JP2000328191A - Steel for high strength bolt and production of high strength bolt - Google Patents

Steel for high strength bolt and production of high strength bolt

Info

Publication number
JP2000328191A
JP2000328191A JP13318899A JP13318899A JP2000328191A JP 2000328191 A JP2000328191 A JP 2000328191A JP 13318899 A JP13318899 A JP 13318899A JP 13318899 A JP13318899 A JP 13318899A JP 2000328191 A JP2000328191 A JP 2000328191A
Authority
JP
Japan
Prior art keywords
steel
strength
delayed fracture
less
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13318899A
Other languages
Japanese (ja)
Other versions
JP3718369B2 (en
Inventor
Manabu Kubota
学 久保田
Hideo Kanisawa
秀雄 蟹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13318899A priority Critical patent/JP3718369B2/en
Publication of JP2000328191A publication Critical patent/JP2000328191A/en
Application granted granted Critical
Publication of JP3718369B2 publication Critical patent/JP3718369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength bolt having high strength, excellent in delayed fracture resistance characteristics and suitable for joining in a plastic region. SOLUTION: Steel for a high strength bolt contg., by weight, 0.15 to 0.45% C, >0.40 to 1.50% Mn, 0.30 to 2.00% Cr, 0.10 to 0.35o/o Mo, >0.20 to 0.40% V and 0.010 to 0.100% Al, also balanced in Cr, Mo and V so as to satisfy the relation of 1.20<0.125×(Cr% +Mo%+5.22×V%<2.30, in which the content of Si is limited to <=0.10% (including 0%), P to <=0.015% (including 0%) and S to <=0.015% (including 0%), and the balance Fe with inevitable impurities is formed into a desired shape, is thereafter heated to >= Ac3, is subsequently subjected to quenching treatment and is tempered in the temp. range of 500 to 650 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐遅れ破壊特性に優
れ、塑性域締結に適した高強度ボルト用鋼及び高強度ボ
ルトの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength bolt steel and a method of manufacturing a high-strength bolt excellent in delayed fracture resistance and suitable for fastening in a plastic region.

【0002】[0002]

【従来の技術】自動車や産業機械の高性能化、軽量化、
また建築構造物の大型化に伴い、引張強さが1200M
Pa以上の高強度ボルト用鋼の開発が要求されてきてい
る。
2. Description of the Related Art High performance and light weight of automobiles and industrial machines,
In addition, as the building structure becomes larger, the tensile strength becomes 1200M.
Development of high-strength steel for bolts of Pa or higher has been demanded.

【0003】現在一般に高強度ボルト用鋼として使用さ
れている鋼種はJISに規定されているSCM435、
SCR435等の低合金構造用鋼であり、焼入れ、焼も
どし処理を施すことによって製造されている。しかし、
これらの鋼種は、引張強さが1200MPaを超えると
耐遅れ破壊特性が急激に低下し、ボルトの使用中に遅れ
破壊による破断を生じる危険が増大するため、このレベ
ル以上の高強度化は実用上不可能であった。
[0003] Steel grades currently generally used as high-strength bolt steel are SCM435 defined by JIS,
Low alloy structural steel such as SCR435, which is manufactured by quenching and tempering. But,
When the tensile strength of these steel types exceeds 1200 MPa, the resistance to delayed fracture is sharply reduced, and the risk of fracture due to delayed fracture during the use of the bolt is increased. It was impossible.

【0004】また最近、ボルトを降伏点以上に締めつけ
る塑性域締結法の採用が拡大している。塑性域締結は従
来の弾性域締結と比べて高い軸力を得ることができるこ
とに加え、軸力のバラツキが小さく、精度の高い、安定
した締付けが可能となるという特徴がある。塑性域締結
用のボルトに要求される特性とは、(1)降伏強さのバ
ラツキがボルトの締結軸力のバラツキに直結するため、
降伏強さのバラツキが少ないこと、(2)再締付け性の
観点から、降伏点から最大軸力に至るまでの伸びが大き
いこと、等が挙げられる。
[0004] Recently, adoption of a plastic zone fastening method in which a bolt is tightened above a yield point has been expanding. The plastic region fastening is characterized in that a high axial force can be obtained as compared with the conventional elastic region fastening, and that the variation in the axial force is small, and high-accuracy, stable fastening is possible. The characteristics required for bolts for fastening in the plastic zone are as follows: (1) Variations in yield strength are directly linked to variations in the fastening axial force of bolts.
There is little variation in yield strength, and (2) from the viewpoint of re-tightening, the elongation from the yield point to the maximum axial force is large.

【0005】降伏強さのバラツキは、通常の鋼種の場
合、焼もどし温度のバラツキの影響が大きい。例えば、
通常の工業生産炉では±20℃程度の温度バラツキを生
じる可能性があるが、通常の鋼種の場合、このバラツキ
によって100MPa以上の降伏強さのバラツキを生じ
る可能性がある。このバラツキを低減するには通常の操
業範囲よりも狭幅の温度管理が必要となり、実際の工業
生産炉での生産上課題を残しているが、これに対して材
料面から検討した例は見当たらない。
[0005] Variations in yield strength are largely affected by variations in tempering temperature in the case of ordinary steel grades. For example,
In a normal industrial production furnace, there is a possibility that a temperature variation of about ± 20 ° C. may occur, but in the case of a normal steel type, this variation may cause a variation in yield strength of 100 MPa or more. In order to reduce this variation, it is necessary to control the temperature in a narrower range than the normal operation range, and this still leaves production problems in actual industrial production furnaces. Absent.

【0006】さらに伸びは、通常の鋼種の場合、高強度
化するほど伸びが不可避的に低下するため、ボルト形状
の変更等で対応する必要があり、塑性域締結の適用の拡
大、ボルトの汎用性に課題を残している。もちろん、高
強度ボルトを塑性域締結に供した場合、高い軸力が負荷
されるため、従来よりも遅れ破壊特性に優れた材料であ
る必要がある。しかしながら、塑性域締結に適した高強
度ボルト用鋼を提案している例は見当たらず、材料面か
らの検討はほとんどされていない。
[0006] Further, in the case of ordinary steel types, the elongation inevitably decreases as the strength increases, so that it is necessary to cope with such changes by changing the shape of the bolts. Gender issues remain. Of course, when a high-strength bolt is subjected to fastening in a plastic region, a high axial force is applied, so that the material must be superior in delayed fracture characteristics to the conventional one. However, there is no example that proposes a high-strength bolt steel suitable for fastening in a plastic region, and there is hardly any study on the material.

【0007】耐遅れ破壊特性の改善を目的とした高強度
ボルト用鋼は、例えば、特開昭58−117856号公
報、特開昭62−199751号公報、特開昭61−2
23168号公報、特開平3−243745号公報、特
許第2670937号公報に開示されている。しかし、
これらの鋼種は塑性域締結を考慮していないため、上述
したような特性を得ることができない。特開昭58−1
17856号公報には、鋼中の不純物を低減して延性
(伸び、絞り)、耐遅れ破壊特性を向上する方法が述べ
られているが、C、Cr、Mo、Vの量が最適化されて
いないため降伏強さのバラツキを低減することができな
いし、伸び、耐遅れ破壊特性の改善も今一歩である。特
許第2670937号公報には、成分系、熱処理条件を
限定することによって耐遅れ破壊特性、疲労特性を向上
する方法が述べられているが、この場合も上記と同じ問
題がある。
[0007] High-strength bolt steel intended to improve delayed fracture resistance is disclosed in, for example, JP-A-58-117856, JP-A-62-199751, and JP-A-61-2.
No. 23168, JP-A-3-243745, and Japanese Patent No. 2670937. But,
Since these steel types do not take into account plastic zone fastening, the above-described characteristics cannot be obtained. JP-A-58-1
No. 17856 describes a method for improving the ductility (elongation, drawing) and delayed fracture resistance by reducing impurities in steel, but the amounts of C, Cr, Mo and V are optimized. Therefore, variation in yield strength cannot be reduced, and improvement in elongation and delayed fracture resistance is just one step away. Japanese Patent No. 2670937 describes a method for improving delayed fracture resistance and fatigue characteristics by limiting the component system and heat treatment conditions, but this method also has the same problem as described above.

【0008】以上述べた通り、耐遅れ破壊特性に優れ、
なおかつ塑性域締結に適した高強度ボルト用鋼は現状で
は見あたらない。
[0008] As described above, excellent delayed fracture resistance,
At the present time, there is no steel for high strength bolts suitable for fastening in the plastic zone.

【0009】[0009]

【発明が解決しようとする課題】本発明は以上のような
課題を解決し、耐遅れ破壊特性に優れ、塑性域締結に適
した高強度ボルト用鋼及び高強度ボルトの製造方法を提
供することを目的とする。詳細には、高強度においても
現在1000MPa級のボルトとして多く使われている
SCM435よりも耐遅れ破壊特性に優れ、焼もどし温
度が多少変動しても降伏強さの変化が小さく、良好な伸
びを示す、引張強さ1200MPa以上の高強度ボルト
用鋼及び高強度ボルトの製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a method for producing high-strength bolt steel and a high-strength bolt excellent in delayed fracture resistance and suitable for fastening in a plastic region. With the goal. In detail, even with high strength, it has better delayed fracture resistance than SCM435, which is currently widely used as a 1000 MPa class bolt, and has a small change in yield strength even if the tempering temperature fluctuates slightly, and has good elongation. It is an object of the present invention to provide a method for manufacturing a high-strength bolt steel having a tensile strength of 1200 MPa or more and a high-strength bolt described below.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、以下の
通りである。
The gist of the present invention is as follows.

【0011】(1) 重量%で、C:0.15〜0.4
5%、Mn:0.40超〜1.50%、Cr:0.30
〜2.00%、Mo:0.10〜0.35%、V:0.
20超〜0.40%、Al:0.010〜0.100%
を含有し、かつCr、Mo、Vを1.20<0.125
×(Cr%+Mo%)+5.22×V%<2.30の関
係を満足するバランスとし、Si:0.10%以下(0
%を含む)、P:0.015%以下(0%を含む)、
S:0.015%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れ、塑性域締結に適した高強度
ボルト用鋼。
(1) In weight%, C: 0.15 to 0.4
5%, Mn: more than 0.40 to 1.50%, Cr: 0.30
-2.00%, Mo: 0.10-0.35%, V: 0.
More than 20 to 0.40%, Al: 0.010 to 0.100%
And Cr, Mo, V are set to 1.20 <0.125.
× (Cr% + Mo%) + 5.22 × V% <2.30 The balance satisfying the relationship of: Si: 0.10% or less (0
%), P: 0.015% or less (including 0%),
S: for high-strength bolts, each of which is limited to 0.015% or less (including 0%), with the balance being Fe and unavoidable impurities, having excellent delayed fracture resistance and being suitable for fastening in a plastic region. steel.

【0012】(2) 重量%で、C:0.15〜0.4
5%、Mn:0.40超〜1.50%、Cr:0.30
〜2.00%、Mo:0.10〜0.35%、V:0.
20超〜0.40%、Al:0.010〜0.100%
を含有し、さらに、Nb:0.005〜0.100%、
Ti:0.005〜0.100%のうちの1種または2
種を含有し、かつCr、Mo、Vを1.20<0.12
5×(Cr%+Mo%)+5.22×V%<2.30の
関係を満足するバランスとし、Si:0.10%以下
(0%を含む)、P:0.015%以下(0%を含
む)、S:0.015%以下(0%を含む)に各々制限
し、残部がFe及び不可避的不純物よりなることを特徴
とする、耐遅れ破壊特性に優れ、塑性域締結に適した高
強度ボルト用鋼。
(2) In weight%, C: 0.15 to 0.4
5%, Mn: more than 0.40 to 1.50%, Cr: 0.30
-2.00%, Mo: 0.10-0.35%, V: 0.
More than 20 to 0.40%, Al: 0.010 to 0.100%
And Nb: 0.005 to 0.100%,
Ti: one or two of 0.005 to 0.100%
Containing seeds and Cr, Mo, V 1.20 <0.12
5 × (Cr% + Mo%) + 5.22 × V% <2.30 The balance satisfying the relationship: Si: 0.10% or less (including 0%), P: 0.015% or less (0% ), S: limited to 0.015% or less (including 0%), the balance being Fe and unavoidable impurities, excellent in delayed fracture resistance, suitable for fastening in a plastic region High strength bolt steel.

【0013】(3) 重量%で、C:0.15〜0.4
5%、Mn:0.40超〜1.50%、Cr:0.30
〜2.00%、Mo:0.10〜0.35%、V:0.
20超〜0.40%、Al:0.010〜0.100%
を含有し、さらに、B:0.0005〜0.0050%
を含有し、かつCr、Mo、Vを1.20<0.125
×(Cr%+Mo%)+5.22×V%<2.30の関
係を満足するバランスとし、Si:0.10%以下(0
%を含む)、P:0.015%以下(0%を含む)、
S:0.015%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れ、塑性域締結に適した高強度
ボルト用鋼。
(3) In weight%, C: 0.15 to 0.4
5%, Mn: more than 0.40 to 1.50%, Cr: 0.30
-2.00%, Mo: 0.10-0.35%, V: 0.
More than 20 to 0.40%, Al: 0.010 to 0.100%
And B: 0.0005 to 0.0050%
And Cr, Mo, V are set to 1.20 <0.125.
× (Cr% + Mo%) + 5.22 × V% <2.30 The balance satisfying the relationship of: Si: 0.10% or less (0
%), P: 0.015% or less (including 0%),
S: for high-strength bolts, each of which is limited to 0.015% or less (including 0%), with the balance being Fe and unavoidable impurities, having excellent delayed fracture resistance and being suitable for fastening in a plastic region. steel.

【0014】(4) 重量%で、C:0.15〜0.4
5%、Mn:0.40超〜1.50%、Cr:0.30
〜2.00%、Mo:0.10〜0.35%、V:0.
20超〜0.40%、Al:0.010〜0.100%
を含有し、さらに、Nb:0.005〜0.100%、
Ti:0.005〜0.100%のうちの1種または2
種を含有し、さらに、B:0.0005〜0.0050
%を含有し、かつCr、Mo、Vを1.20<0.12
5×(Cr%+Mo%)+5.22×V%<2.30の
関係を満足するバランスとし、Si:0.10%以下
(0%を含む)、P:0.015%以下(0%を含
む)、S:0.015%以下(0%を含む)に各々制限
し、残部がFe及び不可避的不純物よりなることを特徴
とする、耐遅れ破壊特性に優れ、塑性域締結に適した高
強度ボルト用鋼。
(4) In weight%, C: 0.15 to 0.4
5%, Mn: more than 0.40 to 1.50%, Cr: 0.30
-2.00%, Mo: 0.10-0.35%, V: 0.
More than 20 to 0.40%, Al: 0.010 to 0.100%
And Nb: 0.005 to 0.100%,
Ti: one or two of 0.005 to 0.100%
Seeds, and B: 0.0005 to 0.0050
% And Cr, Mo, V 1.20 <0.12
5 × (Cr% + Mo%) + 5.22 × V% <2.30 The balance satisfying the relationship: Si: 0.10% or less (including 0%), P: 0.015% or less (0% ), S: limited to 0.015% or less (including 0%), the balance being Fe and unavoidable impurities, excellent in delayed fracture resistance, suitable for fastening in a plastic region High strength bolt steel.

【0015】(5) 前記(1)〜(4)のいずれかの
高強度ボルト用鋼を所望の形状に成形後、AC3以上の温
度に加熱した後に焼入れ処理を行い、500〜650℃
の温度範囲で焼きもどすことを特徴とする、耐遅れ破壊
特性に優れ、塑性域締結に適した高強度ボルトの製造方
法。
(5) After forming the high-strength bolt steel according to any of the above (1) to (4) into a desired shape, the steel is heated to a temperature of A C3 or higher, and then subjected to a quenching treatment, and then 500 to 650 ° C
A method for producing a high-strength bolt excellent in delayed fracture resistance and suitable for fastening in a plastic region, characterized in that it is tempered in the above temperature range.

【0016】[0016]

【発明の実施の形態】本発明者らは、遅れ破壊特性に及
ぼす各種因子について以下の知見を得た。すなわち、
(1)Cr、Mo、Vをある成分範囲で複合添加して5
00℃以上の温度域で焼きもどすことによって低温焼も
どし脆性域を回避することができる。また、焼もどし時
に粒界に析出するセメンタイトの形態を球状化して粒界
の結合力を増加し、粒界割れを防止することができる。
(2)特定量のVを添加することによって、焼もどし時
にマトリックス中に微細に析出するV炭窒化物が水素の
粒内トラップサイトとなり、粒界に集積する水素の量を
低減し、耐遅れ破壊特性が大幅に向上する。(3)粒界
に偏析する不純物であるP、S量をある量以下に規制す
ることによって旧オーステナイト粒界の強化が図られ、
耐遅れ破壊特性が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have obtained the following knowledge on various factors affecting delayed fracture characteristics. That is,
(1) Cr, Mo, and V are added together in a certain component range and 5
By performing tempering in a temperature range of 00 ° C. or more, a brittle range in low-temperature tempering can be avoided. In addition, the form of cementite precipitated at the grain boundaries during tempering can be spheroidized to increase the bonding strength of the grain boundaries and prevent grain boundary cracking.
(2) By adding a specific amount of V, V carbonitrides, which are finely precipitated in the matrix during tempering, become intragranular trap sites for hydrogen, reduce the amount of hydrogen accumulated at the grain boundaries, and delay resistance. Breakage characteristics are greatly improved. (3) The former austenite grain boundary is strengthened by regulating the amounts of impurities P and S segregating at the grain boundary to a certain amount or less,
The delayed fracture resistance is improved.

【0017】また、本発明者らは塑性域締結に必要な諸
特性についても材料面で以下の知見を得た。すなわち、
(1)C、Cr、Mo、Vの添加量をある成分範囲に限
定し、なおかつCr、Mo、Vを1.20<0.125
×(Cr%+Mo%)+5.22×V%<2.30の関
係を満足するバランスとすることによって、500℃〜
620℃の焼もどし温度範囲で焼もどし軟化と焼もどし
軟化抵抗、焼もどし二次硬化が相殺され、引張強さ、
0.2%耐力(降伏強さ)の変動が非常に小さく、平坦
な焼もどし性能を得ることができる。このことにより、
焼もどし温度が多少変動してもボルトの降伏強さのバラ
ツキを小さく抑えることができる。(2)Cr、Mo、
Vを上記の範囲で複合添加し、500℃以上の高温で焼
きもどしを行なうことによって高い強度と良好な伸びを
両立できる。
The present inventors have also obtained the following knowledge in terms of materials regarding various characteristics necessary for fastening in a plastic region. That is,
(1) The addition amounts of C, Cr, Mo, and V are limited to a certain component range, and Cr, Mo, and V are set to 1.20 <0.125.
× (Cr% + Mo%) + 5.22 × V% <2.30
In the tempering temperature range of 620 ° C, tempering softening and tempering softening resistance, tempering secondary hardening are offset, tensile strength,
The fluctuation of 0.2% proof stress (yield strength) is very small, and a flat tempering performance can be obtained. This allows
Even if the tempering temperature fluctuates somewhat, the variation in the yield strength of the bolt can be kept small. (2) Cr, Mo,
By adding V in the above range and performing tempering at a high temperature of 500 ° C. or higher, both high strength and good elongation can be achieved.

【0018】さらに、フェライトの固溶強化元素である
Siを極力低減することによってCr、Mo、V添加に
よる冷間鍛造性の低下を補い、ボルトの冷間鍛造性を損
なうことなく高強度化を図ることができる。
[0018] Further, by reducing Si, which is a solid solution strengthening element of ferrite, as much as possible, a decrease in cold forgeability due to the addition of Cr, Mo, and V is compensated for, and a high strength can be obtained without impairing the cold forgeability of the bolt. Can be planned.

【0019】以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

【0020】C:Cは強度を得るために有効な元素であ
るため0.15%以上添加するが、0.45%を超えて
添加すると冷間鍛造性、靭性が低下するので、0.15
〜0.45%の範囲にする必要がある。好適範囲は0.
20〜0.40%である。
C: Since C is an element effective for obtaining strength, it is added in an amount of 0.15% or more. However, if added in excess of 0.45%, cold forgeability and toughness are reduced.
It must be in the range of ~ 0.45%. The preferred range is 0.
20 to 0.40%.

【0021】Mn:Mnは焼入れ性を向上するのに有効
な元素であるため0.40%を超えて添加するが、1.
50%を超えて添加すると耐遅れ破壊特性、冷間鍛造性
が低下するので、0.40超〜1.50%の範囲にする
必要がある。好適範囲は0.50〜0.80%である。
Mn: Mn is an element effective for improving the hardenability, so Mn is added in an amount exceeding 0.40%.
If it is added in excess of 50%, the delayed fracture resistance and cold forgeability deteriorate. Therefore, it is necessary that the content be in the range of more than 0.40 to 1.50%. The preferred range is 0.50 to 0.80%.

【0022】Cr:Crは焼入れ性を向上するのに有効
な元素であり、かつ鋼に焼もどし軟化抵抗を付与する効
果があるため0.30%以上添加するが、2.00%を
超えて添加すると冷間鍛造性が低下するので、0.30
〜2.00%の範囲にする必要がある。好適範囲は1.
00〜1.40%である。
Cr: Cr is an element effective for improving hardenability and has an effect of imparting temper softening resistance to steel. Therefore, Cr is added in an amount of 0.30% or more. When added, the cold forgeability is reduced.
It is necessary to be in the range of 2.00%. The preferred range is 1.
It is 00 to 1.40%.

【0023】Mo:Moは焼もどし時に顕著な二次硬化
を起こし、高温焼もどしを可能とすることによって耐遅
れ破壊特性を向上させる元素である。また、高温焼もど
しによって強度−延性バランスが向上し、高い伸びを得
ることができるため0.10%以上添加するが、0.3
5%を超えて添加すると冷間鍛造性が低下するととも
に、二次硬化量が過大となり、平坦な焼もどし特性を得
ることができない。さらに、焼入れ加熱時に合金炭化物
がマトリックスに固溶し難くなり、粗大な未溶解炭化物
の量が多くなることによって伸びが低下し、塑性域締結
に不適となるので、0.10〜0.35%の範囲にする
必要がある。好適範囲は0.20〜0.35%である。
Mo: Mo is an element that causes remarkable secondary hardening during tempering and improves the delayed fracture resistance by enabling high-temperature tempering. Further, the strength-ductility balance is improved by high-temperature tempering, and high elongation can be obtained.
If it is added in excess of 5%, the cold forgeability decreases, and the amount of secondary hardening becomes excessive, so that flat tempering properties cannot be obtained. Further, at the time of quenching and heating, it is difficult for the alloy carbide to form a solid solution in the matrix, and the amount of coarse undissolved carbide is increased, whereby the elongation is reduced and the alloy carbide is unsuitable for fastening in a plastic region. Must be in the range. The preferred range is 0.20 to 0.35%.

【0024】V:Vは旧オーステナイト結晶粒を特に顕
著に微細化する効果があるとともに、焼もどし時に顕著
な二次硬化を起こし、高温焼もどしを可能とすることに
よって耐遅れ破壊特性を向上させる元素である。また、
高温焼もどしによって強度−延性バランスが向上し、高
い伸びを得ることができる。さらに、焼もどし時にマト
リックス中に微細に析出するV炭窒化物が水素の粒内ト
ラップサイトとなり、粒界に集積する水素の量を低減
し、耐遅れ破壊特性を大幅に向上させる元素であるので
0.20%を超えて添加するが、0.40%を超えて添
加すると効果が飽和するのみならず冷間鍛造性が低下す
るとともに、二次硬化量が過大となり、平坦な焼もどし
特性を得ることができない。さらに、焼入れ加熱時に合
金炭化物がマトリックスに固溶し難くなり、粗大な未溶
解炭化物の量が多くなることによって伸びが低下し、塑
性域締結に不適となるので、0.20超〜0.40%の
範囲にする必要がある。好適範囲は0.25〜0.35
%である。
V: V has the effect of remarkably refining the prior austenite crystal grains, and also causes remarkable secondary hardening during tempering, thereby improving the delayed fracture resistance by enabling high temperature tempering. Element. Also,
The high-temperature tempering improves the strength-ductility balance and enables high elongation to be obtained. Furthermore, V carbonitride, which is finely precipitated in the matrix during tempering, becomes an intragranular trap site for hydrogen, and is an element that reduces the amount of hydrogen accumulated at the grain boundaries and greatly improves delayed fracture resistance. When added in excess of 0.20%, addition in excess of 0.40% not only saturates the effect but also lowers the cold forgeability, increases the amount of secondary hardening and increases the flat tempering property. I can't get it. Furthermore, at the time of quenching and heating, the alloy carbide is hardly dissolved in the matrix, and the amount of coarse undissolved carbide is increased, whereby the elongation is reduced and the alloy carbide is unsuitable for fastening in the plastic region. It must be in the range of%. The preferred range is 0.25 to 0.35
%.

【0025】Al:Alは鋼の脱酸に必要な元素である
とともに、窒化物を形成して旧オーステナイト粒を微細
化する効果があるので0.010%以上添加するが、
0.100%を超えて添加すると効果が飽和するのみな
らずアルミナ系介在物が増加し、靭性が低下するので、
0.010〜0.100%の範囲にする必要がある。好
適範囲は0.020〜0.050%である。
Al: Al is an element necessary for the deoxidation of steel, and has an effect of forming nitrides and refining old austenite grains. Therefore, Al is added in an amount of 0.010% or more.
If added in excess of 0.100%, not only does the effect become saturated, but also alumina-based inclusions increase and toughness decreases.
It is necessary to be in the range of 0.010 to 0.100%. A preferred range is from 0.020 to 0.050%.

【0026】Nb:NbはAl、Ti、Vと同様に、結
晶粒を微細化する効果があるとともに、耐遅れ破壊特性
を向上する効果があるので0.005%以上添加するの
が好ましいが、0.100%を超えて添加すると効果が
飽和するのみならず冷間鍛造性が低下するので、添加す
る場合は0.005〜0.100%の範囲にする必要が
ある。好適範囲は0.010〜0.050%である。
Nb: Like Al, Ti and V, Nb has the effect of refining the crystal grains and the effect of improving the delayed fracture resistance, so it is preferable to add 0.005% or more. If it is added in excess of 0.100%, not only does the effect become saturated, but also the cold forgeability deteriorates. A preferred range is 0.010 to 0.050%.

【0027】Ti:TiはAl、Nb、Vと同様に、結
晶粒を微細化する効果があるとともに、鋼中の固溶Nを
窒化物として固定し、耐遅れ破壊特性を向上する効果が
あるので0.005%以上添加するのが好ましいが、
0.100%を超えて添加すると効果が飽和するのみな
らず冷間鍛造性が低下するので、添加する場合は0.0
05〜0.100%の範囲にする必要がある。好適範囲
は0.010〜0.050%である。
Ti: Ti, like Al, Nb, and V, has the effect of refining crystal grains, and has the effect of fixing solute N in steel as nitride and improving delayed fracture resistance. Therefore, it is preferable to add 0.005% or more,
If it is added in excess of 0.100%, not only does the effect become saturated, but also the cold forgeability deteriorates.
It is necessary to be in the range of 0.05 to 0.100%. A preferred range is 0.010 to 0.050%.

【0028】B:Bは少量の添加で焼入れ性を向上する
効果があるとともに、旧オーステナイト粒界に偏析して
粒界を強化し、耐遅れ破壊特性を向上する効果があるの
で0.0005%以上添加するのが好ましいが、0.0
050%を超えて添加すると効果が飽和するので、添加
する場合は0.0005〜0.0050%の範囲にする
必要がある。好適範囲は0.0010〜0.0030%
である。
B: B has the effect of improving hardenability with a small amount of addition, and has the effect of segregating at the former austenite grain boundary to strengthen the grain boundary and improving delayed fracture resistance, so 0.0005%. It is preferable to add
If the addition exceeds 050%, the effect is saturated. Therefore, the addition needs to be in the range of 0.0005 to 0.0050%. The preferred range is 0.0010 to 0.0030%
It is.

【0029】Si:Siは鋼の脱酸に必要な元素である
が、0.10%を超えて添加すると冷間鍛造性が顕著に
低下するので0.10%以下に制限する必要がある。好
適範囲は0.08%以下である。
Si: Si is an element necessary for deoxidation of steel, but if added in excess of 0.10%, the cold forgeability is significantly reduced, so it must be limited to 0.10% or less. The preferred range is 0.08% or less.

【0030】P:Pは旧オーステナイト粒界に偏析して
粒界を脆化させ、耐遅れ破壊特性を顕著に低下させる効
果があるので0.015%以下に制限する必要があり、
極力低減すべきである。好適範囲は0.010%以下で
ある。
P: P segregates at the former austenite grain boundary, embrittles the grain boundary, and has the effect of remarkably reducing the delayed fracture resistance. Therefore, P must be limited to 0.015% or less.
It should be reduced as much as possible. The preferred range is 0.010% or less.

【0031】S:Sは旧オーステナイト粒界に偏析して
粒界を脆化させ、耐遅れ破壊特性を顕著に低下させる効
果があるので0.015%以下に制限する必要があり、
極力低減すべきである。好適範囲は0.010%以下で
ある。
S: S has the effect of segregating at the former austenite grain boundary to embrittle the grain boundary and significantly reduce the delayed fracture resistance, so it is necessary to limit it to 0.015% or less.
It should be reduced as much as possible. The preferred range is 0.010% or less.

【0032】Cr、Mo、V添加バランス:本発明では
Cr、Mo、Vの添加量を1.20<0.125×(C
r%+Mo%)+5.22×V%<2.30の関係式を
満足するバランスとする。上記のバランスにすることに
よって、500℃〜650℃の焼もどし温度範囲で焼も
どし軟化と焼もどし軟化抵抗、焼もどし二次硬化が相殺
され、引張強さ、0.2%耐力(降伏強さ)の変動が非
常に小さく、平坦な焼もどし性能を得ることができる。
このことにより、焼もどし温度が多少変動してもボルト
の降伏強さのバラツキを小さく抑えることができる。し
かし、上記の式の値が下限より低くなると焼もどし軟化
抵抗、焼もどし二次硬化が不十分となり、平坦な焼もど
し性能を得ることができず、上限より高くなると焼きも
どし二次硬化が過大となり、平坦な焼もどし性能を得る
ことができないのみならず、素材強度の上昇を招き、冷
間鍛造性も低下するため、上記範囲にする必要がある。
好適範囲は1.50<0.125×(Cr%+Mo%)
+5.22×V%<1.90である。
Cr, Mo, V addition balance: In the present invention, the addition amount of Cr, Mo, V is 1.20 <0.125 × (C
r% + Mo%) + 5.22 × V% <2.30 By making the above balance, tempering softening and tempering softening resistance and tempering secondary hardening are offset in the tempering temperature range of 500 ° C to 650 ° C, and the tensile strength, 0.2% proof stress (yield strength) ) Is very small and a flat tempering performance can be obtained.
As a result, even if the tempering temperature fluctuates to some extent, it is possible to reduce the variation in the yield strength of the bolt. However, when the value of the above formula is lower than the lower limit, the tempering softening resistance, the tempering secondary curing becomes insufficient, and flat tempering performance cannot be obtained, and when the value is higher than the upper limit, the tempering secondary curing is excessive. Therefore, not only flat tempering performance cannot be obtained, but also an increase in material strength and a decrease in cold forgeability, so that the above range is required.
The preferred range is 1.50 <0.125 × (Cr% + Mo%)
+ 5.22 × V% <1.90.

【0033】本発明は二次加工工程を特に規定していな
いが、製造工程中に冷間鍛造工程が入るものについては
冷間鍛造性を向上させるため、熱間圧延後の素材に焼
鈍、または球状化焼鈍処理を施しても良い。また、素材
の寸法精度が必要なボルトの場合は、冷間鍛造の前に伸
線を行なうのが一般的である。
Although the present invention does not particularly define the secondary working step, in the case where a cold forging step is included in the manufacturing step, in order to improve the cold forgeability, the material after hot rolling is annealed or A spheroidizing annealing treatment may be performed. In the case of a bolt that requires dimensional accuracy of the material, it is common to draw the wire before cold forging.

【0034】上述した成分のボルト用鋼が最も効果を発
揮するのは、以下に説明するボルトの製造方法において
である。
The steel for bolts having the above-described components is most effective in the bolt manufacturing method described below.

【0035】上述した成分のボルト用鋼を鍛造、切削等
によって所望のボルト形状に成形した後、鋼に強度を付
与するため、AC3点以上の温度に加熱した後、水冷また
は油冷によって焼入れ処理を行う。加熱温度が高すぎる
と結晶粒の粗大化を招き、靭性及び耐遅れ破壊特性の劣
化を招き、また、操業面からは熱処理炉の炉体、及び付
属部品の損傷が顕著になり、製造コストが上昇するた
め、あまり高い温度に加熱するのは好ましくないため、
焼入れ加熱温度を850〜950℃とするのが好適であ
る。
After the bolt steel having the above-mentioned components is formed into a desired bolt shape by forging, cutting, or the like, the steel is heated to a temperature not lower than the AC 3 point to impart strength to the steel, and then quenched by water cooling or oil cooling. Perform processing. If the heating temperature is too high, the crystal grains will be coarsened, and the toughness and delayed fracture resistance will be deteriorated. Because it is not preferable to heat it to a very high temperature,
It is preferable to set the quenching heating temperature to 850 to 950 ° C.

【0036】鋼に所定の強度および靱性、延性を付与す
るために焼入れ後に焼もどしを行う必要がある。焼もど
しは、一般に150℃〜AC1点の温度範囲で行われる
が、本発明では500〜650℃の温度範囲に限定する
必要がある。その理由は、500℃以下では粒界に析出
するセメンタイトの形態を球状化して粒界の結合力を増
加することができず、また、水素のトラップサイトとな
るV炭窒化物の析出が不十分となり、耐遅れ破壊特性の
改善ができないこと、500℃以下では塑性域締結用ボ
ルトの必要特性である伸び値の改善ができないこと、6
50℃以上では軟化が著しく、引張強さ1200MPa
以上の高強度を得られないこと、さらに、500〜65
0℃の温度範囲以外では平坦な焼もどし性能を得ること
ができず、焼もどし温度のバラツキに起因する降伏強さ
のバラツキを低減することができないことのためであ
る。好適範囲は525〜625℃である。
In order to impart predetermined strength, toughness and ductility to the steel, it is necessary to perform tempering after quenching. Tempering is generally performed in the temperature range of 150 ° C. to A C1 point, but in the present invention, it is necessary to limit the temperature range to 500 to 650 ° C. The reason is that at temperatures of 500 ° C. or lower, the form of cementite precipitated at the grain boundaries cannot be spheroidized to increase the bonding strength of the grain boundaries, and the precipitation of V carbonitride, which serves as a hydrogen trap site, is insufficient. That the delayed fracture resistance cannot be improved, and that the elongation, which is a necessary property of the plastic region fastening bolt, cannot be improved below 500 ° C.,
Above 50 ° C, softening is remarkable and tensile strength is 1200 MPa
The above high strength cannot be obtained.
This is because flat tempering performance cannot be obtained outside the temperature range of 0 ° C., and variation in yield strength due to variation in tempering temperature cannot be reduced. The preferred range is 525-625 ° C.

【0037】[0037]

【実施例】以下に、実施例により本発明をさらに説明す
る。
The present invention will be further described below with reference to examples.

【0038】表1に示す組成を有する転炉溶製鋼を連続
鋳造し、必要に応じて均熱拡散処理工程、分塊圧延工程
を経て162mm角の圧延素材とした。続いて熱間圧延
によって線材形状とした。
Converter steelmaking steel having the composition shown in Table 1 was continuously cast and, if necessary, was subjected to a soaking process and a slab rolling process to obtain a 162 mm square rolled material. Subsequently, a wire rod shape was obtained by hot rolling.

【0039】[0039]

【表1】 [Table 1]

【0040】次にこれらの材料の遅れ破壊特性を調査す
るため、ボルトを製作した。圧延材に必要により焼鈍を
または球状化焼鈍を施し、冷間鍛造によってボルト形状
に成形した。その後所定の条件で加熱し、油槽中に焼入
れ、表2、表3の条件で焼もどしを行った。上記の工程
で製作したボルトから、直径8mmの引張試験片、及び
環状切り欠きノッチ付きの遅れ破壊試験片(平行部の直
径8mm、ノッチ部の直径6mm)を機械加工によって
製作し、機械的性質、及び遅れ破壊特性を調査した。
Next, bolts were manufactured in order to investigate the delayed fracture characteristics of these materials. The rolled material was subjected to annealing or spheroidizing annealing as necessary, and was formed into a bolt shape by cold forging. Thereafter, it was heated under predetermined conditions, quenched in an oil bath, and tempered under the conditions shown in Tables 2 and 3. From the bolts manufactured in the above process, a tensile test piece having a diameter of 8 mm and a delayed fracture test piece with a notch with a circular notch (diameter of a parallel portion 8 mm, diameter of a notch portion 6 mm) were manufactured by machining to obtain mechanical properties. And delayed fracture properties were investigated.

【0041】遅れ破壊試験はpH3.0の希硫酸(液温
30℃)中で試験片に電流密度1.0mA/cm2の水
素チャージを行い、定荷重を負荷して破断までの時間を
測定した。試験時間は最大200時間とし、200時間
破断しない最大の負荷応力を測定した。200時間破断
しない最大の負荷応力を大気中での破断応力で割った値
を「遅れ破壊強度比」と定義し、遅れ破壊特性の指標と
した。引張強さが1000MPa級のボルトとして多く
使われているSCM435の遅れ破壊強度比が0.5程
度であることから、遅れ破壊強度比が0.5未満のもの
は耐遅れ破壊特性に劣ると判断した。これらの各種試験
結果も表2、3にまとめて示した。遅れ破壊強度比と引
張強さの関係を図1に示す。本発明例は、比較例に比べ
て高強度にも関わらず、良好な遅れ破壊特性を示すこと
が分かる。
In the delayed fracture test, a test piece was charged with hydrogen at a current density of 1.0 mA / cm 2 in dilute sulfuric acid (solution temperature: 30 ° C.) at pH 3.0, a constant load was applied, and the time until fracture was measured. did. The test time was a maximum of 200 hours, and the maximum applied stress that did not break for 200 hours was measured. The value obtained by dividing the maximum applied stress that does not break for 200 hours by the breaking stress in the atmosphere was defined as “delayed fracture strength ratio” and used as an index of delayed fracture characteristics. Since the delayed fracture strength ratio of SCM435, which is often used as a bolt having a tensile strength of 1000 MPa class, is about 0.5, it is judged that those having a delayed fracture strength ratio of less than 0.5 are inferior in delayed fracture resistance. did. Tables 2 and 3 also show the results of these various tests. FIG. 1 shows the relationship between the delayed fracture strength ratio and the tensile strength. It can be seen that the examples of the present invention exhibit good delayed fracture characteristics in spite of high strength as compared with the comparative examples.

【0042】引張試験では0.2%耐力(降伏強さ)、
引張強さ、伸びを測定した。伸びは評点間距離を30m
mとして測定した。引張強さが1000MPa級のボル
トとして多く使われているSCM435の伸びが15%
程度であることから、伸びが15%未満のものは塑性域
締結に不適と判断した。伸びと引張強さの関係を図2に
示す。本発明例は、比較例に比べて高強度にも関わら
ず、良好な伸びを示し、塑性域締結に適することが分か
る。焼もどし温度と0.2%耐力(降伏強さ)の関係を
図3に示す。本発明鋼は、比較鋼に比べて0.2%耐力
(降伏強さ)の変動が非常に小さく、平坦な焼もどし性
能を得ることができることが分かる。このことにより、
焼もどし温度が多少変動してもボルトの降伏強さのバラ
ツキを小さく抑えることができ、ボルトの締結軸力の精
度が向上する。
In the tensile test, 0.2% proof stress (yield strength),
Tensile strength and elongation were measured. Growth is 30m between the grade points
It was measured as m. 15% elongation of SCM435 which is often used as a bolt with tensile strength of 1000MPa class
Therefore, those having an elongation of less than 15% were judged to be unsuitable for fastening in the plastic region. FIG. 2 shows the relationship between elongation and tensile strength. It can be seen that the example of the present invention shows good elongation in spite of high strength as compared with the comparative example, and is suitable for fastening in a plastic region. FIG. 3 shows the relationship between the tempering temperature and the 0.2% proof stress (yield strength). It can be seen that the steel of the present invention has a very small 0.2% proof stress (yield strength) variation as compared with the comparative steel, and can obtain flat tempering performance. This allows
Even if the tempering temperature fluctuates somewhat, variation in the yield strength of the bolt can be suppressed to a small value, and the accuracy of the fastening axial force of the bolt is improved.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】これらから明らかなように、本発明例は比
較例に比べて高強度であり、耐遅れ破壊特性、伸びに優
れ、焼もどし温度のバラツキに起因する降伏強さのバラ
ツキが小さく、塑性域締結に適している。
As is apparent from the above, the present invention example has higher strength than the comparative example, excellent delayed fracture resistance and elongation, small variation in yield strength due to variation in tempering temperature, and low plasticity. Suitable for area conclusion.

【0046】[0046]

【発明の効果】本発明によれば、引張強さ1200MP
a以上の高強度であり、遅れ破壊特性に優れ、塑性域締
結に適したボルトを安価に提供することが可能となり、
ボルトの締結軸力の増加、サイズダウンによる軽量化、
塑性域締結の一層の適用拡大等その効果は極めて大き
い。
According to the present invention, the tensile strength is 1200MP.
It is possible to provide inexpensively a bolt suitable for fastening in a plastic region, which has high strength of a or more, has excellent delayed fracture characteristics,
Bolt fastening axial force increase, weight reduction by size reduction,
The effect, such as further application expansion of the plastic zone fastening, is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】遅れ破壊強度比と引張強さの関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a delayed fracture strength ratio and a tensile strength.

【図2】伸びと引張強さの関係を示す図である。FIG. 2 is a diagram showing a relationship between elongation and tensile strength.

【図3】焼もどし温度と0.2%耐力(降伏強さ)の関
係を示す図である。
FIG. 3 is a diagram showing the relationship between tempering temperature and 0.2% proof stress (yield strength).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.15〜0.45%、 Mn:0.40超〜1.50%、 Cr:0.30〜2.00%、 Mo:0.10〜0.35%、 V:0.20超〜0.40%、 Al:0.010〜0.100% を含有し、かつCr、Mo、Vを1.20<0.125
×(Cr%+Mo%)+5.22×V%<2.30の関
係を満足するバランスとし、 Si:0.10%以下(0%を含む)、 P:0.015%以下(0%を含む)、 S:0.015%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れ、塑性域締結に適した高強度
ボルト用鋼。
C .: 0.15 to 0.45%, Mn: more than 0.40 to 1.50%, Cr: 0.30 to 2.00%, Mo: 0.10 to 0% by weight% 0.35%, V: more than 0.20 to 0.40%, Al: 0.010 to 0.100%, and Cr, Mo, V are 1.20 <0.125.
× (Cr% + Mo%) + 5.22 × V% <2.30 Si: 0.10% or less (including 0%), P: 0.015% or less (0% S: limited to 0.015% or less (including 0%), with the balance being Fe and unavoidable impurities, characterized by excellent delayed fracture resistance, suitable for fastening in a plastic region. Steel for strength bolts.
【請求項2】 重量%で、 C:0.15〜0.45%、 Mn:0.40超〜1.50%、 Cr:0.30〜2.00%、 Mo:0.10〜0.35%、 V:0.20超〜0.40%、 Al:0.010〜0.100% を含有し、さらに、 Nb:0.005〜0.100%、 Ti:0.005〜0.100% のうちの1種または2種を含有し、かつCr、Mo、V
を1.20<0.125×(Cr%+Mo%)+5.2
2×V%<2.30の関係を満足するバランスとし、 Si:0.10%以下(0%を含む)、 P:0.015%以下(0%を含む)、 S:0.015%以下(0%を含む) に各々制限し、残部がFe及び不可避的不純物よりなる
ことを特徴とする、耐遅れ破壊特性に優れ、塑性域締結
に適した高強度ボルト用鋼。
2. In% by weight, C: 0.15 to 0.45%, Mn: more than 0.40 to 1.50%, Cr: 0.30 to 2.00%, Mo: 0.10 to 0% 0.35%, V: more than 0.20 to 0.40%, Al: 0.010 to 0.100%, Nb: 0.005 to 0.100%, Ti: 0.005 to 0 100% or more, and containing Cr, Mo, V
1.20 <0.125 × (Cr% + Mo%) + 5.2
Si: 0.10% or less (including 0%), P: 0.015% or less (including 0%), S: 0.015% A high-strength bolt steel excellent in delayed fracture resistance and suitable for fastening in a plastic region, characterized by being limited to the following (including 0%), with the balance being Fe and inevitable impurities.
【請求項3】 重量%で、 C:0.15〜0.45%、 Mn:0.40超〜1.50%、 Cr:0.30〜2.00%、 Mo:0.10〜0.35%、 V:0.20超〜0.40%、 Al:0.010〜0.100% を含有し、さらに、 B:0.0005〜0.0050% を含有し、かつCr、Mo、Vを1.20<0.125
×(Cr%+Mo%)+5.22×V%<2.30の関
係を満足するバランスとし、 Si:0.10%以下(0%を含む)、 P:0.015%以下(0%を含む)、 S:0.015%以下(0%を含む) に各々制限し、残部がFe及び不可避的不純物よりなる
ことを特徴とする、耐遅れ破壊特性に優れ、塑性域締結
に適した高強度ボルト用鋼。
3. In% by weight, C: 0.15 to 0.45%, Mn: more than 0.40 to 1.50%, Cr: 0.30 to 2.00%, Mo: 0.10 to 0% 0.35%, V: more than 0.20 to 0.40%, Al: 0.010 to 0.100%, B: 0.0005 to 0.0050%, and Cr, Mo , V is 1.20 <0.125
× (Cr% + Mo%) + 5.22 × V% <2.30 Si: 0.10% or less (including 0%), P: 0.015% or less (0% ), S: limited to 0.015% or less (including 0%), with the balance being Fe and unavoidable impurities, and having excellent delayed fracture resistance and high suitable for fastening in a plastic region. Steel for strength bolts.
【請求項4】 重量%で、 C:0.15〜0.45%、 Mn:0.40超〜1.50%、 Cr:0.30〜2.00%、 Mo:0.10〜0.35%、 V:0.20超〜0.40%、 Al:0.010〜0.100% を含有し、さらに、 Nb:0.005〜0.100%、 Ti:0.005〜0.100% のうちの1種または2種を含有し、さらに、 B:0.0005〜0.0050% を含有し、かつCr、Mo、Vを1.20<0.125
×(Cr%+Mo%)+5.22×V%<2.30の関
係を満足するバランスとし、 Si:0.10%以下(0%を含む)、 P:0.015%以下(0%を含む)、 S:0.015%以下(0%を含む) に各々制限し、残部がFe及び不可避的不純物よりなる
ことを特徴とする、耐遅れ破壊特性に優れ、塑性域締結
に適した高強度ボルト用鋼。
4. In% by weight, C: 0.15 to 0.45%, Mn: more than 0.40 to 1.50%, Cr: 0.30 to 2.00%, Mo: 0.10 to 0% 0.35%, V: more than 0.20 to 0.40%, Al: 0.010 to 0.100%, Nb: 0.005 to 0.100%, Ti: 0.005 to 0 .100%, B: 0.0005-0.0050%, and Cr, Mo, V 1.20 <0.125
× (Cr% + Mo%) + 5.22 × V% <2.30 Si: 0.10% or less (including 0%), P: 0.015% or less (0% ), S: limited to 0.015% or less (including 0%), with the balance being Fe and unavoidable impurities, and having excellent delayed fracture resistance and high suitable for fastening in a plastic region. Steel for strength bolts.
【請求項5】 請求項1〜4のいずれか記載の高強度ボ
ルト用鋼を所望の形状に成形後、AC3以上の温度に加熱
した後に焼入れ処理を行い、500〜650℃の温度範
囲で焼きもどすことを特徴とする、耐遅れ破壊特性に優
れ、塑性域締結に適した高強度ボルトの製造方法。
5. The high-strength bolt steel according to any one of claims 1 to 4, which is formed into a desired shape, heated to a temperature of A C3 or more, and then subjected to a quenching treatment at a temperature of 500 to 650 ° C. A method for manufacturing a high-strength bolt having excellent delayed fracture resistance, characterized by tempering, and suitable for fastening in a plastic region.
JP13318899A 1999-05-13 1999-05-13 Steel for high strength bolt and method for producing high strength bolt Expired - Fee Related JP3718369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13318899A JP3718369B2 (en) 1999-05-13 1999-05-13 Steel for high strength bolt and method for producing high strength bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13318899A JP3718369B2 (en) 1999-05-13 1999-05-13 Steel for high strength bolt and method for producing high strength bolt

Publications (2)

Publication Number Publication Date
JP2000328191A true JP2000328191A (en) 2000-11-28
JP3718369B2 JP3718369B2 (en) 2005-11-24

Family

ID=15098765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13318899A Expired - Fee Related JP3718369B2 (en) 1999-05-13 1999-05-13 Steel for high strength bolt and method for producing high strength bolt

Country Status (1)

Country Link
JP (1) JP3718369B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371863A1 (en) * 2001-03-22 2003-12-17 Nippon Steel Corporation High-strength bolt excellent in delayed fracture resistance characteristics and its steel product
JP2004002999A (en) * 2002-04-12 2004-01-08 Sumitomo Metal Ind Ltd Method for manufacturing martensitic stainless steel
EP1746176A1 (en) * 2005-07-22 2007-01-24 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same
JP2010523825A (en) * 2007-04-12 2010-07-15 アルセロールミタル・ガンドランジユ Microalloyed steel with good hydrogen resistance for cold forming of mechanical parts with high properties
CN114807738A (en) * 2021-01-27 2022-07-29 宝山钢铁股份有限公司 High-strength bolt steel and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312970B (en) * 2017-06-24 2019-07-16 武汉钢铁有限公司 A kind of high-strength steel for fastener of super large and production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1371863A1 (en) * 2001-03-22 2003-12-17 Nippon Steel Corporation High-strength bolt excellent in delayed fracture resistance characteristics and its steel product
EP1371863A4 (en) * 2001-03-22 2004-10-20 Nippon Steel Corp High-strength bolt excellent in delayed fracture resistance characteristics and its steel product
US7070664B2 (en) 2001-03-22 2006-07-04 Nippon Steel Corporation High strength bolt superior in delayed fracture resistant property and steel material for the same
JP2004002999A (en) * 2002-04-12 2004-01-08 Sumitomo Metal Ind Ltd Method for manufacturing martensitic stainless steel
EP1746176A1 (en) * 2005-07-22 2007-01-24 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same
US7754029B2 (en) 2005-07-22 2010-07-13 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1801 MPa class or more, and its shaped article
JP2010523825A (en) * 2007-04-12 2010-07-15 アルセロールミタル・ガンドランジユ Microalloyed steel with good hydrogen resistance for cold forming of mechanical parts with high properties
US9194018B2 (en) 2007-04-12 2015-11-24 Arcelormittal Gandrange S.A. Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
CN114807738A (en) * 2021-01-27 2022-07-29 宝山钢铁股份有限公司 High-strength bolt steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP3718369B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP6626571B2 (en) Wire rod excellent in cold forgeability and its manufacturing method
JP2001240941A (en) Bar wire rod for cold forging and its production method
US20120037283A1 (en) High-Strength, High-Toughness Steel Wire Rod, and Method for Manufacturing Same
JPS61130456A (en) High-strength bolt and its production
CN113737086A (en) Economical 780 MPa-grade cold-rolled annealed dual-phase steel and manufacturing method thereof
KR20210113668A (en) Machine structural steel for cold working and manufacturing method thereof
US10060015B2 (en) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2003328079A (en) Steel pipe superior in workability for cold forging, and manufacturing method therefor
JP2001288538A (en) High strength steel for bolt excellent in delayed fracture resistance, bolt and method for producing the bolt
JP2000328191A (en) Steel for high strength bolt and production of high strength bolt
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
US20210115966A1 (en) Induction-hardened crankshaft and method of manufacturing roughly shaped material for induction-hardened crankshaft
CN108929985B (en) Medium carbon wire rod excellent in strength and cold workability and method for producing same
JP2001192731A (en) Method for producing high strength shaft parts
WO1998054372A1 (en) Non-tempered steel for mechanical structure
JP2019502815A (en) Non-heat treated wire excellent in strength and cold workability and method for producing the same
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JP2004124190A (en) Induction-tempered steel having excellent twisting property
JPH09202921A (en) Production of wire for cold forging
KR100448623B1 (en) Method for manufacturing high Si added medium carbon wire rod to reduce decarburization depth of its surface
JP5288364B2 (en) Manufacturing method of non-tempered machine screws
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP2000219915A (en) Production of seamless steel pipe having high strength and high toughness
JP5575601B2 (en) Manufacturing method of ferrite-pearlite type non-tempered forged parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees