JP2000328152A - Method for degassing molten copper or copper alloy and continuous melting and casting equipment of copper or copper alloy incorporated with apparatus for executing this degassing method - Google Patents

Method for degassing molten copper or copper alloy and continuous melting and casting equipment of copper or copper alloy incorporated with apparatus for executing this degassing method

Info

Publication number
JP2000328152A
JP2000328152A JP11132044A JP13204499A JP2000328152A JP 2000328152 A JP2000328152 A JP 2000328152A JP 11132044 A JP11132044 A JP 11132044A JP 13204499 A JP13204499 A JP 13204499A JP 2000328152 A JP2000328152 A JP 2000328152A
Authority
JP
Japan
Prior art keywords
copper
degassing
carbon
carbon member
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11132044A
Other languages
Japanese (ja)
Other versions
JP4205252B2 (en
Inventor
Koichi Yoshida
浩一 吉田
Hiromichi Konishi
広通 小西
Akira Yamazaki
明 山崎
Satoshi Teshigawara
聡 勅使河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13204499A priority Critical patent/JP4205252B2/en
Publication of JP2000328152A publication Critical patent/JP2000328152A/en
Application granted granted Critical
Publication of JP4205252B2 publication Critical patent/JP4205252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a degassing method of molten copper, in which gaseous oxygen and gaseous hydrogen in the molten copper can be stably and well removed for a long time, and a continuous melting and casting equipment of the copper or copper alloy incorporated with an apparatus for executing this degassing method. SOLUTION: This degassing method is executed by dipping a carbon member 1 containing >=90 wt.% fixed carbon and <1 wt.% (containing 0%) ash content into the molten copper or copper alloy 3, generating carbon dioxide gas bubbles between the carbon member 1 and the gaseous oxygen in the molten metal 3 and absorbing the gaseous hydrogen in the carbon dioxide gas bubbles to remove the gaseous oxygen and the gaseous hydrogen in the molten metal 3. Further, the continuous melting and casting equipment of the copper or copper alloy is an equipment by incorporating the apparatus for executing the degassing method to at least one among a melting furnace, rounder A, holding furnace, rounder B and casting machine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅または銅合金溶
湯(以下、溶銅と称す)中の酸素ガスおよび水素ガスを
長時間安定して良好に除去できる脱ガス方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing method capable of removing oxygen gas and hydrogen gas in a molten copper or copper alloy (hereinafter referred to as molten copper) stably and satisfactorily for a long time.

【0002】[0002]

【従来の技術】溶銅中に含まれる酸素や水素は、鋳塊に
芯割れを発生させたり、鋳塊にピンホールやブローホー
ルを形成して製品の品質や特性を阻害したりする。この
ため溶銅の脱ガス方法には、次のような種々の方法が適
用されている。 溶銅表面に木炭または松丸太を浮かべる方法。溶銅
中に木炭を浸漬する方法(特開昭63−108946号公報)。
溶銅中にアンモニアガス、アンモニア分解ガス、水素
含有ガスをバブリングする方法。溶銅中に酸素との親
和力の高い元素(P、Mg、Zr、Si、Ca、Alな
ど)を微量添加する方法。溶銅中に不活性ガスをバブ
リングする方法。溶銅を減圧または真空雰囲気下に保
持する方法(特願昭60-61667号公報)。
2. Description of the Related Art Oxygen and hydrogen contained in molten copper cause core cracks in ingots and form pinholes and blowholes in ingots to impair product quality and characteristics. For this reason, the following various methods are applied to the degassing method of molten copper. A method of floating charcoal or pine logs on the surface of molten copper. A method in which charcoal is immersed in molten copper (JP-A-63-108946).
A method of bubbling ammonia gas, ammonia decomposition gas, and hydrogen-containing gas into molten copper. A method of adding a small amount of an element (P, Mg, Zr, Si, Ca, Al, etc.) having a high affinity for oxygen to molten copper. A method of bubbling an inert gas into molten copper. A method in which molten copper is kept under reduced pressure or in a vacuum atmosphere (Japanese Patent Application No. 60-61667).

【0003】[0003]

【発明が解決しようとする課題】しかし、前記従来法
〜には、それぞれ次のような問題がある。即ち、〜
の方法では酸素ガスのみが除去され、水素ガスは除去
されないか若しくは増加する。さらにの方法では脱ガ
スに伴い木炭表面が灰化して脱ガス効果が経時的に低下
し、また0.5ton/hr程度の小量の溶銅か低酸素溶銅に
しか適用できない。の方法では過剰に添加した場合は
導電率の低下を招く。またの方法では酸素ガスが除
去され難い。さらにの方法では雰囲気保持に多大のメ
ンテナンス費が掛かる。このように従来方法では酸素ガ
スおよび水素ガスを長時間に渡り安定して良好に除去す
ることが困難であった。本発明は、溶銅中の酸素ガスお
よび水素ガスを長時間安定して良好に除去できる溶銅の
脱ガス方法および前記脱ガス方法を実施する装置が組み
込まれた銅または銅合金の連続溶解鋳造設備の提供を目
的とする。
However, each of the above-mentioned conventional methods has the following problems. That is,
In the method (1), only the oxygen gas is removed, and the hydrogen gas is not removed or increases. Further, the charcoal surface is ashed with the degassing, and the degassing effect is reduced with time. Further, the method is applicable only to a small amount of molten copper of about 0.5 ton / hr or low oxygen molten copper. In the method (1), an excessive addition causes a decrease in conductivity. In other methods, it is difficult to remove oxygen gas. Further maintenance of the atmosphere requires a great deal of maintenance costs. As described above, in the conventional method, it has been difficult to stably and satisfactorily remove oxygen gas and hydrogen gas for a long time. The present invention provides a method for degassing molten copper capable of removing oxygen gas and hydrogen gas in molten copper stably and satisfactorily for a long time, and a continuous melting casting of copper or copper alloy incorporating an apparatus for performing the degassing method. The purpose is to provide equipment.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
固定炭素を90wt%以上、灰分を1wt%未満(0wt%を含
む)含有する炭素部材を銅または銅合金溶湯中に浸漬
し、前記炭素部材と前記溶湯中の酸素ガスとの間で炭酸
ガス気泡を生成させ、前記炭酸ガス気泡中に水素ガスを
吸収させて前記溶銅中の酸素ガスと水素ガスとを除去す
ることを特徴とする銅または銅合金溶湯の脱ガス方法で
ある。
According to the first aspect of the present invention,
A carbon member containing 90% by weight or more of fixed carbon and less than 1% by weight (including 0% by weight) of ash is immersed in a molten copper or copper alloy, and a carbon dioxide gas bubble is formed between the carbon member and oxygen gas in the molten metal. And removing the oxygen gas and the hydrogen gas in the molten copper by absorbing hydrogen gas in the carbon dioxide gas bubbles.

【0005】請求項2記載の発明は、前記炭素部材に多
数の微細孔を有するポーラスな炭素部材を用い、前記炭
素部材の微細孔から不活性ガスを溶銅中に吹き込むこと
を特徴とする請求項1記載の銅または銅合金溶湯の脱ガ
ス方法である。
According to a second aspect of the present invention, a porous carbon member having a large number of fine holes is used as the carbon member, and an inert gas is blown into the molten copper from the fine holes of the carbon member. Item 4. A method for degassing a molten copper or copper alloy according to Item 1.

【0006】請求項3記載の発明は、前記炭素部材の表
面に沿って不活性ガス気泡を浮上させることを特徴とす
る請求項1記載の銅または銅合金溶湯の脱ガス方法であ
る。
According to a third aspect of the present invention, there is provided the method for degassing a molten copper or copper alloy according to the first aspect, wherein an inert gas bubble is caused to float along the surface of the carbon member.

【0007】請求項4記載の発明は、前記溶湯または前
記炭素部材の少なくとも一方に振動を付与しつつ脱ガス
することを特徴とする請求項1、2、3のいずれかに記
載の銅または銅合金溶湯の脱ガス方法である。
The invention according to claim 4 is characterized in that at least one of the molten metal and the carbon member is degassed while applying vibration to the molten metal or the carbon member. This is a method for degassing molten alloy.

【0008】請求項5記載の発明は、溶解炉、ラウンダ
A、保持炉、ラウンダB、および鋳造機を主要部とする
銅または銅合金の連続溶解鋳造設備において、前記主要
部の少なくとも1つに請求項1、2、3、4記載の脱ガ
ス方法を実施する装置のいずれかが組み込まれているこ
とを特徴とする銅または銅合金の連続溶解鋳造設備であ
る。
According to a fifth aspect of the present invention, there is provided a copper or copper alloy continuous melting and casting apparatus mainly including a melting furnace, a rounder A, a holding furnace, a rounder B, and a casting machine. A continuous melting and casting apparatus for copper or a copper alloy, wherein any one of the apparatuses for performing the degassing method according to claim 1, 2, 3, or 4 is incorporated.

【0009】[0009]

【発明の実施の形態】請求項1記載の発明では、溶銅中
の酸素ガスは、炭素部材表面で、炭素部材の炭素と反応
して炭酸ガス気泡を生成する。この炭酸ガス気泡は炭素
部材表面で成長して臨界サイズを超えると炭素部材表面
から離脱して溶銅中を浮上し大気中に放出される。溶銅
中の水素ガスは前記炭酸ガス気泡に吸収され、酸素ガス
と一緒に放出される。前記炭素部材表面には熱流により
常に新しい溶銅が供給されるため良好な脱ガス効果が長
時間維持される。この発明では、前記炭素部材の固定炭
素を90wt%以上に規定し、かつ灰分を1wt%未満に規
定するので、前記炭素部材表面は灰分で覆われることな
く、固定炭素が十分供給され、従って炭酸ガス気泡は長
時間良好に生成される。なお、前記固定炭素とは、炭素
部材から水分、揮発分、灰分を除去した残部である。
According to the first aspect of the present invention, the oxygen gas in the molten copper reacts with the carbon of the carbon member on the surface of the carbon member to generate carbon dioxide gas bubbles. When the carbon dioxide gas bubbles grow on the surface of the carbon member and exceed the critical size, they are separated from the surface of the carbon member, float in the molten copper, and are released into the atmosphere. The hydrogen gas in the molten copper is absorbed by the carbon dioxide gas bubbles and is released together with the oxygen gas. New molten copper is always supplied to the carbon member surface by the heat flow, so that a good degassing effect is maintained for a long time. In the present invention, the fixed carbon of the carbon member is specified to be 90% by weight or more and the ash content is specified to be less than 1% by weight. Therefore, the carbon member surface is not covered with the ash, and the fixed carbon is sufficiently supplied. Gas bubbles are successfully generated for a long time. Here, the fixed carbon is a residue obtained by removing water, volatile matter, and ash from the carbon member.

【0010】請求項2記載の発明は、請求項1記載の脱
ガス方法において、炭素部材に多数の微細孔を有するポ
ーラスな炭素部材を用い、前記炭素部材の微細孔から不
活性ガスを溶銅中に吹き込む脱ガス方法である。前記炭
素部材表面に生成した炭酸ガス気泡は、前記微細孔から
吹き込まれる不活性ガスに吸着されて小サイズのうちに
炭素部材表面を離脱するため溶銅中の酸素ガスの除去が
促進される。また溶銅中の水素ガスは炭酸ガス気泡の
他、不活性ガス気泡中にも吸収されるので水素ガスもよ
り効率良く除去される。
According to a second aspect of the present invention, there is provided the degassing method according to the first aspect, wherein a porous carbon member having a large number of fine holes is used in the carbon member, and the inert gas is melted through the fine holes of the carbon member. This is a degassing method that blows into the interior. The carbon dioxide gas bubbles generated on the surface of the carbon member are adsorbed by the inert gas blown from the micropores and leave the surface of the carbon member in a small size, so that the removal of oxygen gas in the molten copper is promoted. Further, the hydrogen gas in the molten copper is absorbed not only by the carbon dioxide gas bubbles but also by the inert gas bubbles, so that the hydrogen gas is also removed more efficiently.

【0011】請求項3記載の発明は、請求項1記載の脱
ガス方法において、溶銅中に浸漬させた炭素部材の表面
に沿って不活性ガス気泡を浮上させる脱ガス方法で、炭
素部材表面に生成した炭酸ガス気泡は、前記浮上する不
活性ガス気泡に吸着されて小サイズのうちに炭素部材表
面を離脱するため溶銅中の酸素ガスの除去が促進され
る。また溶銅中の水素ガスは炭酸ガス気泡の他、不活性
ガス気泡中にも吸収されるので水素ガスもより効率良く
除去される。
According to a third aspect of the present invention, there is provided the degassing method according to the first aspect, wherein the inert gas bubbles float on the surface of the carbon member immersed in the molten copper. The generated carbon dioxide gas bubbles are adsorbed by the floating inert gas bubbles and separate from the surface of the carbon member in a small size, so that the removal of oxygen gas in the molten copper is promoted. Further, the hydrogen gas in the molten copper is absorbed not only by the carbon dioxide gas bubbles but also by the inert gas bubbles, so that the hydrogen gas is also removed more efficiently.

【0012】請求項4記載の発明は、溶銅または炭素部
材の少なくとも一方に振動を付与して、炭素部材表面上
での炭酸ガス気泡の生成と、前記炭酸ガス気泡の炭素部
材表面からの離脱と、前記炭素部材表面への溶銅の供給
を促進させた脱ガス方法である。溶銅および炭素部材の
両方を振動させるとより大きな効果が得られる。振動方
法には、機械的振動、超音波振動など任意の振動方法が
適用される。振動と不活性ガスの吹き込みとを併用する
ことにより脱ガス効果はさらに向上する。
According to a fourth aspect of the present invention, vibration is applied to at least one of the molten copper and the carbon member to generate carbon dioxide gas bubbles on the surface of the carbon member and to separate the carbon dioxide gas bubbles from the surface of the carbon member. And a degassing method in which the supply of molten copper to the surface of the carbon member is promoted. Vibrating both the molten copper and the carbon member provides a greater effect. Any vibration method such as mechanical vibration and ultrasonic vibration is applied to the vibration method. The degassing effect is further improved by using both vibration and inert gas blowing.

【0013】本発明において、炭素部材の表面を粗面に
する、炭素部材の形状を表面積の大きい形状にするなど
の方法により、脱ガス効果をより高めることができる。
本発明は、無酸素銅、低酸素銅、希薄銅合金を始め、任
意の銅および銅合金の溶湯の脱ガスに適用して優れた効
果が得られる。
In the present invention, the degassing effect can be further improved by a method such as roughening the surface of the carbon member or forming the carbon member into a shape having a large surface area.
INDUSTRIAL APPLICABILITY The present invention can be applied to degassing of molten copper of any copper and copper alloys, including oxygen-free copper, low-oxygen copper, and diluted copper alloy, to obtain excellent effects.

【0014】以下に本発明方法を図を参照して具体的に
説明する。図1(イ)は本発明方法の第1の実施形態を
示す側面説明図である。溶銅保持炉と鋳造機を繋ぐラウ
ンダBに、板状の炭素部材1を複数枚、前記炭素部材1
の面が溶銅の流動方向に並行になるように縦に配置して
脱ガス装置2を構成し、この脱ガス装置2の前記炭素部
材1間に溶銅3を流して脱ガスを行う。この脱ガス方法
では、前述のように溶銅3がこの脱ガス装置2内を移動
する間に、溶銅3中の酸素が炭素部材1と反応して炭酸
ガス気泡を生成し、この炭酸ガス気泡は臨界サイズに成
長すると炭素部材1表面から離脱し、溶銅3中を浮上し
て大気中に放出される。溶銅3中の水素は前記炭酸ガス
気泡中に吸収され、炭酸ガスと一緒に除去される。図で
矢印は溶銅お流れる方向である。
The method of the present invention will be specifically described below with reference to the drawings. FIG. 1A is an explanatory side view showing a first embodiment of the method of the present invention. A plurality of plate-like carbon members 1 are attached to a rounder B connecting a molten copper holding furnace and a casting machine.
The degassing device 2 is formed by vertically disposing the surface of the degassing device so as to be parallel to the flow direction of the molten copper, and degassing is performed by flowing the molten copper 3 between the carbon members 1 of the degassing device 2. In this degassing method, as described above, while the molten copper 3 moves inside the degassing device 2, oxygen in the molten copper 3 reacts with the carbon member 1 to generate carbon dioxide gas bubbles, When the bubble grows to the critical size, the bubble separates from the surface of the carbon member 1, floats in the molten copper 3, and is released to the atmosphere. Hydrogen in the molten copper 3 is absorbed in the carbon dioxide gas bubbles and removed together with the carbon dioxide gas. The arrow in the figure is the direction in which the molten copper flows.

【0015】図1(ロ)は本発明の第2の実施形態を示
す脱ガス方法の説明図である。この方法は、炭素部材
に、多数の貫通孔4を設けた板状炭素部材5を用いた他
は図1(イ)に示した方法と同じである。この方法は、
炭素部材5の溶銅3との接触面積が大きいので、図1
(イ)に示した方法より脱ガス効果に優れる。
FIG. 1B is an explanatory view of a degassing method according to a second embodiment of the present invention. This method is the same as the method shown in FIG. 1A except that a plate-like carbon member 5 having a large number of through holes 4 is used as the carbon member. This method
Since the contact area of the carbon member 5 with the molten copper 3 is large, FIG.
The degassing effect is superior to the method shown in (a).

【0016】図1(ハ)は本発明の第3の実施形態を示
す脱ガス方法の説明図である。この方法は、炭素部材に
粒状炭素部材6を用いた他は、図1(イ)に示した脱ガ
ス方法と同じである。粒状炭素部材6は、ラウンダBの
上部に設けた止め枠7により流出が阻止されている。こ
の方法は、炭素部材6が粒状なので、板状炭素部材1よ
り表面積が大きく、従って図1(イ)に示した方法に較
べて脱ガス効果に優れる。
FIG. 1C is an explanatory view of a degassing method according to a third embodiment of the present invention. This method is the same as the degassing method shown in FIG. 1A except that the granular carbon member 6 is used as the carbon member. The granular carbon member 6 is prevented from flowing out by a retaining frame 7 provided above the rounder B. In this method, since the carbon member 6 is granular, the surface area is larger than that of the plate-like carbon member 1 and, therefore, is superior in the degassing effect as compared with the method shown in FIG.

【0017】図1(ニ)は本発明の第4の実施形態を示
す脱ガス方法の説明図である。この方法は、止め枠7を
ラウンダBの下部にも設けた他は、図1(ハ)に示した
脱ガス方法と同じである。この方法は、図1(ハ)に示
したものに較べて、粒状炭素部材6を多数配置すること
ができるので、図1(ニ)に示した方法に較べて脱ガス
効果に優れる。
FIG. 1D is an explanatory view of a degassing method according to a fourth embodiment of the present invention. This method is the same as the degassing method shown in FIG. 1C except that the stopper frame 7 is also provided below the rounder B. According to this method, a larger number of granular carbon members 6 can be arranged as compared with the method shown in FIG. 1 (c), so that the degassing effect is superior to the method shown in FIG. 1 (d).

【0018】図1(ホ)は本発明の第5の実施形態を示
す脱ガス方法の説明図である。この方法は、ラウンダB
内に、微細孔を多数有するポーラスなブロック状炭素部
材8を、ラウンダBの長さ方向に所定間隔を開けて複数
個配置したもので、炭素部材間およびその上方を流れる
溶銅3に、前記炭素部材8の微細孔から不活性ガス(図
では小丸で示す)を吹き込んで脱ガスする方法である。
この方法では、不活性ガスにより炭酸ガス気泡の前記炭
素部材8からの離脱が促進され、また溶銅中の水素ガス
は前記炭酸ガス気泡の他、不活性ガス気泡にも吸収され
るので、脱ガス効果が一段と向上する。
FIG. 1E is an explanatory view of a degassing method according to a fifth embodiment of the present invention. This method uses Rounder B
A plurality of porous block-shaped carbon members 8 having a large number of micropores are arranged at predetermined intervals in the longitudinal direction of the rounder B, and the molten copper 3 flowing between the carbon members and above the carbon members is provided with In this method, an inert gas (indicated by a small circle in the figure) is blown out of the fine holes of the carbon member 8 to degas.
In this method, detachment of carbon dioxide gas bubbles from the carbon member 8 is promoted by the inert gas, and hydrogen gas in the molten copper is absorbed by the inert gas bubbles as well as the carbon dioxide gas bubbles. The gas effect is further improved.

【0019】図1(ヘ)は本発明の第6の実施形態を示
す脱ガス方法の説明図である。この方法は、ラウンダB
の上方にポーラスなブロック状炭素部材8を配置した他
は、図1(ホ)に示した脱ガス方法と同じである。この
方法は、図1(ホ)に示した方法に較べて、ブロック状
炭素部材8の設置および交換が容易に行える。
FIG. 1F is an explanatory view of a degassing method according to a sixth embodiment of the present invention. This method uses Rounder B
Except that the porous block-shaped carbon member 8 is arranged above the above, the degassing method shown in FIG. According to this method, the installation and replacement of the block-shaped carbon member 8 can be performed more easily than the method shown in FIG.

【0020】図2(イ)(ロ)(ハ)はそれぞれ本発明
の第7、8、9の実施形態を示す脱ガス方法の説明図で
ある。この方法は、ラウンダBの床部にポーラスプラグ
製ガス吹込み具9を取付け、前記吹込み具9から不活性
ガス(図示せず)を溶銅中に吹き込みつつ脱ガスする他
は、それぞれ図1(イ)(ロ)(ハ)に示した脱ガス方
法と同じである。この図2(イ)(ロ)(ハ)に示した
方法では、炭酸ガス気泡の炭素部材からの離脱が不活性
ガスにより促進され、また溶銅中の水素ガスは炭酸ガス
気泡のみならず、不活性ガス気泡にも吸収されるので、
図1(イ)(ロ)(ハ)に示した方法に較べて脱ガス効
果が一段と向上する。
FIGS. 2A, 2B and 2C are explanatory views of a degassing method showing seventh, eighth and ninth embodiments of the present invention, respectively. This method is similar to that shown in FIG. 1 except that a gas injecting device 9 made of a porous plug is attached to the floor of the rounder B, and an inert gas (not shown) is blown out from the blowing device 9 into molten copper. This is the same as the degassing method shown in 1 (a), (b) and (c). In the method shown in FIGS. 2A, 2B, and 2C, the separation of the carbon dioxide gas bubbles from the carbon member is promoted by the inert gas, and the hydrogen gas in the molten copper is not limited to the carbon dioxide gas bubbles. As it is absorbed by inert gas bubbles,
The degassing effect is further improved as compared with the methods shown in FIGS.

【0021】図2(ニ)は本発明の第10の実施形態を
示す脱ガス方法の説明図である。この方法は、縦断面が
直角三角形の炭素部材10を傾斜面11が上流且つ下方
に向くようにラウンダB上部に複数個取り付け、前記炭
素部材10の傾斜面11に開口する複数のガス吹き込み
孔12から溶銅3中に不活性ガスを吹き込みつつ脱ガス
する方法である。溶銅3中の酸素は前記炭素部材10の
傾斜面11で炭酸ガスを形成し、前記炭酸ガス気泡は小
さいうちに、前記傾斜面11に沿って上昇する不活性ガ
ス(図では小丸で示す)に吸着されて前記炭素部材10
表面から離脱し、溶銅3中を浮上して大気中に放出され
る。この間、溶銅3中の水素ガスは炭酸ガス気泡のみな
らず、不活性ガスにも吸収される。従って脱ガス効果は
極めて大きい。
FIG. 2D is an explanatory view of a degassing method according to a tenth embodiment of the present invention. In this method, a plurality of carbon members 10 having a right-angled triangular cross section are mounted on the upper part of the rounder B such that the inclined surface 11 is directed upward and downward, and a plurality of gas blowing holes 12 are formed on the inclined surface 11 of the carbon member 10. And degassing while blowing an inert gas into the molten copper 3. The oxygen in the molten copper 3 forms a carbon dioxide gas on the inclined surface 11 of the carbon member 10, and the carbon dioxide gas bubbles are small while the inert gas rises along the inclined surface 11 (shown by a small circle in the figure). Adsorbed on the carbon member 10
It is released from the surface, floats in the molten copper 3 and is released into the atmosphere. During this time, the hydrogen gas in the molten copper 3 is absorbed not only by the carbon dioxide gas bubbles but also by the inert gas. Therefore, the degassing effect is extremely large.

【0022】次に、本発明の連続溶解鋳造設備を図を参
照して具体的に説明する。図3(イ)は、本発明の連続
溶解鋳造設備の第1の実施形態を示す側面説明図であ
る。この連続溶解鋳造設備は、シャフト炉(溶解炉)2
1、ラウンダA、保持炉22、ラウンダB、および連続
鋳造機23を主要部とし、前記ラウンダA、保持炉2
2、およびラウンダBに、本発明の脱ガス方法を実施す
る脱ガス装置2がそれぞれ組み込まれたものである。
Next, the continuous melting and casting equipment of the present invention will be specifically described with reference to the drawings. FIG. 3A is an explanatory side view showing the first embodiment of the continuous melting and casting equipment of the present invention. This continuous melting and casting equipment has a shaft furnace (melting furnace) 2
1, a rounder A, a holding furnace 22, a rounder B, and a continuous casting machine 23 as main parts;
2, and a degassing device 2 for performing the degassing method of the present invention in the rounder B.

【0023】図3(ロ)は、本発明の連続溶解鋳造設備
の第2の実施形態を示す側面説明図である。この連続溶
解鋳造設備は、反射炉(溶解炉)25、ラウンダA、保
持炉22、ラウンダB、および連続鋳造機23を主要部
とし、反射炉25、ラウンダA、保持炉22、およびラ
ウンダBに、本発明の脱ガス方法を実施する脱ガス装置
2がそれぞれ組み込まれたものである。
FIG. 3 (b) is an explanatory side view showing a second embodiment of the continuous melting and casting apparatus of the present invention. This continuous melting and casting equipment includes a reflection furnace (melting furnace) 25, a rounder A, a holding furnace 22, a rounder B, and a continuous casting machine 23 as main parts, and includes a reflection furnace 25, a rounder A, a holding furnace 22, and a rounder B. And a degassing device 2 for performing the degassing method of the present invention.

【0024】図3(ハ)は、本発明の連続溶解鋳造設備
の第3の実施形態を示す側面説明図である。この連続溶
解鋳造設備は、電気炉(溶解炉)26、ラウンダA、保
持炉22、ラウンダB、および連続鋳造機23を主要部
とし、ラウンダA、保持炉22、およびラウンダBに、
本発明の脱ガス方法を実施する脱ガス装置2がそれぞれ
組み込まれたものである。
FIG. 3C is an explanatory side view showing a third embodiment of the continuous melting and casting apparatus of the present invention. This continuous melting and casting equipment has an electric furnace (melting furnace) 26, a rounder A, a holding furnace 22, a rounder B, and a continuous casting machine 23 as main parts, and the rounder A, the holding furnace 22, and the rounder B include:
The degassing apparatus 2 for performing the degassing method of the present invention is incorporated therein.

【0025】[0025]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)図3(イ)に示す連続溶解鋳造設備を用い
て銅鋳塊(インゴット)を半連続鋳造法により連続鋳造
した。シャフト炉21で電気銅を溶解して溶銅3とし、
これをラウンダAを通して保持炉22に移送し、保持炉
22にて異物を沈降または浮上分離し、また溶銅3温度
を1120℃に調節したのち、保持炉22中の溶銅3を
ラウンダBを通して、縦型連続鋳造機23に供給して純
銅のインゴット25を連続鋳造した。脱ガスはラウンダ
Bでのみ行った。脱ガスは図1(イ)(ハ)(ホ)、図
2(イ)(ハ)(ニ)に示したいずれかの方法により行
った。炭素部材の組成は本発明で規定する組成とした。
脱ガス装置はラウンダBの幅方向全体に位置させた。脱
ガス装置の長さは4mである。、
The present invention will be described below in detail with reference to examples. (Example 1) A copper ingot (ingot) was continuously cast by a semi-continuous casting method using the continuous melting casting equipment shown in FIG. The electrolytic copper is melted in the shaft furnace 21 to obtain molten copper 3,
This is transferred to the holding furnace 22 through the rounder A, the foreign matter is settled or floated and separated in the holding furnace 22, and the temperature of the molten copper 3 is adjusted to 1120 ° C., and then the molten copper 3 in the holding furnace 22 is passed through the rounder B. And supplied to a vertical continuous casting machine 23 to continuously cast an ingot 25 of pure copper. Degassing was performed only in Rounder B. Degassing was carried out by any of the methods shown in FIGS. 1 (a), (c) and (e) and FIGS. 2 (a), (c) and (d). The composition of the carbon member was the composition specified in the present invention.
The degassing device was located over the entire width of the rounder B. The length of the degasser is 4 m. ,

【0026】(比較例1)木炭粒、コークスなどを用い
た従来法によっても脱ガス処理を行った。
(Comparative Example 1) Degassing was also performed by a conventional method using charcoal granules, coke, and the like.

【0027】実施例1、比較例1(従来法)において、
溶銅中の酸素量および水素量を脱ガス処理前後で測定
し、各々の脱ガス効果を調べた。酸素量および水素量
は、真空吸引用ガラスサンプラーを用いて急冷採取した
サンプルをLECO社製の分析計により分析した。結果
を、脱ガス処理条件を併記して表1、2に示す。
In Example 1 and Comparative Example 1 (conventional method),
The oxygen content and the hydrogen content in the molten copper were measured before and after the degassing treatment, and the degassing effect of each was examined. The amount of oxygen and the amount of hydrogen were analyzed by an analyzer manufactured by LECO, using a sample quenched and collected using a glass sampler for vacuum suction. Tables 1 and 2 show the results together with the degassing conditions.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1、2より明らかなように、本発明例の
No.1〜21では、いずれも脱ガス処理により酸素量および
水素量が大幅に低減した。これに対し、比較例1(従来
法)では、用いた炭素部材の固定炭素が少ない(No.26,
27) か、灰分が多いか(No.25) 、固定炭素が少なくかつ
灰分が多い(No.22〜24) ため、いずれも脱ガス効果が十
分に得られなかった。
As is clear from Tables 1 and 2,
In Nos. 1 to 21, the amounts of oxygen and hydrogen were significantly reduced by degassing. On the other hand, in Comparative Example 1 (conventional method), the fixed carbon of the carbon member used was small (No. 26,
27) The degassing effect was not sufficiently obtained in either case due to the large amount of ash (No. 25) or the small amount of fixed carbon and the large amount of ash (No. 22 to 24).

【0031】溶銅中の酸素量の経時変化を表2に示した
本発明例のNo.19 と従来法のNo.23について図4に示し
た。本発明例のNo.19 では、脱ガス開始直後から酸素量
は低位に安定しているのに対し、従来法のNo.23 では酸
素量が低いのは脱ガス開始の極く初期のみで、その後漸
増して60分を超えてからは脱ガス効果は認められな
い。
FIG. 4 shows No. 19 of the present invention example and No. 23 of the conventional method shown in Table 2 with respect to the change with time in the amount of oxygen in the molten copper. In No. 19 of the present invention, the oxygen amount is stable at a low level immediately after the start of degassing, whereas in the conventional method No. 23, the oxygen amount is low only at the very beginning of the degassing start, After that, the degassing effect is not recognized after 60 minutes.

【0032】また本発明例のNo.1〜21と従来法の No.22
〜27についてそれぞれ初期(10分後)の酸素除去量F
=(脱ガス前水素量−脱ガス後の水素量)×溶銅量、と
60分後の酸素除去量G=(脱ガス前水素量−脱ガス後
の水素量)×溶銅量を求めて両者の関係を図5(イ)に
示した(Fを横軸、Gを縦軸にプロットしてある)。本
発明例は60分経過後も初期と同程度の酸素除去量が認
められるが、比較例では60分経過後には酸素除去量が
著しく低下している。水素量についても初期(10分
後)と60分後の除去量を求めた。図5(ロ)に示すよ
うに、本発明例では60分経過後も初期と同程度の多量
の水素除去量が認められるが、従来法では60分経過後
には水素量はむしろ増加している。
Nos. 1 to 21 of the present invention and No. 22 of the conventional method
To 27 for the initial (after 10 minutes) oxygen removal amount F
= (Hydrogen amount before degassing-hydrogen amount after degassing) x molten copper amount, and oxygen removal amount G after 60 minutes = ((hydrogen amount before degassing-hydrogen amount after degassing) x molten copper amount) FIG. 5A shows the relationship between the two (F is plotted on the horizontal axis and G on the vertical axis). In the example of the present invention, the same amount of oxygen removal as in the initial stage was observed even after the lapse of 60 minutes, but in the comparative example, the amount of oxygen removed was significantly reduced after the lapse of 60 minutes. Regarding the amount of hydrogen, the removal amount at the initial stage (after 10 minutes) and after 60 minutes was determined. As shown in FIG. 5 (b), in the example of the present invention, a large amount of hydrogen was removed after the elapse of 60 minutes, which was almost the same as the initial amount. However, in the conventional method, the amount of hydrogen was increased after the elapse of 60 minutes. .

【0033】(実施例2)炭素部材または溶銅に超音波
振動を付与した他は、実施例1と同じ方法により鋳造を
行い、実施例1と同じ方法により溶銅中の酸素量および
水素量を脱ガス処理前後で測定した。脱ガス装置には図
1(イ)、図2(ハ)に示したものを用いた。結果を表
3に示す。
(Example 2) Except that the ultrasonic vibration was applied to the carbon member or the molten copper, casting was performed in the same manner as in the first embodiment, and the amounts of oxygen and hydrogen in the molten copper were determined in the same manner as in the first embodiment. Was measured before and after the degassing treatment. The degassing apparatus shown in FIGS. 1A and 2C was used. Table 3 shows the results.

【0034】[0034]

【表3】 [Table 3]

【0035】表3より明らかなように、振動付与により
酸素量の大幅減少が認められた。水素量も低減したが、
酸素量ほどは減少しなかった。水素量は表示を割愛し
た。
As is evident from Table 3, a significant decrease in the amount of oxygen was observed by the application of vibration. The amount of hydrogen has also been reduced,
It did not decrease as much as the amount of oxygen. The amount of hydrogen has been omitted from the display.

【0036】(実施例3)図3(イ)〜(ハ)に示した
連続鋳塊設備を用いて純銅のインゴットを半連続鋳造し
た。脱ガスは、ラウンダA、保持炉22、ラウンダBの
うちの少なくとも2箇所で行った。炭素部材には固定炭
素99wt%、灰分0.5wt%のものを用いた。
Example 3 A pure copper ingot was semi-continuously cast using the continuous ingot equipment shown in FIGS. 3 (a) to 3 (c). Degassing was performed in at least two of the rounder A, the holding furnace 22, and the rounder B. The carbon member used was fixed carbon 99 wt% and ash content 0.5 wt%.

【0037】(比較例2)脱ガスを保持炉中に木炭(固
定炭素82wt%以上、灰分2.2wt%)を浸漬させる従
来法により行った他は、実施例3と同じ方法により純銅
のインゴットを連続鋳造した。
Comparative Example 2 Pure copper ingots were produced in the same manner as in Example 3 except that degassing was carried out by a conventional method in which charcoal (82% by weight or more of fixed carbon, ash content: 2.2% by weight) was immersed in a holding furnace. Was continuously cast.

【0038】実施例3および比較例2(従来法)におけ
る脱ガス効果を、実施例1と同じ方法により調べた。但
し、分析サンプルは、鋳造開始60分後に溶解炉出口と
鋳型内で採取した。結果を表4に示す。
The degassing effect in Example 3 and Comparative Example 2 (conventional method) was examined by the same method as in Example 1. However, the analysis sample was collected at the melting furnace outlet and in the mold 60 minutes after the start of casting. Table 4 shows the results.

【0039】[0039]

【表4】 [Table 4]

【0040】表4より明らかなように、本発明例の No.
41〜44は、酸素量、水素量とも大幅に低減した。これに
対し、従来法では酸素量が20〜30%減少したが、水
素量は逆に増加した。なお、本発明方法により製造され
た鋳塊はいずれも、芯割れ、ピンホール、ブローホール
などがなく高品質なものであった。
As is clear from Table 4, No. 1
For 41 to 44, both the oxygen content and the hydrogen content were greatly reduced. In contrast, in the conventional method, the amount of oxygen decreased by 20 to 30%, but the amount of hydrogen increased. Each of the ingots produced by the method of the present invention was of high quality without any core cracks, pinholes, blowholes and the like.

【0041】[0041]

【発明の効果】以上に述べたように、本発明では、固定
炭素を90wt%以上、灰分を1wt%未満(0wt%を含む)
含有する炭素部材を銅または銅合金溶湯中に浸漬し、前
記炭素部材と溶銅中の酸素ガスとの間で炭酸ガス気泡を
生成させ、前記炭酸ガス気泡中に水素ガスを吸収させる
ので、酸素ガスと水素ガスが長時間安定して良好に除去
される。さらに不活性ガスを吹き込んだり、炭素部材或
いは溶銅の少なくとも一方を振動させたりすることによ
り、炭酸ガス気泡の炭素部材表面からの離脱、水素ガス
の気泡への吸収などが促進され、脱ガス効果が向上す
る。溶解炉、ラウンダA、保持炉、ラウンダB、および
連続鋳造機の少なくとも1つに前記脱ガス方法を実施す
る装置を組み込んだ本発明の連続溶解鋳造設備によれ
ば、高品質の鋳塊を長時間安定して製造できる。依っ
て、工業上顕著な効果を奏する。
As described above, in the present invention, fixed carbon is 90 wt% or more, and ash is less than 1 wt% (including 0 wt%).
The carbon member contained is immersed in a copper or copper alloy melt to generate carbon dioxide gas bubbles between the carbon member and the oxygen gas in the molten copper, and the hydrogen gas is absorbed in the carbon gas bubbles. Gas and hydrogen gas are stably removed well for a long time. Further, by blowing an inert gas or vibrating at least one of the carbon member and the molten copper, desorption of carbon dioxide gas bubbles from the surface of the carbon member and absorption of hydrogen gas into the bubbles are promoted, and a degassing effect is obtained. Is improved. According to the continuous melting and casting equipment of the present invention in which the apparatus for performing the degassing method is incorporated in at least one of a melting furnace, a rounder A, a holding furnace, a rounder B, and a continuous casting machine, a high-quality ingot can be lengthened. Time stable production Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)〜(ヘ)はそれぞれ本発明の脱ガス方法
の第1〜6の実施形態を示す側面説明図である。
FIGS. 1A to 1F are side explanatory views showing first to sixth embodiments of the degassing method of the present invention, respectively.

【図2】(イ)〜(ニ)はそれぞれ本発明の脱ガス方法
の第7〜10の実施形態を示す側面説明図である。
FIGS. 2A to 2D are side explanatory views showing seventh to tenth embodiments of the degassing method of the present invention, respectively.

【図3】(イ)〜(ハ)はそれぞれ本発明の連続溶解鋳
造設備の第1〜3の実施形態を示す説明図である。
FIGS. 3A to 3C are explanatory views showing first to third embodiments of the continuous melting and casting apparatus of the present invention, respectively.

【図4】溶銅中の酸素量の経時変化を示す図である。FIG. 4 is a diagram showing a change over time in the amount of oxygen in molten copper.

【図5】(イ)は初期と60分後における酸素除去量の
関係図、(ロ)は初期と60分後における水素除去量の
関係図である。
FIG. 5A is a diagram showing the relationship between the initial amount and the oxygen removal amount after 60 minutes, and FIG. 5B is a diagram showing the relationship between the initial period and the hydrogen removal amount after 60 minutes.

【符号の説明】[Explanation of symbols]

1 板状の炭素部材 2 脱ガス装置 3 溶銅 4 板状炭素部材に設けた貫通孔 5 貫通孔を設けた板状炭素部材 6 粒状炭素部材 7 粒状炭素部材の止め枠 8 ポーラスなブロック状炭素部材 9 ポーラスプラグ製ガス吹込み具 10 縦断面が直角三角形の炭素部材 11 縦断面が直角三角形の炭素部材の傾斜面 12 縦断面が直角三角形の炭素部材の傾斜面に開口す
るガス吹き込み孔 21 シャフト炉(溶解炉) 22 保持炉 23 連続鋳造機 25 反射炉(溶解炉) 26 電気炉(溶解炉) A ラウンダ B ラウンダ
Reference Signs List 1 plate-shaped carbon member 2 degassing device 3 molten copper 4 through-hole provided in plate-shaped carbon member 5 plate-shaped carbon member provided with through-hole 6 granular carbon member 7 stopper frame of granular carbon member 8 porous block-shaped carbon 9 Gas injection device made of porous plug 10 Carbon member having a right-angled triangle in vertical section 11 Inclined surface of carbon member having a right-angled triangle 12 Gas injection hole 21 opening on an inclined surface of carbon member having a right-angled triangle in cross section 21 Shaft Furnace (melting furnace) 22 Holding furnace 23 Continuous casting machine 25 Reflection furnace (melting furnace) 26 Electric furnace (melting furnace) A rounder B rounder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勅使河原 聡 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 Fターム(参考) 4K001 AA09 BA23 EA04 GA13 GA19 GB12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Satoshi Teshigahara 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. F-term (reference) 4K001 AA09 BA23 EA04 GA13 GA19 GB12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固定炭素を90wt%以上、灰分を1wt%
未満(0wt%を含む)含有する炭素部材を銅または銅合金
溶湯中に浸漬し、前記炭素部材と前記溶湯中の酸素ガス
との間で炭酸ガス気泡を生成させ、前記炭酸ガス気泡中
に水素ガスを吸収させて前記溶銅中の酸素ガスと水素ガ
スとを除去することを特徴とする銅または銅合金溶湯の
脱ガス方法。
1. A fixed carbon content of 90% by weight or more and an ash content of 1% by weight.
The carbon member containing less than 0 wt% (including 0 wt%) is immersed in the molten copper or copper alloy to generate carbon dioxide gas bubbles between the carbon member and the oxygen gas in the molten metal, and the hydrogen is contained in the carbon dioxide gas bubbles. A method for degassing a molten copper or copper alloy, comprising absorbing gas to remove oxygen gas and hydrogen gas in the molten copper.
【請求項2】 前記炭素部材に多数の微細孔を有するポ
ーラスな炭素部材を用い、前記炭素部材の微細孔から不
活性ガスを溶銅中に吹き込むことを特徴とする請求項1
記載の銅または銅合金溶湯の脱ガス方法。
2. The method according to claim 1, wherein a porous carbon member having a large number of fine holes is used as the carbon member, and an inert gas is blown into the molten copper from the fine holes of the carbon member.
A method for degassing the copper or copper alloy melt described.
【請求項3】 前記炭素部材の表面に沿って不活性ガス
気泡を浮上させることを特徴とする請求項1記載の銅ま
たは銅合金溶湯の脱ガス方法。
3. The method for degassing a molten copper or copper alloy according to claim 1, wherein an inert gas bubble is levitated along the surface of the carbon member.
【請求項4】 前記溶湯または前記炭素部材の少なくと
も一方に振動を付与しつつ脱ガスすることを特徴とする
請求項1、2、3のいずれかに記載の銅または銅合金溶
湯の脱ガス方法。
4. The method for degassing a molten copper or copper alloy according to claim 1, wherein the degassing is performed while applying vibration to at least one of the molten metal and the carbon member. .
【請求項5】 溶解炉、ラウンダA、保持炉、ラウンダ
B、および鋳造機を主要部とする銅または銅合金の連続
溶解鋳造設備において、前記主要部の少なくとも1つに
請求項1、2、3、4記載の脱ガス方法を実施する装置
のいずれかが組み込まれていることを特徴とする銅また
は銅合金の連続溶解鋳造設備。
5. A copper or copper alloy continuous melting and casting facility comprising a melting furnace, a rounder A, a holding furnace, a rounder B, and a casting machine as main parts, wherein at least one of the main parts is provided. 3. A continuous melting and casting facility for copper or copper alloy, wherein any one of the devices for performing the degassing method according to 3 or 4 is incorporated.
JP13204499A 1999-05-12 1999-05-12 Degassing method for molten copper or copper alloy Expired - Lifetime JP4205252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13204499A JP4205252B2 (en) 1999-05-12 1999-05-12 Degassing method for molten copper or copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13204499A JP4205252B2 (en) 1999-05-12 1999-05-12 Degassing method for molten copper or copper alloy

Publications (2)

Publication Number Publication Date
JP2000328152A true JP2000328152A (en) 2000-11-28
JP4205252B2 JP4205252B2 (en) 2009-01-07

Family

ID=15072212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13204499A Expired - Lifetime JP4205252B2 (en) 1999-05-12 1999-05-12 Degassing method for molten copper or copper alloy

Country Status (1)

Country Link
JP (1) JP4205252B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139213A1 (en) * 2006-06-01 2007-12-06 The Furukawa Electric Co., Ltd. Process for manufacturing copper alloy wire rod and copper alloy wire rod
JP2008174781A (en) * 2007-01-17 2008-07-31 Kobe Steel Ltd Carbonaceous reducing agent for producing copper alloy containing active metal
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
CN104308552A (en) * 2014-09-28 2015-01-28 江苏中容铜业有限公司 System for producing condenser copper material
JP2017177183A (en) * 2016-03-30 2017-10-05 日本鋳銅株式会社 Method for continuous casting of iron-containing copper alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
WO2007139213A1 (en) * 2006-06-01 2007-12-06 The Furukawa Electric Co., Ltd. Process for manufacturing copper alloy wire rod and copper alloy wire rod
US20090165902A1 (en) * 2006-06-01 2009-07-02 The Furukawa Electric Co., Ltd. Method of producing a copper alloy wire rod and copper alloy wire rod
US8409375B2 (en) 2006-06-01 2013-04-02 The Furukawa Electric Co., Ltd. Method of producing a copper alloy wire rod and copper alloy wire rod
KR101450916B1 (en) * 2006-06-01 2014-10-14 후루카와 덴키 고교 가부시키가이샤 Process for manufacturing copper alloy wire rod and copper alloy wire rod
JP2008174781A (en) * 2007-01-17 2008-07-31 Kobe Steel Ltd Carbonaceous reducing agent for producing copper alloy containing active metal
CN104308552A (en) * 2014-09-28 2015-01-28 江苏中容铜业有限公司 System for producing condenser copper material
JP2017177183A (en) * 2016-03-30 2017-10-05 日本鋳銅株式会社 Method for continuous casting of iron-containing copper alloy

Also Published As

Publication number Publication date
JP4205252B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
Shivkumar et al. Molten metal processing of advanced cast aluminum alloys
CN1210416C (en) Equipment for producing copper suboxide
CN1553836A (en) Casting steel strip
CN102564131A (en) Device and method for continuous smelting of high-purity high-conductivity copper
JP2000328152A (en) Method for degassing molten copper or copper alloy and continuous melting and casting equipment of copper or copper alloy incorporated with apparatus for executing this degassing method
JP2006206392A (en) Method for refining polycrystalline silicon
JPS5625940A (en) Refinig method of copper alloy
JPH05309448A (en) Manufacture of single crystal copper material
JPH0790409A (en) Method for removing hydrogen in molten aluminum
JPH0860263A (en) Method for removing impurity element from molten metal and device therefor
RU2762956C1 (en) Method for manufacturing cast billets from antifriction bronze
CN110461500B (en) Nozzle, casting device, and method for manufacturing cast product
JP3464856B2 (en) Tundish for continuous casting of high cleanliness steel
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JPS6173812A (en) Method and device for producing clean steel
Szekely An Alternative to Chlorine Fluxing of Aluminum--the SNIF Process
JPH0847747A (en) Method for continuously casting copper and its apparatus
JPH05147918A (en) Refining method for metal silicon
JPH1034299A (en) Pouring device
KR100589843B1 (en) Fine Droplet Method by Nitrogen in Molten Steel on Vacuum Pouring
SU854583A1 (en) Apparatus for producing cast works
JP3854718B2 (en) Degassing stirring device for molten metal
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
SU1115845A1 (en) Method of semicontinuous casting of metal
KR19990042540A (en) Manufacturing method of high clean steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

EXPY Cancellation because of completion of term