JP2006206392A - Method for refining polycrystalline silicon - Google Patents

Method for refining polycrystalline silicon Download PDF

Info

Publication number
JP2006206392A
JP2006206392A JP2005021641A JP2005021641A JP2006206392A JP 2006206392 A JP2006206392 A JP 2006206392A JP 2005021641 A JP2005021641 A JP 2005021641A JP 2005021641 A JP2005021641 A JP 2005021641A JP 2006206392 A JP2006206392 A JP 2006206392A
Authority
JP
Japan
Prior art keywords
silicon
solidification
shaft
polycrystalline silicon
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005021641A
Other languages
Japanese (ja)
Inventor
Masataka Hiyoshi
正孝 日吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005021641A priority Critical patent/JP2006206392A/en
Publication of JP2006206392A publication Critical patent/JP2006206392A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide refining by which high-quality polycrystalline silicon having a low impurity concentration is obtained while using simple equipment in solidification refining of silicon. <P>SOLUTION: In the method for refining polycrystalline silicon, when molten silicon held in a casting mold is solidified in one direction from the bottom toward the top of the casting mold, solidification is carried out at a solidification rate of 0.3-3.0 mm/min while agitating the molten silicon by means of a shaft with an agitating blade. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽電池用シリコン基板を製造するための多結晶シリコンの製造方法に関し、特にその精製方法に関する。   The present invention relates to a method for producing polycrystalline silicon for producing a silicon substrate for solar cells, and more particularly to a purification method thereof.

不純物を含有する溶融シリコンを凝固させると、液体中と固体中の溶解度の差によって、不純物の殆どは溶融シリコン中に残存濃縮され、凝固完了後のシリコン塊の大部分は、不純物が低減されて精製される。このとき、不純物の濃度分布は、一般に下記(1)式で示されるシャイルの式に従うと言われている。   When the molten silicon containing impurities is solidified, most of the impurities remain in the molten silicon due to the difference in solubility between the liquid and solid, and the majority of the silicon mass after solidification is reduced in impurities. Purified. At this time, it is said that the impurity concentration distribution generally follows the Seil's formula shown by the following formula (1).

C=k・C(1−f)k−1 … (1)
C:凝固相中の不純物濃度、C:凝固前の初期不純物濃度、k:分配係数、f:凝固相の割合、である。
C = k · C 0 (1-f) k−1 (1)
C: impurity concentration in the solidified phase, C 0 : initial impurity concentration before solidification, k: distribution coefficient, f: ratio of the solidified phase.

分配係数kは、不純物元素の種類、溶融シリコンの撹拌状態、凝固速度等の各種パラメータにより変化する。この内、凝固中の溶融シリコンの撹拌状態が充分でないと、凝固相中の不純物濃度Cが高くなり、精製効率は低下する。これを回避するためには、凝固速度と撹拌状態を調整する必要がある。従来、シリコンの凝固速度が0.3mm/分までであれば、シリコンの熱対流による撹拌で充分であるが、0.3mm/分以上では、熱対流の他に撹拌手段を用いて撹拌を強化する必要があると言われている。   The distribution coefficient k varies depending on various parameters such as the type of impurity element, the stirring state of molten silicon, and the solidification rate. Among these, if the agitation state of the molten silicon during solidification is not sufficient, the impurity concentration C in the solidified phase increases and the purification efficiency decreases. In order to avoid this, it is necessary to adjust the coagulation speed and the stirring state. Conventionally, when the solidification rate of silicon is up to 0.3 mm / min, stirring by silicon thermal convection is sufficient, but at 0.3 mm / min or more, stirring is strengthened by using a stirring means in addition to thermal convection. It is said that there is a need to do.

特許文献1には、鋳塊の組織を制御するために、鋳型を回転させることによって、溶融シリコンを撹拌することが開示されているが、この場合、装置のコストやメインテナンス等に問題があった。また、特許文献2では、撹拌力を溶湯への磁場の作用によって発生させる技術を開示している。しかしながら、磁場印加のための設備費が高価であることから、安価な多結晶シリコン原料の製造には不向きである。さらに、特許文献3では、溶湯内に不活性ガスを吹き込むことで、撹拌を行いながら、シリコンを一方向凝固させる方法が開示されているが、シリコン塊中に気泡を巻き込みながら凝固が進行するため、気泡が不純物の濃化部になってしまう問題があった。
特開昭61−141612号公報 特開平5−254817号公報 特開平10−182135号公報
Patent Document 1 discloses that the molten silicon is agitated by rotating the mold in order to control the structure of the ingot. However, in this case, there are problems in the cost and maintenance of the apparatus. . Patent Document 2 discloses a technique for generating a stirring force by the action of a magnetic field on a molten metal. However, since the equipment cost for applying a magnetic field is expensive, it is not suitable for the production of an inexpensive polycrystalline silicon raw material. Furthermore, Patent Document 3 discloses a method in which silicon is unidirectionally solidified by blowing an inert gas into the molten metal, but solidification proceeds while entraining bubbles in the silicon lump. There was a problem that bubbles would become a concentrated part of impurities.
JP 61-141612 A JP-A-5-254817 JP 10-182135 A

本発明は、かかる事情に鑑み、シリコンの凝固精製において、簡便な設備でありながら、不純物濃度の低い高品質の多結晶シリコンを得る精製方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a purification method for obtaining high-quality polycrystalline silicon having a low impurity concentration while being a simple facility in the solidification purification of silicon.

本発明の要旨は、以下のとおりである。   The gist of the present invention is as follows.

(1) 溶融シリコンを保持した鋳型内で、該溶融シリコンを鋳型下部から上方へ一方向凝固させるに際し、溶融シリコンを撹拌羽根付きシャフトで撹拌しながら0.3〜3.0mm/分の凝固速度で凝固することを特徴とする多結晶シリコン精製方法。   (1) When the molten silicon is unidirectionally solidified upward from the bottom of the mold in the mold holding the molten silicon, the solidification speed of 0.3 to 3.0 mm / min while stirring the molten silicon with the shaft with the stirring blade A method for purifying polycrystalline silicon, characterized by solidifying with

(2) 前記撹拌羽根付きシャフトが、シリコンの凝固界面の移動に合わせて上昇する(1)記載の多結晶シリコン精製方法。   (2) The method for purifying polycrystalline silicon according to (1), wherein the shaft with stirring blades rises in accordance with the movement of the solidification interface of silicon.

(3) 前記撹拌羽根付きシャフトが、溶融シリコンと反応しない材質からなるものである(1)又は(2)に記載の多結晶シリコン精製方法。   (3) The polycrystalline silicon purification method according to (1) or (2), wherein the shaft with stirring blades is made of a material that does not react with molten silicon.

(4) 前記撹拌羽根付きシャフトが高純度カーボン製である(3)記載の多結晶シリコン精製方法。   (4) The method for purifying polycrystalline silicon according to (3), wherein the shaft with stirring blades is made of high purity carbon.

本発明の精製方法により、シリコンの凝固速度を上げても、凝固シリコンの品質を劣化させることなく、不純物を効率よく除去することができ、生産性良く安価な高品位の多結晶シリコンを提供することができる。この多結晶シリコンは、太陽電池用シリコン基板の原料として用いることができる。   By the purification method of the present invention, even if the solidification rate of silicon is increased, impurities can be efficiently removed without degrading the quality of the solidified silicon, and high-quality polycrystalline silicon with high productivity and low cost is provided. be able to. This polycrystalline silicon can be used as a raw material for a solar cell silicon substrate.

また、高価な設備を用いることなく、安価で簡便な方法で、多結晶シリコンの精製を効率良くできる。   Further, polycrystalline silicon can be efficiently purified by an inexpensive and simple method without using expensive equipment.

図1に、本発明に係る溶融シリコンの一方向凝固精製を実施した状況を縦断面図で示す。まず、黒鉛あるいは石英の鋳型1の中に金属シリコンを充填し、溶解することから開始される。従来は、このシリコンの溶解完了後、直ちに凝固を行なっていた。そのため、鋳型1の上方には、シリコンを加熱溶解するための手段(加熱体2)が配置されるだけであった。また、凝固速度は、加熱手段の出力を調整することでコントロールしていた。   FIG. 1 is a longitudinal sectional view showing a state where unidirectional solidification purification of molten silicon according to the present invention is performed. First, the process starts with filling and melting metal silicon in a graphite or quartz mold 1. Conventionally, solidification was performed immediately after the completion of the dissolution of silicon. Therefore, only a means (heating body 2) for heating and melting silicon is disposed above the mold 1. The coagulation rate was controlled by adjusting the output of the heating means.

本発明では、溶融シリコン3を保持した鋳型1内で、溶融シリコン3を鋳型1下部から上方へ一方向凝固させるに際し、溶融シリコン3を撹拌羽根付きシャフト4で撹拌しながら凝固する。撹拌羽根付きシャフト4の回転速度は、特に限定するものではないが、50〜100rpmが好ましい。100rpmより大きい場合、Si(シリコン)が飛散して収率が悪化する可能性が高くなる。50rpm未満では、熱対流に対抗できず、撹拌羽根付きシャフト4による攪拌効果が得られ難くなることがある。   In the present invention, when the molten silicon 3 is solidified in one direction upward from the lower part of the mold 1 in the mold 1 holding the molten silicon 3, the molten silicon 3 is solidified while being stirred by the shaft 4 with stirring blades. Although the rotational speed of the shaft 4 with a stirring blade is not specifically limited, 50-100 rpm is preferable. If it is higher than 100 rpm, the possibility that Si (silicon) will scatter and the yield will deteriorate. If it is less than 50 rpm, it cannot counter heat convection, and the stirring effect by the shaft 4 with a stirring blade may become difficult to be obtained.

また、0.3〜3.0mm/分の凝固速度で、溶融シリコン3を凝固する。凝固速度が0.3mm/分未満では、生産性が悪く、精製効率の向上が認められない。凝固速度が3.0mm/分超の場合、溶融シリコン3の凝固速度が速過ぎるため、不純物の分離が十分には行なわれず、凝固精製効率が悪い。   Further, the molten silicon 3 is solidified at a solidification rate of 0.3 to 3.0 mm / min. When the solidification rate is less than 0.3 mm / min, productivity is poor and improvement in purification efficiency is not recognized. When the solidification rate exceeds 3.0 mm / min, the solidification rate of the molten silicon 3 is too high, so that the impurities are not sufficiently separated and the solidification purification efficiency is poor.

本発明は、ヒーター上昇後(シリコン溶解後)、直ちに一定の凝固速度で凝固を開始すると共に、撹拌羽根付きシャフト4を浸漬して、攪拌を行なうものである。その結果、凝固界面(溶融シリコン3と凝固したシリコン5との界面)は上方に向けて進行するので、撹拌羽根付きシャフト4の先端が、凝固界面に接触しないように、凝固界面の10mm程度直上で凝固速度と等しい速度で上昇させる必要がある。そのため、本発明ではシリコンの凝固界面の移動に合わせて、撹拌羽根付きシャフト4を昇降できる手段を有する。更に、凝固開始時を把握するために、凝固開始までは撹拌羽根付きシャフト4の回転を止めて、撹拌羽根付きシャフト4を溶融シリコン3に浸漬し、撹拌羽根付きシャフト4の先端が鋳型1の底面に触れていることを確認する。凝固の開始は、撹拌羽根付きシャフト4の浸漬深さが浅くなり始めた時点を凝固開始とする。   In the present invention, after the heater is raised (after silicon is melted), solidification starts immediately at a constant solidification rate, and the shaft 4 with stirring blades is immersed and stirred. As a result, the solidification interface (the interface between the molten silicon 3 and the solidified silicon 5) advances upward, so that the tip of the shaft 4 with the stirring blade is about 10 mm above the solidification interface so that it does not contact the solidification interface. Therefore, it is necessary to increase at a speed equal to the solidification speed. Therefore, in this invention, it has a means which can raise / lower the shaft 4 with a stirring blade according to the movement of the solidification interface of silicon. Further, in order to grasp the start of solidification, the rotation of the shaft 4 with stirring blades is stopped until the start of solidification, the shaft 4 with stirring blades is immersed in the molten silicon 3, and the tip of the shaft 4 with stirring blades is the mold 1. Make sure that you touch the bottom. The start of solidification is defined as the time when the immersion depth of the shaft 4 with stirring blades starts to become shallow.

撹拌羽根付きシャフト4が、溶融シリコン3と反応しない材質からなるものであることが望ましい。例えば、シリカ(SiO)は、シリコンに対する汚染は少ないが、軟化してしまう。アルミナ(Al)、マグネシア(MgO)等は、高融点であるが、シリコンへの汚染源になる。この観点から、黒鉛(C)であることが好ましい。更に、黒鉛は、高純度であることが更に望ましい。純度は、灰分が20ppm以下であることが好ましい。これ以上であると、黒鉛は、太陽電池用原料Siとして使用する際の不純物の汚染源となってしまう。 The shaft 4 with stirring blades is preferably made of a material that does not react with the molten silicon 3. For example, silica (SiO 2 ) is less contaminated with silicon but softens. Alumina (Al 2 O 3 ), magnesia (MgO), etc. have a high melting point, but become a source of contamination to silicon. From this viewpoint, graphite (C) is preferable. Furthermore, it is more desirable that the graphite has a high purity. As for purity, it is preferable that ash content is 20 ppm or less. If it is more than this, graphite will become a source of impurity contamination when used as a raw material Si for solar cells.

かかる方法を実施すれば、溶融シリコン3の撹拌が充分に行なわれるようになり、凝固界面の境界層厚み、分配係数が小さくなり、精製効率が向上する。   By carrying out such a method, the molten silicon 3 is sufficiently stirred, the boundary layer thickness of the solidification interface and the distribution coefficient are reduced, and the purification efficiency is improved.

以下に、本発明を実施例と比較例で詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

(実施例1)
高純度シリコン(99.999999999%以上)5kgに鉄(Fe)10gを添加した、鉄(0.2%)含有シリコンを供試材とした。図1に示す構成を有する凝固精製装置を用いた。
Example 1
Iron (0.2%)-containing silicon prepared by adding 10 g of iron (Fe) to 5 kg of high-purity silicon (99.99999999999% or more) was used as a test material. A coagulation purification apparatus having the configuration shown in FIG. 1 was used.

この供試材を、直径150mm、高さ350mmの有底円筒形状の黒鉛鋳型内に入れて、大気圧下、Ar(アルゴン)ガスを3L/分(リットル/分)フローした雰囲気中で溶解後、鋳型底部から上部に向かって0.5℃/mmの温度勾配とし、一方向に溶融シリコンの凝固を凝固速度0.3mm/分で行なった。なお、凝固に際しては、カーボン製の撹拌羽根付きシャフト(30mm×5mm×2mmの羽が2枚ついた、灰分が15ppmもの)を、溶融シリコン中、鋳型底から10mmの高さに浸漬して、70rpmで回転させると共に、凝固開始と同時に、凝固速度と同じ速度で上方へ引き上げた。得られたシリコン塊(直径148mm×高さ125mm)を下から20〜30mm、50〜60mm、70〜80mm、90〜100mmの高さの位置からサンプルを切り出し、ICP−MS法によるSi中のFe濃度の測定を実施し、Feの含有量を把握した。結果を表1に示す。   This test material was placed in a bottomed cylindrical graphite mold having a diameter of 150 mm and a height of 350 mm, and dissolved in an atmosphere of Ar (argon) gas flowing at 3 L / min (liter / min) under atmospheric pressure. The molten silicon was solidified in one direction at a solidification rate of 0.3 mm / min with a temperature gradient of 0.5 ° C./mm from the bottom to the top of the mold. When solidifying, a carbon-made shaft with stirring blades (with two wings of 30 mm × 5 mm × 2 mm, ash content of 15 ppm) was immersed in molten silicon at a height of 10 mm from the mold bottom, While rotating at 70 rpm, simultaneously with the start of solidification, it was pulled upward at the same speed as the solidification speed. A sample of silicon obtained (diameter: 148 mm × height: 125 mm) was cut from the height of 20 to 30 mm, 50 to 60 mm, 70 to 80 mm, and 90 to 100 mm from the bottom, and Fe in Si by ICP-MS method. The concentration was measured to grasp the Fe content. The results are shown in Table 1.

(比較例1)
高純度シリコン(99.999999999%以上)5kgに鉄10gを添加した、鉄(0.2%)含有シリコンを供試材とした。凝固精製装置は、実施例1で用いた装置から撹拌羽根付きシャフトと該撹拌羽根付きシャフトの回転機構及びこれらの昇降機構を除いたものを用いた。
(Comparative Example 1)
An iron (0.2%)-containing silicon obtained by adding 10 g of iron to 5 kg of high-purity silicon (99.99999999999% or more) was used as a test material. As the coagulation purification apparatus, a device obtained by removing the shaft with stirring blades, the rotation mechanism of the shaft with stirring blades, and these lifting mechanisms from the device used in Example 1 was used.

この供試材を、直径150mm、高さ350mmの有底円筒形状の黒鉛鋳型内に入れて、大気圧下、Arガスを3L/分フローした雰囲気中で溶解後、鋳型底部から上部に向かって0.5℃/mmの温度勾配とし、一方向に溶融シリコンの凝固を凝固速度0.3mm/分で行なった。ただし、溶融シリコンの撹拌は、熱対流のみで行なった。得られたシリコン塊(直径148mm×高さ125mm)を下から20〜30mm、50〜60mm、70〜80mm、90〜100mmの高さの位置からサンプルを切り出し、ICP−MS法によるSi中のFe濃度の測定を実施し、Feの含有量を実施した。結果を表1に示す。   This specimen is placed in a bottomed cylindrical graphite mold having a diameter of 150 mm and a height of 350 mm, dissolved in an atmosphere of Ar gas flowing at 3 L / min under atmospheric pressure, and then from the mold bottom to the top. With a temperature gradient of 0.5 ° C./mm, the molten silicon was solidified in one direction at a solidification rate of 0.3 mm / min. However, the molten silicon was stirred only by thermal convection. A sample of silicon obtained (diameter: 148 mm × height: 125 mm) was cut from the height of 20 to 30 mm, 50 to 60 mm, 70 to 80 mm, and 90 to 100 mm from the bottom, and Fe in Si by ICP-MS method. The concentration was measured and the Fe content was measured. The results are shown in Table 1.

(実施例2)
実施例1と同様にして、凝固精製を行なった。ただし、凝固速度は1.5mm/分とした。得られたシリコン塊は、実施例1と同様にして成分分析を行い、Feの含有量を算出した。結果を表1に示す。
(Example 2)
Coagulation purification was performed in the same manner as in Example 1. However, the solidification rate was 1.5 mm / min. The obtained silicon lump was subjected to component analysis in the same manner as in Example 1 to calculate the Fe content. The results are shown in Table 1.

(比較例2)
比較例1と同様にして、凝固精製を行なった。ただし、凝固速度は1.5mm/分とした。得られたシリコン塊は、実施例1と同様にして成分分析を行い、Feの含有量を算出した。結果を表1に示す。
(Comparative Example 2)
Coagulation purification was performed in the same manner as in Comparative Example 1. However, the solidification rate was 1.5 mm / min. The obtained silicon lump was subjected to component analysis in the same manner as in Example 1 to calculate the Fe content. The results are shown in Table 1.

(実施例3)
実施例1と同様にして、凝固精製を行なった。ただし、凝固速度は3.0mm/分とした。得られたシリコン塊は、実施例1と同様にして成分分析を行い、Feの含有量を算出した。結果を表1に示す。
(Example 3)
Coagulation purification was performed in the same manner as in Example 1. However, the solidification rate was 3.0 mm / min. The obtained silicon lump was subjected to component analysis in the same manner as in Example 1 to calculate the Fe content. The results are shown in Table 1.

(比較例3)
比較例1と同様にして、凝固精製を行なった。ただし、凝固速度は3.0mm/分とした。得られたシリコン塊は、実施例1と同様にして成分分析を行い、Feの含有量を算出した。結果を表1に示す。
(Comparative Example 3)
Coagulation purification was performed in the same manner as in Comparative Example 1. However, the solidification rate was 3.0 mm / min. The obtained silicon lump was subjected to component analysis in the same manner as in Example 1 to calculate the Fe content. The results are shown in Table 1.

表1の結果から明らかなように、熱対流のみの撹拌で凝固した比較例に対し、撹拌羽根付きシャフトで強制撹拌した実施例は、何れの凝固速度においても鉄の含有量が少なく、凝固精製が効率良く行われていることが判る。   As is apparent from the results in Table 1, in contrast to the comparative example solidified by stirring only with thermal convection, the example in which forced stirring was performed with a shaft with a stirring blade had less iron content at any solidification speed, and solidification purification It can be seen that this is done efficiently.

また、各実施例で得られたシリコン塊を縦割りして、凝固組織を観察したが、何れの実施例でも気泡巻き込み等の欠陥は認められず、シリコン塊の最上部を除き、不純物が濃化偏析している部位は認められなかった。   In addition, the silicon mass obtained in each example was vertically divided and the solidified structure was observed. In any of the examples, defects such as bubble entrainment were not observed, and impurities were concentrated except for the uppermost part of the silicon mass. No site of chemical segregation was observed.

この結果は、以前に開示されている鋳型の回転や電磁力による溶融シリコンの撹拌に比べ、設備費が安く抑えられるため、製造コストが低く抑えられることも確認した。   This result also confirms that the manufacturing cost can be kept low because the equipment cost can be kept low compared with the previously disclosed mold rotation and stirring of molten silicon by electromagnetic force.

本発明の精製方法に用いる装置の模式図である。It is a schematic diagram of the apparatus used for the purification method of the present invention.

符号の説明Explanation of symbols

1 鋳型、
2 加熱体、
3 溶融シリコン、
4 撹拌羽根付きシャフト、
5 凝固したシリコン。
1 mold,
2 heating elements,
3 Molten silicon,
4 Shaft with stirring blade,
5 Solidified silicon.

Claims (4)

溶融シリコンを保持した鋳型内で、該溶融シリコンを鋳型下部から上方へ一方向凝固させるに際し、溶融シリコンを撹拌羽根付きシャフトで撹拌しながら0.3〜3.0mm/分の凝固速度で凝固させることを特徴とする多結晶シリコン精製方法。   When the molten silicon is unidirectionally solidified upward from the lower part of the mold in the mold holding the molten silicon, the molten silicon is solidified at a solidification rate of 0.3 to 3.0 mm / min while stirring with a shaft with a stirring blade. A method for purifying polycrystalline silicon. 前記撹拌羽根付きシャフトが、シリコンの凝固界面の移動に合わせて上昇する請求項1記載の多結晶シリコン精製方法。   The method for purifying polycrystalline silicon according to claim 1, wherein the shaft with stirring blades rises in accordance with movement of a solidification interface of silicon. 前記撹拌羽根付きシャフトが、溶融シリコンと反応しない材質からなるものである請求項1又は2に記載の多結晶シリコン精製方法。   The method for purifying polycrystalline silicon according to claim 1, wherein the shaft with stirring blades is made of a material that does not react with molten silicon. 前記撹拌羽根付きシャフトが、高純度カーボン製である請求項3記載の多結晶シリコン精製方法。   The method for purifying polycrystalline silicon according to claim 3, wherein the shaft with stirring blades is made of high purity carbon.
JP2005021641A 2005-01-28 2005-01-28 Method for refining polycrystalline silicon Pending JP2006206392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021641A JP2006206392A (en) 2005-01-28 2005-01-28 Method for refining polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021641A JP2006206392A (en) 2005-01-28 2005-01-28 Method for refining polycrystalline silicon

Publications (1)

Publication Number Publication Date
JP2006206392A true JP2006206392A (en) 2006-08-10

Family

ID=36963639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021641A Pending JP2006206392A (en) 2005-01-28 2005-01-28 Method for refining polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP2006206392A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273627A (en) * 2005-03-28 2006-10-12 Kyocera Corp Method for casting polycrystalline silicon ingot
WO2009008555A1 (en) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited Method for production of purified silicon
JP2009018958A (en) * 2007-07-11 2009-01-29 Sharp Corp Method for melting silicon and method for purifying silicon
JP2009102213A (en) * 2007-07-12 2009-05-14 Sumitomo Chemical Co Ltd Manufacturing method of purified silicon
JP2009114053A (en) * 2007-10-17 2009-05-28 Sumitomo Chemical Co Ltd Method for producing purified silicon
KR101101989B1 (en) 2009-03-27 2012-01-02 최종오 Manufacturing method of poly silicon and manufacturing device for the same
CN106012007A (en) * 2016-07-22 2016-10-12 常州天合光能有限公司 Method and device for growing crystalline silicone by aid of forced convection
CN106854774A (en) * 2016-12-30 2017-06-16 江西赛维Ldk太阳能高科技有限公司 One species monocrystal silicon and preparation method thereof and a species monocrystalline silicon cast ingot stove

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461309A (en) * 1987-09-01 1989-03-08 Showa Aluminum Corp Purification of silicon
JP2003054932A (en) * 2001-08-23 2003-02-26 Sharp Corp Manufacturing device of semiconductor substrate, semiconductor substrate and manufacturing method thereof and solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461309A (en) * 1987-09-01 1989-03-08 Showa Aluminum Corp Purification of silicon
JP2003054932A (en) * 2001-08-23 2003-02-26 Sharp Corp Manufacturing device of semiconductor substrate, semiconductor substrate and manufacturing method thereof and solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273627A (en) * 2005-03-28 2006-10-12 Kyocera Corp Method for casting polycrystalline silicon ingot
JP2009018958A (en) * 2007-07-11 2009-01-29 Sharp Corp Method for melting silicon and method for purifying silicon
WO2009008555A1 (en) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited Method for production of purified silicon
JP2009102213A (en) * 2007-07-12 2009-05-14 Sumitomo Chemical Co Ltd Manufacturing method of purified silicon
JP2009114053A (en) * 2007-10-17 2009-05-28 Sumitomo Chemical Co Ltd Method for producing purified silicon
KR101101989B1 (en) 2009-03-27 2012-01-02 최종오 Manufacturing method of poly silicon and manufacturing device for the same
CN106012007A (en) * 2016-07-22 2016-10-12 常州天合光能有限公司 Method and device for growing crystalline silicone by aid of forced convection
CN106012007B (en) * 2016-07-22 2018-03-13 天合光能股份有限公司 A kind of method and its device of forced convertion growth crystalline silicon
CN106854774A (en) * 2016-12-30 2017-06-16 江西赛维Ldk太阳能高科技有限公司 One species monocrystal silicon and preparation method thereof and a species monocrystalline silicon cast ingot stove

Similar Documents

Publication Publication Date Title
TWI443237B (en) Method for processing silicon powder to obtain silicon crystals
JP2006206392A (en) Method for refining polycrystalline silicon
EP0867405A1 (en) Method for producing silicon for use in solar cells
EP1754806A1 (en) Method for casting polycrystalline silicon
EA017480B1 (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
JP2014527577A (en) Method for preparing high purity aluminum by directional solidification and blast furnace therefor
JP4115432B2 (en) Metal purification method
TW574444B (en) Method for growing single crystal of semiconductor
JP2008303113A (en) Unidirectional coagulation method for silicon
JPWO2008149985A1 (en) Solidification method of metallic silicon
JP4073864B2 (en) Silicon purification method and silicon
JPH07206420A (en) Production of high-purity silicon
JP4397714B2 (en) Raw material for aluminum purification
TW200948714A (en) Process for producing boron added purified silicon
CN104071790A (en) Device and method for purifying silicon from silicon alloy melt by electromagnetic stirring
JPH03177388A (en) Method and device for manufacture of silicate ingot of high oxygen content by zone tensile process devoid of crucible
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
US20110120365A1 (en) Process for removal of contaminants from a melt of non-ferrous metals and apparatus for growing high purity silicon crystals
TW201236970A (en) An apparatus for refining silicon and a method thereof
JP2010173911A (en) Method for purifying silicon
KR20100099396A (en) Apparatus and method for refining of high purity silicon
WO1990003952A1 (en) Method of growing silicon ingots using a rotating melt
JP5100969B2 (en) Method for removing carbon from silicon
EP4082966A1 (en) Method for obtaining purified silicon metal
JPH05147918A (en) Refining method for metal silicon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

A621 Written request for application examination

Effective date: 20070809

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517