端部が弁体部31にインサート成形されていることによって、弁体部31の一部として一体化されている。作動棒31bの中心軸は、弁体部31の中心軸と同軸上に配置されるように一体化されている。作動棒31bの他方の端部は、駆動部34に連結されている。 The operating rod 31b is integrated as a part of the valve body 31 by one end being insert-molded in the valve body 31. The central axis of the operating rod 31b is integrated so as to be arranged coaxially with the central axis of the valve body 31. The other end of the actuating bar 31 b is connected to the drive unit 34.
 さらに、本実施形態では、支持部材32の内径よりも作動棒31bの外径が小さく形成されている。このため、支持部材32と作動棒31bが摺動することはない。さらに、ボデー30と作動棒31bとの間にはシール部材としてのO-リングが介在されており、ボデー30と作動棒31bとの隙間から冷媒が漏れることはない。 Furthermore, in this embodiment, the outer diameter of the operating rod 31b is formed smaller than the inner diameter of the support member 32. For this reason, the support member 32 and the operating rod 31b do not slide. Further, an O-ring as a seal member is interposed between the body 30 and the operating rod 31b, so that the refrigerant does not leak from the gap between the body 30 and the operating rod 31b.
 駆動部34は、弁体部31を軸方向に変位させる駆動力を出力するものである。換言すると、駆動部34は、弁体部31を軸方向に変位させることによって、絞り通路13aの最小通路断面積部30d等の通路断面積を変化させるものである。本実施形態の駆動部34は、ステッピングモータを有して構成されている。駆動部34は、制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。 The driving unit 34 outputs a driving force that displaces the valve body 31 in the axial direction. In other words, the drive unit 34 changes the passage sectional area of the throttle passage 13a such as the minimum passage sectional area 30d by displacing the valve body 31 in the axial direction. The drive unit 34 of the present embodiment has a stepping motor. The operation of the drive unit 34 is controlled by a control signal (control pulse) output from the control device.
 次に、減圧装置13の冷媒流出口30bには、図1に示すように、蒸発器14の冷媒入口側が接続されている。蒸発器14は、減圧装置13にて減圧された低圧冷媒と送風ファン14aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。 Next, as shown in FIG. 1, the refrigerant inlet side of the evaporator 14 is connected to the refrigerant outlet 30 b of the decompression device 13. The evaporator 14 performs heat exchange between the low-pressure refrigerant decompressed by the decompression device 13 and the blown air blown from the blower fan 14a into the vehicle interior, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is an exchanger.
 送風ファン14aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器14の冷媒出口側には、圧縮機11の吸入口側が接続されている。 The blower fan 14a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device. The refrigerant outlet side of the evaporator 14 is connected to the suction port side of the compressor 11.
 次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。そして、上述の各種電気式のアクチュエータ11、12d、14a、34等の作動を制御する。 Next, a control device (not shown) includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. This control device performs various calculations and processes based on a control program stored in the ROM. Then, the operation of the above-described various electric actuators 11, 12d, 14a, 34, etc. is controlled.
 また、制御装置には、内気温センサ、外気温センサ、日射センサ、蒸発器温度センサ、蒸発器圧力センサ、吐出圧力センサ等の複数の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。 The control device is connected to a plurality of air conditioning control sensor groups such as an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, an evaporator temperature sensor, an evaporator pressure sensor, and a discharge pressure sensor. A detection value is input.
 より具体的には、内気温センサは、車室内温度を検出する内気温検出部である。外気温センサは、外気温を検出する外気温検出部である。日射センサは、車室内の日射量を検出する日射量検出部である。蒸発器温度センサは、蒸発器14出口側冷媒の温度を検出する蒸発器温度検出部である。蒸発器圧力センサは、蒸発器14出口側冷媒の圧力を検出する蒸発器圧力検出部である。吐出圧力センサは、放熱器12出口側冷媒の圧力を検出する出口側圧力検出部である。 More specifically, the inside air temperature sensor is an inside air temperature detecting unit that detects the temperature inside the vehicle. The outside air temperature sensor is an outside air temperature detecting unit that detects the outside air temperature. A solar radiation sensor is a solar radiation amount detection part which detects the solar radiation amount in a vehicle interior. An evaporator temperature sensor is an evaporator temperature detection part which detects the temperature of the evaporator 14 exit side refrigerant | coolant. The evaporator pressure sensor is an evaporator pressure detector that detects the pressure of the refrigerant on the outlet side of the evaporator 14. The discharge pressure sensor is an outlet-side pressure detection unit that detects the pressure of the radiator 12 outlet-side refrigerant.
 さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。 Furthermore, an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device. The As various operation switches provided on the operation panel, there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
 なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の専用の制御部を構成している。 Note that the control device of the present embodiment is configured integrally with a control unit that controls the operation of various control target devices connected to the output side of the control device. The configuration (hardware and software) for controlling the operation constitutes a dedicated control unit for each control target device.
 例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御することによって、圧縮機11の冷媒吐出能力を制御する構成が吐出能力制御部を構成している。もちろん、吐出能力制御部を、制御装置に対して別体の制御装置で構成してもよい。 For example, in the present embodiment, the configuration for controlling the refrigerant discharge capacity of the compressor 11 by controlling the operation of the discharge capacity control valve of the compressor 11 constitutes the discharge capacity control unit. Of course, you may comprise a discharge capability control part with a separate control apparatus with respect to a control apparatus.
 次に、上記構成における本実施形態の冷凍サイクル装置10の作動を説明する。まず、操作パネルの作動スイッチが投入(ON)されると、制御装置が圧縮機11の吐出容量制御弁、冷却ファン12d、送風ファン14a等を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。この際、制御装置は、冷凍サイクル装置10の熱負荷の増加に伴って、圧縮機11の冷媒吐出能力を増加させる。 Next, the operation of the refrigeration cycle apparatus 10 of the present embodiment having the above configuration will be described. First, when the operation switch of the operation panel is turned on (ON), the control device operates the discharge capacity control valve of the compressor 11, the cooling fan 12d, the blower fan 14a, and the like. Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it. At this time, the control device increases the refrigerant discharge capacity of the compressor 11 as the heat load of the refrigeration cycle apparatus 10 increases.
 圧縮機11から吐出された高温高圧冷媒は、放熱器12へ流入し、冷却ファン12dから送風された外気と熱交換し、放熱して過冷却液相冷媒となる。放熱器12から流出した過冷却液相冷媒は、減圧装置13にて減圧されて低圧冷媒となる。 The high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the radiator 12, exchanges heat with the outside air blown from the cooling fan 12d, radiates heat, and becomes a supercooled liquid phase refrigerant. The supercooled liquid phase refrigerant flowing out of the radiator 12 is decompressed by the decompression device 13 and becomes a low-pressure refrigerant.
 この際、制御装置は、蒸発器温度センサの検出値および蒸発器圧力センサの検出値から算定される蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度KSHに近づくように、減圧装置13の駆動部34の作動を制御する。つまり、制御装置は、蒸発器14出口側冷媒の過熱度が基準過熱度KSHに近づくように、絞り通路13aの最小通路断面積部30dの通路断面積を調整する。 At this time, the controller reduces the pressure reducing device so that the superheat degree of the refrigerant on the outlet side of the evaporator 14 calculated from the detected value of the evaporator temperature sensor and the detected value of the evaporator pressure sensor approaches the predetermined reference superheat degree KSH. The operation of the 13 drive units 34 is controlled. That is, the control device adjusts the passage cross-sectional area of the minimum passage cross-sectional area 30d of the throttle passage 13a so that the superheat degree of the evaporator 14 outlet-side refrigerant approaches the reference superheat degree KSH.
 減圧装置13にて減圧された低圧冷媒は、蒸発器14へ流入し、送風ファン14aによって送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。蒸発器14から流出した冷媒は、圧縮機11へ吸入され再び圧縮される。本実施形態の冷凍サイクル装置10では、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。 The low-pressure refrigerant decompressed by the decompression device 13 flows into the evaporator 14, absorbs heat from the blown air blown by the blower fan 14a, and evaporates. Thereby, blowing air is cooled. The refrigerant flowing out of the evaporator 14 is sucked into the compressor 11 and compressed again. The refrigeration cycle apparatus 10 according to the present embodiment operates as described above and can cool the blown air blown into the vehicle interior.
 ところで、本実施形態の減圧装置13では、支持部材32の外周面と弁体部31の挿入穴31aの内周面との間には隙間が存在するので、前述の如く、弁体部31の変位方向が、支持部材32の中心軸に対して傾いてしまうことがある。このような傾きが生じると、断面円環状に形成される絞り通路13aの断面形状が周方向に不均一となってしまう。 By the way, in the decompression device 13 of the present embodiment, since there is a gap between the outer peripheral surface of the support member 32 and the inner peripheral surface of the insertion hole 31a of the valve body portion 31, as described above, The displacement direction may be inclined with respect to the central axis of the support member 32. When such an inclination occurs, the cross-sectional shape of the throttle passage 13a formed in an annular cross-section becomes uneven in the circumferential direction.
 このため、駆動部34が冷凍サイクル装置10の負荷変動に応じて、絞り通路13aの最小通路断面積部30dにおける通路断面積を変化させようとしても、最小通路断面積部30dにおける通路断面積が不安定になってしまう。その結果、絞り通路13aを流通する冷媒流量が不安定になってしまうおそれがある。 For this reason, even if the drive unit 34 attempts to change the passage sectional area in the minimum passage sectional area 30d of the throttle passage 13a in accordance with the load fluctuation of the refrigeration cycle apparatus 10, the passage sectional area in the minimum passage sectional area 30d is reduced. It becomes unstable. As a result, the flow rate of the refrigerant flowing through the throttle passage 13a may become unstable.
 これに対して、本実施形態の減圧装置13では、減圧用空間30cの中心軸CLに垂直な方向から見たときに、最小通路断面積部30dが摺動領域32aと重合する。このため、支持部材32の中心軸に対して弁体部31の中心軸が傾斜してしまう際の回転中心CPと最小通路断面積部30dとの距離を短縮化させることができる。 On the other hand, in the decompression device 13 of the present embodiment, when viewed from the direction perpendicular to the central axis CL of the decompression space 30c, the minimum passage cross-sectional area 30d overlaps with the sliding region 32a. For this reason, the distance between the rotation center CP and the minimum passage cross-sectional area 30d when the central axis of the valve body 31 is inclined with respect to the central axis of the support member 32 can be shortened.
 従って、駆動部34が弁体部31を変位させる際に、減圧用空間30cおよび支持部材32の中心軸に対して、弁体部31の変位方向が傾いてしまっても、絞り通路13aの断面形状が周方向に不均一となってしまう度合を小さくすることができる。 Therefore, when the drive part 34 displaces the valve body part 31, even if the displacement direction of the valve body part 31 is inclined with respect to the central axis of the decompression space 30c and the support member 32, the cross section of the throttle passage 13a. The degree to which the shape becomes nonuniform in the circumferential direction can be reduced.
 その結果、本実施形態の減圧装置13によれば、駆動部34から出力された駆動力に応じて、絞り通路13aの最小通路断面積部30dにおける通路断面積を精度良く変化させることができる。 As a result, according to the decompression device 13 of the present embodiment, the passage sectional area in the minimum passage sectional area 30d of the throttle passage 13a can be accurately changed according to the driving force output from the driving unit 34.
 ここで、絞り通路13aの最小通路断面積部30dの通路断面積は、絞り通路13aを流通する冷媒流量を決定付ける最小通路断面積となる。従って、絞り通路13aの最小通路断面積部30dの断面形状が周方向に不均一になってしまう度合を縮小できることは、減圧装置13を流通する冷媒流量を安定させるために極めて有効である。 Here, the passage cross-sectional area of the minimum passage cross-sectional area portion 30d of the throttle passage 13a is the minimum passage cross-sectional area that determines the flow rate of the refrigerant flowing through the throttle passage 13a. Therefore, the ability to reduce the degree to which the cross-sectional shape of the minimum passage cross-sectional area 30d of the throttle passage 13a becomes uneven in the circumferential direction is extremely effective for stabilizing the flow rate of the refrigerant flowing through the decompression device 13.
 さらに、本実施形態の減圧装置13では中心軸CLに垂直な方向から見たときに、最小通路断面積部30dと回転中心CPが重合するように配置されているので、絞り通路13aの断面形状が周方向に不均一になってしまう度合を効果的に小さくして、絞り通路13aの最小通路断面積部30dにおける通路断面積をより一層精度良く変更することができる。 Furthermore, in the decompression device 13 of the present embodiment, since the minimum passage cross-sectional area 30d and the rotation center CP are arranged so as to overlap when viewed from the direction perpendicular to the central axis CL, the sectional shape of the throttle passage 13a. The degree of non-uniformity in the circumferential direction can be effectively reduced, and the passage cross-sectional area in the minimum passage cross-sectional area 30d of the throttle passage 13a can be changed with higher accuracy.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、弁体部31および支持部材32を変更した例を説明する。より具体的には、本実施形態では、図3に示すように、弁体部31の底面(本実施形態では、下方側の面)に挿入穴31aが形成されている。そして、支持部材32の一方の端部(本実施形態では、上方側の端部)が、挿入穴31aに挿入されていることによって、弁体部31が支持部材32に摺動可能に支持されている。
(Second Embodiment)
This embodiment demonstrates the example which changed the valve body part 31 and the support member 32 with respect to 1st Embodiment. More specifically, in this embodiment, as shown in FIG. 3, an insertion hole 31 a is formed on the bottom surface of the valve body portion 31 (the lower surface in the present embodiment). The valve body 31 is slidably supported by the support member 32 by inserting one end of the support member 32 (the upper end in the present embodiment) into the insertion hole 31a. ing.
 つまり、本実施形態では、作動棒31bが弁体部31から中心軸CLの軸方向一方側(本実施形態では、上方側)へ向かって延びる形状に形成されている。さらに、支持部材32が弁体部31から中心軸CLの軸方向他方側(本実施形態では、下方側)へ向かって延びる形状に形成されている。 That is, in the present embodiment, the operating rod 31b is formed in a shape extending from the valve body portion 31 toward one axial side of the central axis CL (in the present embodiment, the upper side). Further, the support member 32 is formed in a shape extending from the valve body portion 31 toward the other axial side of the central axis CL (in the present embodiment, the lower side).
 また、支持部材32の他方の端部は、ボデー30の底面に固定されている。この際、支持部材32は、支持部材32の中心軸がボデー30の減圧用空間30cの中心軸CLと同軸上に配置されるように固定されている。 The other end of the support member 32 is fixed to the bottom surface of the body 30. At this time, the support member 32 is fixed so that the central axis of the support member 32 is arranged coaxially with the central axis CL of the decompression space 30 c of the body 30.
 また、支持部材32の内部には、弁体部31に対して最小通路断面積部30dにおける通路断面積を縮小させる方向の荷重を作用させる弾性部材であるコイルバネ35が収容されている。このコイルバネ35は、冷媒が減圧される際の圧力脈動や外部から伝達される振動によって生じる弁体部31の振動を減衰させる振動抑制部材としての機能も果たしている。 Further, a coil spring 35, which is an elastic member that applies a load in a direction to reduce the passage cross-sectional area of the minimum passage cross-sectional area 30d to the valve body 31, is accommodated in the support member 32. The coil spring 35 also functions as a vibration suppressing member that attenuates the vibration of the valve body 31 caused by pressure pulsation when the refrigerant is depressurized or vibration transmitted from the outside.
 さらに、図3に示すように、中心軸CLに垂直な方向から見たときに、最小通路断面積部30dは、摺動領域32aと重合する範囲内に位置付けられている。より詳細には、中心軸CLに垂直な方向から見たときに、最小通路断面積部30dは、弁体部31の中心軸が支持部材32の中心軸に対して傾いてしまう際の回転中心CPと重合するように配置されている。その他の構成および作動は、第1実施形態と同様である。 Furthermore, as shown in FIG. 3, when viewed from a direction perpendicular to the central axis CL, the minimum passage cross-sectional area 30d is positioned within a range where it overlaps with the sliding region 32a. More specifically, when viewed from a direction perpendicular to the central axis CL, the minimum passage cross-sectional area 30d is the center of rotation when the central axis of the valve body 31 is inclined with respect to the central axis of the support member 32. Arranged to polymerize with CP. Other configurations and operations are the same as those in the first embodiment.
 従って、本実施形態の減圧装置においても、第1実施形態と同様に、駆動部34から出力された駆動力に応じて、絞り通路13aの最小通路断面積部30dにおける通路断面積を精度良く変化させることができる。なお、図3では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。 Therefore, also in the decompression device of the present embodiment, similarly to the first embodiment, the passage cross-sectional area in the minimum passage cross-sectional area 30d of the throttle passage 13a is accurately changed according to the driving force output from the driving unit 34. Can be made. In FIG. 3, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure. In addition, the means disclosed in each embodiment may be appropriately combined within a practicable range.
 上述の実施形態では、冷媒流入口30aを冷媒流出口30bよりも下方側に配置した例を説明したが、冷媒流入口30aを冷媒流出口30bよりも上方側に配置してもよい。すなわち、図4に示すように、第1、第2実施形態とは逆方向に冷媒が流れるようになっていてもよい。 In the above-described embodiment, the example in which the refrigerant inlet 30a is disposed below the refrigerant outlet 30b has been described. However, the refrigerant inlet 30a may be disposed above the refrigerant outlet 30b. That is, as shown in FIG. 4, the refrigerant may flow in the opposite direction to the first and second embodiments.
 また、上述の実施形態では、減圧用空間30cを、同軸上に配置された2つの円錐台状の空間の頂部側同士を円柱状の空間を介して結合させた回転体形状に形成した例を説明したが、減圧用空間30cの形状はこれに限定されない。最小通路断面積部30dを形成することができれば、例えば、図4に示すように、同軸上に配置された2つの円錐台状の空間の頂部側同士を直接結合させた回転体形状であってもよい。 In the above-described embodiment, the decompression space 30c is formed in a rotating body shape in which the top sides of the two truncated cone-shaped spaces arranged coaxially are coupled to each other via a cylindrical space. Although described, the shape of the decompression space 30c is not limited to this. If the minimum passage cross-sectional area 30d can be formed, for example, as shown in FIG. 4, it is a rotating body shape in which the top sides of two frustoconical spaces arranged coaxially are directly coupled to each other. Also good.
 また、上述の実施形態では、弁体部31として円錐台状に形成されたものを採用した例を説明したが、弁体部31はこれに限定されない。例えば、図4に示すように、球状に形成されたものであってもよいし、半球状、円柱状等に形成されたものであってもよい。さらに、弁体部31は、金属で形成されていてもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which employ | adopted what was formed in the truncated cone shape as the valve body part 31, the valve body part 31 is not limited to this. For example, as shown in FIG. 4, it may be formed in a spherical shape, or may be formed in a hemispherical shape, a cylindrical shape, or the like. Furthermore, the valve body portion 31 may be formed of metal.
 また、上述の実施形態では、支持部材32を円筒状に形成した例を説明したが、回転体形状に形成されていれば円筒状に限定されない。例えば、支持部材32は、円柱状に形成されていてもよい。 In the above-described embodiment, the example in which the support member 32 is formed in a cylindrical shape has been described. However, the support member 32 is not limited to a cylindrical shape as long as it is formed in a rotating body shape. For example, the support member 32 may be formed in a columnar shape.
 また、上述の実施形態では、弁体部31の挿入穴31aの内周面と支持部材32の外周面とを摺動させるようにした例を説明したが、弁体部31と支持部材32との摺動部はこれに限定されない。例えば、図4に示すように、挿入穴31aの内周面と支持部材32の外周面とを摺動させることなく、弁体部31の一部である作動棒31bの外周面と支持部材32の内周面とを摺動させるようにしてもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which slid the inner peripheral surface of the insertion hole 31a of the valve body part 31 and the outer peripheral surface of the support member 32, the valve body part 31, the support member 32, and The sliding portion is not limited to this. For example, as shown in FIG. 4, the outer peripheral surface of the operating rod 31 b that is a part of the valve body 31 and the support member 32 without sliding the inner peripheral surface of the insertion hole 31 a and the outer peripheral surface of the support member 32. You may make it slide with an inner peripheral surface.
 上述の実施形態では、駆動部34としてステッピングモータを有して構成される電気式の駆動機構を採用した例を説明したが、駆動部はこれに限定されない。例えば、蒸発器14出口側冷媒の温度および圧力に基づいて蒸発器14出口側冷媒の過熱度を検知する感温部を有し、蒸発器14出口側冷媒の過熱度が基準過熱度に近づくように弁開度を調整する機械式の駆動機構であってもよい。 In the above-described embodiment, an example in which an electric drive mechanism configured by including a stepping motor as the drive unit 34 has been described, but the drive unit is not limited thereto. For example, a temperature sensing unit that detects the degree of superheat of the evaporator 14 outlet-side refrigerant based on the temperature and pressure of the evaporator 14 outlet-side refrigerant so that the superheat degree of the evaporator 14 outlet-side refrigerant approaches the reference superheat degree. Alternatively, a mechanical drive mechanism for adjusting the valve opening degree may be used.
 このような機械式の駆動機構としては、具体的に、蒸発器14出口側冷媒の温度に応じて圧力変化する感温媒体が封入された封入空間を形成する封入空間形成部材と、感温媒体の圧力と蒸発器14出口側冷媒の圧力との圧力差に応じて変位する圧力応動部材と、を備え、圧力応動部材の変位を弁体部31に伝達する駆動機構を採用することができる。 Specifically, such a mechanical drive mechanism includes an enclosed space forming member that forms an enclosed space in which a temperature sensitive medium that changes in pressure according to the temperature of the refrigerant on the outlet side of the evaporator 14 is enclosed, and a temperature sensitive medium. And a pressure responsive member that displaces according to the pressure difference between the pressure of the evaporator 14 outlet side refrigerant, and a drive mechanism that transmits the displacement of the pressure responsive member to the valve body 31 can be employed.
 冷凍サイクル装置10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。 Each component apparatus which comprises the refrigerating-cycle apparatus 10 is not limited to what was disclosed by the above-mentioned embodiment.
 例えば、上述の実施形態では、圧縮機11として、エンジン駆動式の可変容量型圧縮機を採用した例を説明したが、圧縮機11として、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用してもよい。さらに、固定容量型圧縮機構と電動モータとを備え、電力を供給されることによって作動する電動圧縮機を採用してもよい。電動圧縮機では、電動モータの回転数を調整することによって、冷媒吐出能力を制御することができる。 For example, in the above-described embodiment, an example in which an engine-driven variable displacement compressor is employed as the compressor 11 has been described. However, as the compressor 11, the operating rate of the compressor is changed by the on / off of an electromagnetic clutch. You may employ | adopt the fixed capacity type compressor which adjusts a refrigerant | coolant discharge capability. Furthermore, you may employ | adopt an electric compressor provided with a fixed displacement type compression mechanism and an electric motor, and act | operating by supplying electric power. In the electric compressor, the refrigerant discharge capacity can be controlled by adjusting the rotation speed of the electric motor.
 また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を一体化させたレシーバ一体型の凝縮器を採用してもよい。 In the above-described embodiment, an example in which a subcool type heat exchanger is employed as the radiator 12 has been described, but a normal radiator including only the condensing unit 12a may be employed. In addition to a normal radiator, a receiver-integrated condenser that integrates a receiver (receiver) that separates the gas-liquid of the refrigerant radiated by this radiator and stores excess liquid phase refrigerant is adopted. Also good.
 また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 In the above-described embodiment, the example in which R134a is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R1234yf, R600a, R410A, R404A, R32, R407C, etc. can be employed. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants. Furthermore, a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
 上述の実施形態では、本開示に係る冷凍サイクル装置10を、車両用空調装置に適用した例を説明したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。 In the above-described embodiment, an example in which the refrigeration cycle apparatus 10 according to the present disclosure is applied to a vehicle air conditioner has been described, but application of the refrigeration cycle apparatus 10 is not limited to this. For example, the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.
 また、上述の実施形態では、本開示に係る減圧装置13を備える冷凍サイクル装置10の放熱器12を冷媒と外気とを熱交換させる室外側熱交換器とし、蒸発器14を送風空気を冷却する利用側熱交換器としている。これに対して、蒸発器14を外気等の熱源から吸熱する室外側熱交換器として用い、放熱器12を空気あるいは水等の被加熱流体を加熱する利用側熱交換器として用いてもよい。 In the above-described embodiment, the radiator 12 of the refrigeration cycle apparatus 10 including the decompression device 13 according to the present disclosure is an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and the evaporator 14 cools the blown air. Use side heat exchanger. On the other hand, the evaporator 14 may be used as an outdoor heat exchanger that absorbs heat from a heat source such as outside air, and the radiator 12 may be used as a use side heat exchanger that heats a heated fluid such as air or water.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, although various combinations and forms are shown in the present disclosure, other combinations and forms including only one element, more or less than them are also included in the scope and concept of the present disclosure. Is.

Claims (5)

  1.  蒸気圧縮式の冷凍サイクル装置(10)に適用される減圧装置であって、
     内部へ流入した冷媒を減圧させる回転体形状の減圧用空間(30c)が形成されたボデー(30)と、
     少なくとも一部が前記減圧用空間の内部に配置された弁体部(31)と、
     前記弁体部を変位させる駆動力を出力する駆動部(34)と、
     前記弁体部を摺動可能に支持する回転体形状の支持部材(32)と、を備え、
     前記ボデーのうち前記減圧用空間を形成する部位の内周面と前記弁体部の外周面との間に形成される冷媒通路は、冷媒を減圧させる絞りとして機能する絞り通路(13a)であり、
     前記支持部材の中心軸は、前記減圧用空間の中心軸(CL)と同軸上に配置されており、
     前記ボデーは、前記絞り通路の断面積が最も縮小する最小通路断面積部(30d)を有し、
     前記支持部材は、前記弁体部が摺動する摺動領域(32a)を有し、
     前記減圧用空間の軸方向に垂直な方向において、前記最小通路断面積部と前記摺動領域とが重合する減圧装置。
    A decompression device applied to a vapor compression refrigeration cycle device (10),
    A body (30) in which a pressure reducing space (30c) having a rotating body for reducing the pressure of the refrigerant flowing into the interior is formed;
    A valve body portion (31) at least partially disposed inside the decompression space;
    A drive unit (34) for outputting a drive force for displacing the valve body unit;
    A rotating body-shaped support member (32) that slidably supports the valve body portion,
    A refrigerant passage formed between an inner peripheral surface of a portion of the body that forms the decompression space and an outer peripheral surface of the valve body portion is a throttle passage (13a) that functions as a throttle for decompressing the refrigerant. ,
    The central axis of the support member is arranged coaxially with the central axis (CL) of the decompression space,
    The body has a minimum passage cross-sectional area (30d) where the cross-sectional area of the throttle passage is reduced most,
    The support member has a sliding region (32a) in which the valve body slides,
    A decompression device in which the minimum passage cross-sectional area portion and the sliding region overlap in a direction perpendicular to the axial direction of the decompression space.
  2.  前記支持部材の中心軸上の点であって、前記摺動領域の軸方向中央点を回転中心(CP)と定義し、
     前記減圧用空間の軸方向に垂直な方向において、前記最小通路断面積部および前記回転中心が重合するように配置されている請求項1に記載の減圧装置。
    A point on the central axis of the support member, the axial center point of the sliding region is defined as the rotation center (CP);
    The decompression device according to claim 1, wherein the decompression device is arranged so that the minimum passage cross-sectional area and the rotation center overlap in a direction perpendicular to the axial direction of the decompression space.
  3.  前記弁体部には、前記支持部材が挿入される挿入穴(31a)が形成されており、
     前記摺動領域では、前記支持部材の外周面と前記挿入穴の内周面が摺動するように配置されている請求項1または2に記載の減圧装置。
    The valve body portion is formed with an insertion hole (31a) into which the support member is inserted,
    3. The decompression device according to claim 1, wherein in the sliding region, the outer peripheral surface of the support member and the inner peripheral surface of the insertion hole are arranged to slide.
  4.  前記弁体部は、前記駆動部に連結される円柱状の作動棒(31b)を有し、
     前記摺動領域では、前記支持部材の内周面と前記作動棒の外周面が摺動するように配置されている請求項1または2に記載の減圧装置。
    The valve body portion has a columnar operating rod (31b) connected to the drive portion,
    The decompression device according to claim 1 or 2, wherein in the sliding region, the inner peripheral surface of the support member and the outer peripheral surface of the operating rod are arranged to slide.
  5.  前記弁体部は、前記駆動部に連結される円柱状の作動棒(31b)を有し、
     前記作動棒は、前記弁体部から前記中心軸の軸方向一方側へ向かって延び、
     前記支持部材は、前記弁体部から前記中心軸の軸方向他方側へ延びる形状に形成されている請求項1または2に記載の減圧装置。
    The valve body portion has a columnar operating rod (31b) connected to the drive portion,
    The actuating rod extends from the valve body portion toward one axial side of the central axis,
    The decompression device according to claim 1, wherein the support member is formed in a shape extending from the valve body portion to the other axial side of the central axis.
PCT/JP2017/017973 2016-06-06 2017-05-12 Pressure-reducing device WO2017212864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-112857 2016-06-06
JP2016112857A JP2017219230A (en) 2016-06-06 2016-06-06 Decompressor

Publications (1)

Publication Number Publication Date
WO2017212864A1 true WO2017212864A1 (en) 2017-12-14

Family

ID=60578992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017973 WO2017212864A1 (en) 2016-06-06 2017-05-12 Pressure-reducing device

Country Status (2)

Country Link
JP (1) JP2017219230A (en)
WO (1) WO2017212864A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110518A (en) * 2020-01-15 2021-08-02 株式会社不二工機 Expansion valve and refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220926A (en) * 1997-02-03 1998-08-21 Denso Corp Motor expansion valve
JP2003106710A (en) * 2001-09-27 2003-04-09 Sanyo Electric Co Ltd Valve gear and refrigeration unit using the same
WO2004065832A1 (en) * 2003-01-20 2004-08-05 Danfoss A/S Motor-controlled actuator, valve, method and applications
JP2007322058A (en) * 2006-05-31 2007-12-13 Fuji Koki Corp Pressure control valve
EP1792111B1 (en) * 2004-09-22 2008-01-30 G. Cartier Technologies Double-safety regulating valve
WO2015111116A1 (en) * 2014-01-21 2015-07-30 株式会社デンソー Heat pump cycle apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220926A (en) * 1997-02-03 1998-08-21 Denso Corp Motor expansion valve
JP2003106710A (en) * 2001-09-27 2003-04-09 Sanyo Electric Co Ltd Valve gear and refrigeration unit using the same
WO2004065832A1 (en) * 2003-01-20 2004-08-05 Danfoss A/S Motor-controlled actuator, valve, method and applications
EP1792111B1 (en) * 2004-09-22 2008-01-30 G. Cartier Technologies Double-safety regulating valve
JP2007322058A (en) * 2006-05-31 2007-12-13 Fuji Koki Corp Pressure control valve
WO2015111116A1 (en) * 2014-01-21 2015-07-30 株式会社デンソー Heat pump cycle apparatus

Also Published As

Publication number Publication date
JP2017219230A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6248499B2 (en) Ejector refrigeration cycle
JP6003844B2 (en) Ejector
JP6512071B2 (en) Ejector type refrigeration cycle
WO2017212864A1 (en) Pressure-reducing device
JP6547698B2 (en) Ejector type refrigeration cycle
JP6561919B2 (en) Ejector
WO2016185664A1 (en) Ejector, and ejector-type refrigeration cycle
WO2018047563A1 (en) Ejector
JP6365408B2 (en) Ejector
JP6582950B2 (en) Ejector
JP2017031975A (en) Ejector
JP6380122B2 (en) Ejector
WO2017179321A1 (en) Ejector
JP6638607B2 (en) Ejector
JP6540609B2 (en) Ejector
WO2017043336A1 (en) Ejector
JP6398883B2 (en) Ejector
JP6572745B2 (en) Ejector refrigeration cycle
JP2017089963A (en) Ejector type refrigeration cycle
JP2016217341A (en) Ejector and ejector-type refrigeration cycle
JP2017032272A (en) Ejector
JP2017053574A (en) Ejector
JP2017002872A (en) Ejector
JP2017053290A (en) Ejector
JP2017015346A (en) Ejector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810046

Country of ref document: EP

Kind code of ref document: A1