JPH0790409A - Method for removing hydrogen in molten aluminum - Google Patents

Method for removing hydrogen in molten aluminum

Info

Publication number
JPH0790409A
JPH0790409A JP5252191A JP25219193A JPH0790409A JP H0790409 A JPH0790409 A JP H0790409A JP 5252191 A JP5252191 A JP 5252191A JP 25219193 A JP25219193 A JP 25219193A JP H0790409 A JPH0790409 A JP H0790409A
Authority
JP
Japan
Prior art keywords
molten metal
nitrogen gas
aluminum
molten
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5252191A
Other languages
Japanese (ja)
Inventor
Kenji Kojima
健治 小島
Chiaki Marumo
千郷 丸茂
Takeshi Nagao
岳 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Kanebo Ltd
Original Assignee
Showa Corp
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp, Kanebo Ltd filed Critical Showa Corp
Priority to JP5252191A priority Critical patent/JPH0790409A/en
Publication of JPH0790409A publication Critical patent/JPH0790409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To float up and remove dissolve hydrogen in molten aluminum together with gaseous nitrogen onto the upper part of the molten metal by blowing the high purity gaseous nitrogen regulated in the purity into the lower part of the molten aluminum. CONSTITUTION:The gaseous nitrogen having 99.95-99.995% purity obtd. by a pressure swing absorption type gaseous nitrogen generator is blown to the lower part of the molten aluminum and dispersed in the whole molten metal as the fine bubbles with an impeller fitted to the lower part of the molten metal, and the gaseous hydrogen dissolved into the molten metal is floated up and removed onto the upper part of the molten metal together with the gaseous nitrogen. At this time, the flow rate of the gaseous nitrogen blown into the molten metal is made to be about 5-3Nl/min/500kg of the molten metal and the dew point is made to be <= about -10 deg.C. By this method, the removal of the hydrogen in the molten aluminum can simply be executed in a high reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニウム溶湯の精錬
法に関し、更に詳しくは圧力スイング吸着式窒素ガス発
生装置で得られた純度99.95 〜99.995%の窒素ガスを用
いるアルミニウム溶湯の脱水素方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining molten aluminum, and more particularly to a method for dehydrogenating molten aluminum using nitrogen gas having a purity of 99.95 to 99.995% obtained by a pressure swing adsorption type nitrogen gas generator.

【0002】この明細書における「アルミニウム」には
純アルミニウムの他にアルミニウムと銅、ケイ素、マグ
ネシウム、ニッケル、チタン等の合金元素よりなるアル
ミニウム合金も含むものとする。
In this specification, "aluminum" includes not only pure aluminum but also aluminum alloys made of aluminum and alloy elements such as copper, silicon, magnesium, nickel and titanium.

【0003】[0003]

【従来の技術】近年、電子部品及び自動車部品、建築
材、航空部品等に用いられるアルミニウムおよびアルミ
ニウム合金に対し高品質化が強く望まれている。これら
のアルミニウム製品の品質制御に最も重要な要素の一つ
は鋳造前の溶湯の状態であり、高品質のアルミニウム製
品を得るには、溶湯中に溶存する水素ガスやアルミニウ
ム、マグネシウムの酸化物などの非金属介在物を除去す
ることが必要とされ、そのために種々の溶湯精錬法が開
発され、実用化されている。
2. Description of the Related Art In recent years, it has been strongly desired to improve the quality of aluminum and aluminum alloys used for electronic parts, automobile parts, building materials, aviation parts and the like. One of the most important factors for quality control of these aluminum products is the state of the molten metal before casting, and in order to obtain high quality aluminum products, hydrogen gas dissolved in the molten metal, oxides of aluminum and magnesium, etc. It is necessary to remove the non-metallic inclusions, and for that purpose various molten metal refining methods have been developed and put into practical use.

【0004】一般的なアルミニウム溶湯の脱水素方法と
しては、ハロゲン系化合物などのフラックスを窒素やア
ルゴンなどの不活性ガスを介して溶湯中に吹き込む方法
がある。吹き込まれた不活性ガスの微細な気泡や、フラ
ックスから発生もしくは派生したガスの気泡は溶湯中の
水素ガスより分圧が低いために、溶湯中に溶存していた
水素ガスがSievertsの法則に従ってこれらの気泡内に拡
散して浮上し、溶湯表面から除去されるのである。
As a general method for dehydrogenating an aluminum melt, there is a method in which a flux of a halogen compound is blown into the melt through an inert gas such as nitrogen or argon. Since the minute bubbles of the inert gas blown in and the bubbles of the gas generated or derived from the flux have a lower partial pressure than the hydrogen gas in the molten metal, the hydrogen gas dissolved in the molten metal follows these rules according to Sieverts' law. It diffuses into the bubbles and floats, and is removed from the surface of the molten metal.

【0005】従来、溶湯中の水素ガスを除去するために
吹き込む不活性ガスとしては、アルゴンなどの希ガス類
に比べて比較的廉価である窒素ボンベガス、あるいは液
体窒素をガス化した高純度窒素ガスが用いられてきた。
しかしながら、これらの窒素ガスは通常99.999%以上の
高純度ガスで高価格でありアルミニウム製品の鋳造コス
トの上昇をきたし、アルミニウム製品の広範な分野での
利用が制約される要因となっていた。
Conventionally, nitrogen gas, which is relatively inexpensive as compared with rare gases such as argon, or high-purity nitrogen gas obtained by gasifying liquid nitrogen, is used as the inert gas blown to remove hydrogen gas in the molten metal. Has been.
However, these nitrogen gases are usually 99.999% or more of high-purity gas and high in price, resulting in an increase in casting cost of aluminum products, which has been a factor limiting the use of aluminum products in a wide range of fields.

【0006】さらにまた、窒素ガスボンベを用いる場合
には、頻繁なボンベ交換が必要で保守点検に多くの労力
を要し、ガス切れ、交換作業の不手際等がアルミニウム
製品の不良率上昇の要因になるなどの問題が生じてい
る。
Furthermore, when a nitrogen gas cylinder is used, frequent replacement of the cylinder is required, and a lot of labor is required for maintenance and inspection, and out-of-gas, inadequate replacement work, and the like cause an increase in the defective rate of aluminum products. There are problems such as.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、上記の
問題を解決すべく鋭意研究の結果本発明を完成したもの
であり、その目的とするところは、簡便かつ信頼性の高
いアルミニウム溶湯の脱水素方法を提供することにあ
る。
DISCLOSURE OF THE INVENTION The present inventors have completed the present invention as a result of earnest research to solve the above problems, and the purpose thereof is to provide a simple and highly reliable molten aluminum. To provide a dehydrogenation method of

【0008】[0008]

【問題を解決するための手段】上述の目的は、分子ふる
い炭素を充填した2塔以上の吸着塔に原料空気を供給
し、加圧吸着と減圧再生を順次繰り返すことにより連続
的に製品窒素ガスを取り出す圧力スイング吸着式窒素ガ
ス発生装置で得られた純度99.95 〜99.995%の窒素ガス
を、アルミニウム溶湯の下部に吹き込み、この窒素ガス
を溶湯下部に取り付けられたインペラ−により微細な気
泡として溶湯全体に分散させることにより、溶存水素ガ
スを窒素ガスとともに溶湯上部に浮上させ除去すること
を特徴とするアルミニウム溶湯の脱水素方法により達成
される。
[Means for Solving the Problems] The above object is to continuously supply product air to two or more adsorption towers filled with molecular sieving carbon, and successively repeat pressure adsorption and decompression regeneration to produce product nitrogen gas. Nitrogen gas with a purity of 99.95 to 99.995% obtained with a pressure swing adsorption type nitrogen gas generator is blown into the lower part of the aluminum melt, and this nitrogen gas is blown into the entire melt as fine bubbles by an impeller attached to the bottom of the melt. It is achieved by a method for dehydrogenating an aluminum melt, characterized in that the dissolved hydrogen gas is floated above the melt together with nitrogen gas to be removed.

【0009】本発明でいう圧力スイング吸着式窒素ガス
発生装置とは、分子ふるい炭素を充填した2塔以上の吸
着塔に原料空気を供給し加圧吸着と減圧再生を順次繰り
返すことにより連続的に製品窒素ガスを取り出すことが
可能な装置である。
The pressure swing adsorption type nitrogen gas generator as referred to in the present invention continuously supplies the feed air to two or more adsorption columns filled with molecular sieving carbon and successively repeats pressure adsorption and pressure reduction regeneration. It is a device that can take out product nitrogen gas.

【0010】本発明に用いる圧力スイング吸着式窒素ガ
ス発生装置としては特に限定するものではないが、例え
ば特開昭63-104629 号公報および特開昭63-218230 号公
報などで開示されている装置が好ましく用いられる。
The pressure swing adsorption type nitrogen gas generator used in the present invention is not particularly limited, but is disclosed, for example, in Japanese Patent Laid-Open Nos. 63-104629 and 63-218230. Is preferably used.

【0011】圧力スイング吸着式窒素ガス発生装置の吸
着塔には分子ふるい炭素と呼ばれる酸素と窒素を分離可
能な吸着分離材が充填されている。この分子ふるい炭素
の種類は特に限定するものではないが、例えば特開昭63
-201008 号公報で開示されているフェノ−ル樹脂を主原
料とした分子ふるい炭素などが好ましく用いられる。
The adsorption tower of the pressure swing adsorption type nitrogen gas generator is filled with an adsorption separation material called molecular sieving carbon capable of separating oxygen and nitrogen. The kind of the molecular sieving carbon is not particularly limited, but for example, JP-A-63
-Molecular sieving carbon mainly made of phenol resin disclosed in Japanese Patent Publication No. 201008 is preferably used.

【0012】溶湯中に吹き込む窒素ガスは従来99.999%
程度の高純度ガスしか使用されておらず、それ以下のガ
ス純度での脱水素処理の可否に関する検討はなされてな
かった。これは窒素ガス純度が低いと、アルミニウム溶
湯と窒素ガス中に含まれる不純物である酸素との反応に
より酸化物が生成して金属中の介在物となり、製品アル
ミニウムの品質低下をもたらすことが懸念されていたか
らである。
Nitrogen gas blown into the molten metal is conventionally 99.999%
Only high-purity gas of a certain degree was used, and no consideration was made as to whether or not the dehydrogenation treatment should be performed at a gas purity lower than that. It is feared that when the nitrogen gas purity is low, an oxide is generated by the reaction between the molten aluminum and oxygen, which is an impurity contained in the nitrogen gas, to become an inclusion in the metal, resulting in deterioration of the quality of the product aluminum. Because it was.

【0013】しかしながら本発明者らは、圧力スイング
吸着式窒素ガス発生装置を用いてアルミニウム溶湯の脱
水素処理に適当な窒素ガス純度について検討を行ない、
99.95 〜99.995%の窒素ガスを用いることにより十分良
質なアルミニウム溶湯が得られることを見いだした。
However, the present inventors have examined the nitrogen gas purity suitable for the dehydrogenation treatment of molten aluminum by using a pressure swing adsorption type nitrogen gas generator,
It was found that a sufficiently good quality aluminum melt can be obtained by using 99.95 to 99.995% nitrogen gas.

【0014】圧力スイング吸着式窒素ガス発生装置から
得られるガスの窒素純度が99.95 %以下の場合にはアル
ミニウム溶湯と窒素ガス中に含まれる酸素との反応によ
り酸化物が生成し製品アルミニウムの品質低下をもたら
し好ましくない。また、窒素純度が99.995%以上の場合
には圧力スイング吸着装置で空気からの窒素ガスが得ら
れる効率が悪くなり窒素ガスコストが上昇し、窒素ボン
ベの場合と同様にアルミニウム溶湯脱水素処理コストの
上昇をきたし好ましくない。
When the nitrogen purity of the gas obtained from the pressure swing adsorption type nitrogen gas generator is 99.95% or less, an oxide is formed due to the reaction between the molten aluminum and oxygen contained in the nitrogen gas to deteriorate the quality of the product aluminum. Is not preferable. Also, if the nitrogen purity is 99.995% or more, the efficiency of obtaining nitrogen gas from the air in the pressure swing adsorption device becomes poor and the nitrogen gas cost rises. It causes an increase and is not preferable.

【0015】従って、本発明で用いる圧力スイング吸着
式窒素ガス発生装置で得られる窒素ガスの純度は通常9
9.95 〜99.995%であり、好ましくは99.97 〜99.992
%、最も好ましくは99.98 〜99.99 %である。
Therefore, the purity of the nitrogen gas obtained by the pressure swing adsorption type nitrogen gas generator used in the present invention is usually 9
9.95-99.995%, preferably 99.97-99.992
%, Most preferably 99.98-99.99%.

【0016】尚、本発明の圧力スイング吸着式窒素ガス
発生装置で得られる窒素ガスの純度とは、窒素ガスとア
ルゴンガスの容量%の和であり、残りの不純物ガスの殆
どは酸素ガスである。
The purity of the nitrogen gas obtained by the pressure swing adsorption type nitrogen gas generator of the present invention is the sum of the volume% of nitrogen gas and argon gas, and most of the remaining impurity gas is oxygen gas. .

【0017】アルミニウム溶湯中に吹き込む窒素ガスの
流量は、通常アルミニウム溶湯 500kg当たり 5〜30Nl/m
inであり、好ましくは10〜25Nl/min、最も好ましくは15
〜20Nl/minである。
The flow rate of nitrogen gas blown into the molten aluminum is usually 5 to 30 Nl / m per 500 kg of the molten aluminum.
in, preferably 10 to 25 Nl / min, most preferably 15
~ 20 Nl / min.

【0018】窒素ガス流量がアルミニウム溶湯 500kg当
たり 5Nl/min以下の場合には脱水素処理が不十分となり
溶存している水素ガスを十分に取り除くことができず、
凝固後の製品に内部欠陥や表面欠陥が発生し機械的特性
が低下するなどの不都合が生じて好ましくない。また、
窒素ガス流量がアルミニウム溶湯 500kg当たり 30Nl/mi
n 以上の場合には、窒素ガスの気泡がアルミニウム溶湯
表面に浮上して破裂する際に溶湯が多量に飛散し溶湯表
面近傍での酸化アルミニウムの発生によりアルミニウム
の損失をきたし、かつ脱水素処理コストが高くなり好ま
しくない。
When the flow rate of nitrogen gas is less than 5 Nl / min per 500 kg of molten aluminum, the dehydrogenation treatment is insufficient and the dissolved hydrogen gas cannot be sufficiently removed.
It is not preferable because internal defects and surface defects occur in the product after solidification and mechanical properties are deteriorated. Also,
Nitrogen gas flow rate is 30 Nl / mi per 500 kg of molten aluminum
In the case of n or more, when the bubbles of nitrogen gas float on the surface of the molten aluminum and burst, a large amount of the molten metal is scattered and aluminum oxide is generated near the surface of the molten metal, resulting in loss of aluminum and dehydrogenation treatment cost. Is high, which is not preferable.

【0019】溶湯中に窒素ガスを吹き込む時間は特に限
定するものではないが、アルミニウム溶湯 500kg当たり
20Nl/min程度吹き込む場合で、通常 3〜25分間、好まし
くは5〜20分間、最も好ましくは10〜15分間である。
The time for blowing nitrogen gas into the molten metal is not particularly limited, but per 500 kg of molten aluminum
When blowing about 20 Nl / min, it is usually 3 to 25 minutes, preferably 5 to 20 minutes, and most preferably 10 to 15 minutes.

【0020】窒素ガスの吹き込み時間が 3分間以下の場
合には、溶湯の脱水素処理が不十分となり好ましくな
い。また25分間程度あれば脱水素を十分行うことがで
き、それ以上長くしても生産性が低下するだけでメリッ
トはない。
If the blowing time of nitrogen gas is 3 minutes or less, the dehydrogenation treatment of the molten metal is insufficient, which is not preferable. In addition, dehydrogenation can be sufficiently performed for about 25 minutes, and even if it is longer than that, there is no merit but productivity is reduced.

【0021】溶湯中に吹き込む窒素ガスの気泡は小さい
ほど、アルミニウム溶湯と泡との接触面積が大きくな
り、また、その浮上速度が遅くなるので脱ガス効果は大
きくなる。
The smaller the bubbles of nitrogen gas blown into the molten metal, the larger the contact area between the molten aluminum and the bubbles, and the slower the floating speed, so that the degassing effect becomes greater.

【0022】溶湯中での気泡の浮上速度がStokesの式に
従うものとすれば、窒素ガスの吹き込み処理後、そのガ
スの気泡の浮上が終了するまでの鎮静時間が必要となる
が、その時間は泡の径やアルミニウム溶湯の密度が小さ
いほど、また溶湯の深さが深いほど、そして溶湯の粘性
が大きいほど長くなる。しかし溶湯内には対流が存在す
るために実際に必要な鎮静時間は計算値よりもはるかに
短かくてよく、一般に使用されている 300〜500kg 程度
のるつぼ炉での鎮静時間は 5〜30分間程度でよい。
If the floating speed of bubbles in the molten metal complies with the Stokes equation, a sedation time is required after the blowing of nitrogen gas until the floating of the bubbles of the gas is completed. The smaller the bubble diameter and the density of the molten aluminum, the deeper the molten metal, and the larger the viscosity of the molten metal, the longer the length. However, due to the presence of convection in the melt, the actual sedation time required may be much shorter than the calculated value, and the sedation time in a commonly used crucible furnace of 300 to 500 kg is 5 to 30 minutes. The degree is enough.

【0023】溶湯中に吹き込む窒素ガスの露点が -10℃
以上だと水蒸気分圧が高くなり脱水素の効率が低下する
ので、溶湯中に吹き込む窒素ガスの露点は通常 -10℃以
下、好ましくは -30℃以下、最も好ましくは -50℃以下
である。
The dew point of nitrogen gas blown into the molten metal is -10 ° C.
If the above is the case, the partial pressure of water vapor increases and the efficiency of dehydrogenation decreases, so the dew point of nitrogen gas blown into the molten metal is usually -10 ° C or lower, preferably -30 ° C or lower, and most preferably -50 ° C or lower.

【0024】尚、本発明で云うところのアルミニウム溶
湯とは、純アルミニウムの他に例えばAl-Cu 合金、Al-C
u-Si合金、Al-Si 合金、Al-Si-Cu-Mg 合金、Al-Cu-Ni合
金、Al-Mg 合金、Al-Si-Ni-Mg-Cu合金、Al-Cu-Si-Mg-Ni
合金、Al-Zn-Mg-Cr-Ti合金などの各種合金の溶湯も含む
ものとする。
The molten aluminum referred to in the present invention is, for example, Al-Cu alloy or Al-C in addition to pure aluminum.
u-Si alloy, Al-Si alloy, Al-Si-Cu-Mg alloy, Al-Cu-Ni alloy, Al-Mg alloy, Al-Si-Ni-Mg-Cu alloy, Al-Cu-Si-Mg- Ni
Alloys and molten alloys of various alloys such as Al-Zn-Mg-Cr-Ti alloys are also included.

【0025】次に、本発明に用いた品質検査法について
述べる。 (1)溶存水素ガス量の測定法 溶湯約100gをルツボにサンプリングし、ベルジャの中に
入れて真空ポンプにより 700mmHgの減圧下に 5分間保持
したまま冷却する。(減圧凝固法) その後、ベルジャ
より取り出したサンプルの中央部を切断し、光学顕微鏡
にて観察し、切断面の空隙量より溶湯中の残存水素ガス
量を算出し、溶湯中の残存水素ガス量が0.20cc/100gAl
以下の場合を合格とした。
Next, the quality inspection method used in the present invention will be described. (1) Method for measuring the amount of dissolved hydrogen gas Approximately 100 g of molten metal is sampled in a crucible, placed in a bell jar, and cooled while keeping it under a reduced pressure of 700 mmHg for 5 minutes by a vacuum pump. (Depressurized coagulation method) After that, the central part of the sample taken out from the bell jar was cut, observed with an optical microscope, and the amount of residual hydrogen gas in the molten metal was calculated from the amount of voids in the cut surface, and the amount of residual hydrogen gas in the molten metal was calculated. Is 0.20cc / 100gAl
The following cases were accepted.

【0026】(2)介在物量の測定法 溶湯約100gを板状 (240 ×36×6mm)に鋳造し、冷却後破
断して破面の介在物を肉眼で観察した。20破面につき観
察し、いずれの破面でも介在物が確認されないときのみ
合格とした。
(2) Method for measuring the amount of inclusions About 100 g of molten metal was cast into a plate shape (240 × 36 × 6 mm), and after cooling, it fractured and the inclusions on the fracture surface were observed with the naked eye. 20 fracture surfaces were observed, and only when no inclusions were confirmed on any of the fracture surfaces, it was judged as passing.

【0027】以下に、本発明を実施例にしたがって更に
具体的に説明するが、本発明はこれらの実施例に何ら制
限されるものではない。
Hereinafter, the present invention will be described more specifically according to examples, but the present invention is not limited to these examples.

【0028】[0028]

【実施例1】図1は、この発明の方法を実施する装置の
1具体例を示す。図1中のAは圧力スイング吸着式窒素
ガス発生装置(以下PSA装置と略す)を、Bはアルミ
ニウム溶湯処理用るつぼ炉、Cは窒素ボンベを示す。こ
の装置は、開閉弁17、18により溶湯処理用るつぼ炉への
窒素ガスの供給源としてPSA装置または窒素ボンベを
選択することが出来る。
Embodiment 1 FIG. 1 shows one embodiment of an apparatus for carrying out the method of the present invention. In FIG. 1, A is a pressure swing adsorption type nitrogen gas generator (hereinafter abbreviated as PSA device), B is a crucible furnace for molten aluminum processing, and C is a nitrogen cylinder. In this device, a PSA device or a nitrogen cylinder can be selected as a supply source of nitrogen gas to the crucible furnace for molten metal treatment by opening / closing valves 17 and 18.

【0029】アルミニウム溶湯処理用るつぼ炉(内容積
0.1 m3 )内にJIS-AC4Cアルミニウム合金の溶湯を入れ
750℃に加熱保持した。この溶湯の溶存水素ガス量を測
定した結果0.41cc/100gAl の水素が含まれていた。
Crucible furnace for processing molten aluminum (internal volume
Put JIS-AC4C aluminum alloy melt in 0.1 m 3 ).
It was kept heated at 750 ° C. As a result of measuring the dissolved hydrogen gas amount of this molten metal, 0.41 cc / 100 g Al of hydrogen was contained.

【0030】PSA装置より純度99.8%(酸素濃度2000
ppm)、純度99.96 %(酸素濃度400ppm)及び純度99.988
%(酸素濃度120ppm)の窒素ガスをそれぞれ 1.5kgf/cm
2 の供給圧力で20Nl/min流しながらインペラ−の回転速
度300rpmで15分間攪拌し、脱水素処理を行った。
Purity 99.8% (oxygen concentration 2000
ppm), purity 99.96% (oxygen concentration 400 ppm) and purity 99.988
% (Oxygen concentration 120ppm) nitrogen gas 1.5kgf / cm
A dehydrogenation treatment was carried out by stirring the impeller at a rotation speed of 300 rpm for 15 minutes while flowing 20 Nl / min at a supply pressure of 2 .

【0031】脱水素処理後、鎮静時間 5分、10分、15
分、20分経過後のアルミニウム溶湯中の残存水素ガス量
と介在物量の測定結果を表1に示す。
After dehydrogenation treatment, sedation time was 5 minutes, 10 minutes, 15
Table 1 shows the measurement results of the amount of residual hydrogen gas and the amount of inclusions in the molten aluminum after 20 minutes and 20 minutes.

【0032】なお、本実施例では処理前の溶湯には介在
物の無いアルミニウム合金を使用した。
In this example, an aluminum alloy having no inclusions was used as the molten metal before the treatment.

【0033】窒素純度が99.8%の場合は脱水素処理後30
分経過しても残存水素ガス量は0.27cc/100gAl あり不合
格である。窒素純度99.96 %では15分後のサンプルで、
また窒素純度99.988%では 5分後のサンプルで残存水素
ガス量が0.20cc/100gAl 以下となり、かつ介在物も確認
されない合格サンプルとなった。
30% after dehydrogenation treatment when the nitrogen purity is 99.8%
Even after a lapse of minutes, the amount of residual hydrogen gas was 0.27cc / 100gAl and was unacceptable. With a nitrogen purity of 99.96%, the sample after 15 minutes,
When the nitrogen purity was 99.988%, the amount of residual hydrogen gas was 0.20cc / 100gAl or less in the sample after 5 minutes, and the sample was a pass sample in which inclusions were not confirmed.

【0034】[0034]

【実施例2】実施例1と同じ装置を用いて、アルミニウ
ム溶湯処理炉のるつぼ内にJIS-AC2Bアルミニウム合金の
溶湯を入れ 725℃に加熱保持しておいた。この溶湯中に
は0.37cc/100gAl の水素が含まれていた。そして、実施
例1と同様にPSA装置より純度99.8%、99.96 %、9
9.994%の窒素ガスを 1.5kgf/cm2 の供給圧力で20Nl/mi
n 流しながらインペラ−の回転速度300rpmで15分間攪拌
し脱水素処理を行った。
Example 2 Using the same apparatus as in Example 1, a JIS-AC2B aluminum alloy melt was placed in the crucible of an aluminum melt treatment furnace and heated to 725 ° C. This molten metal contained 0.37cc / 100g Al hydrogen. Then, in the same manner as in Example 1, the purity of 99.8%, 99.96%, 9
20 Nl / mi with 9.994% nitrogen gas at a supply pressure of 1.5 kgf / cm 2.
While flowing n, the mixture was stirred for 15 minutes at an impeller rotation speed of 300 rpm for dehydrogenation treatment.

【0035】脱水素処理後、鎮静時間 5分、10分、15
分、20分経過後のアルミニウム溶湯中の残存水素ガス量
と介在物量の測定結果を表2に示す。
After dehydrogenation treatment, sedation time was 5 minutes, 10 minutes, 15
Table 2 shows the measurement results of the amount of residual hydrogen gas and the amount of inclusions in the molten aluminum after 20 minutes and 20 minutes.

【0036】窒素純度が99.7%の場合は脱水素処理後20
分経過しても残存水素ガス量は0.25cc/100gAl あり不合
格であるが、窒素純度が99.98 %、99.994%の場合は共
に脱水素処理後10分後のサンプルで残存水素ガス量が0.
20cc/100gAl 以下となり、かつ介在物も確認されない合
格サンプルとなった。
If the nitrogen purity is 99.7%, after dehydrogenation treatment, 20
The amount of residual hydrogen gas was 0.25cc / 100gAl even after a lapse of minutes, but it was unacceptable, but when the nitrogen purity was 99.98% and 99.994%, the residual hydrogen gas amount was 0.
It was a passing sample with less than 20cc / 100gAl and no inclusions were confirmed.

【0037】[0037]

【実施例3】実施例1と同じJIS-AC4Cアルミニウム合金
の溶湯を 750℃に加熱保持したものに、純度99.9995%
(酸素濃度 5ppm )の窒素ボンベガスを途中でボンベ交
換することなく 1.5kgf/cm2 の供給圧力で20Nl/min流し
ながらインペラ−の回転速度300ppmで15分間攪拌し、脱
水素処理を行った。
[Example 3] The same JIS-AC4C aluminum alloy melt as in Example 1 was heated and held at 750 ° C, and the purity was 99.9995%.
The dehydrogenation treatment was carried out by stirring the nitrogen cylinder gas (oxygen concentration 5 ppm) at a supply pressure of 1.5 kgf / cm 2 for 20 Nl / min at a supply speed of 1.5 kgf / cm 2 for 15 minutes while rotating the impeller at a rotation speed of 300 ppm without changing the cylinder gas in the middle.

【0038】脱水素処理後、鎮静時間 5分、10分、15
分、20分経過後のアルミニウム溶湯中の残存水素ガス量
と介在物量の測定結果を表3に示す。
After dehydrogenation treatment, sedation time was 5 minutes, 10 minutes, 15
Table 3 shows the measurement results of the amount of residual hydrogen gas and the amount of inclusions in the molten aluminum after 20 minutes and 20 minutes.

【0039】また、脱水素処理中にボンベ交換を 1分間
程度行い、その間空気が混入してしまった場合における
同様の脱水素処理結果を表4に示す。
Table 4 shows the results of the same dehydrogenation treatment when the cylinder was exchanged for about 1 minute during the dehydrogenation treatment and air was mixed in during that time.

【0040】脱水素処理中にボンベ交換を行わない場合
では表3に示すように脱水素処理後10分後のサンプルで
残存水素ガス量が0.20cc/100gAl 以下となり、かつ介在
物も確認されない合格サンプルとなった。
When the cylinder was not exchanged during the dehydrogenation treatment, as shown in Table 3, the amount of residual hydrogen gas in the sample 10 minutes after the dehydrogenation treatment was 0.20cc / 100gAl or less, and inclusions were not confirmed. It became a sample.

【0041】しかしながら、脱水素処理中にボンベ交換
を行った場合では、表4に示すように脱水素処理後20分
後のサンプルでも残存水素ガス量は0.26cc/100gAl あり
介在物も確認される不合格サンプルとなった。
However, when the cylinder was exchanged during the dehydrogenation treatment, as shown in Table 4, the residual hydrogen gas amount was 0.26 cc / 100 gAl even in the sample 20 minutes after the dehydrogenation treatment, and inclusions were also confirmed. It became a reject sample.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
圧力スイング吸着式窒素ガス発生装置で得られた純度9
9.95 〜99.995%の窒素ガスをアルミニウム溶湯中に吹
き込むことにより、溶湯中の脱水素を良好に実施するこ
とができる。この様にして得られた高品質のアルミニウ
ム溶湯を用いて、重力鋳造法、低圧鋳造法、中圧鋳造
法、ダイキャスト法などによりアルミニウム鋳造品を製
造することにより、高品質な各種自動車部品、機械部品
等のアルミニウム製品を製造することができる。
As described above, according to the present invention,
Purity obtained by pressure swing adsorption type nitrogen gas generator 9
By blowing nitrogen gas of 9.95 to 99.995% into the molten aluminum, dehydrogenation in the molten metal can be carried out well. Using the high-quality molten aluminum thus obtained, gravity casting, low-pressure casting, medium-pressure casting, die casting, etc. to produce aluminum castings, high-quality automobile parts, Aluminum products such as machine parts can be manufactured.

【0043】[0043]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1および2に用いたアルミニウム溶湯処
理用るつぼ炉(B)と圧力スイング吸着式窒素ガス発生
装置(A)および窒素ボンベ(C)。
1 is a crucible furnace (B) for treating molten aluminum used in Examples 1 and 2, a pressure swing adsorption type nitrogen gas generator (A), and a nitrogen cylinder (C).

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 エア−ドライヤ− 3、3a 吸着塔 4、4a,7,7a,10,10a,13,13a,1
5,17,18開閉弁 5、5a 空気流入路パイプ 8 吸引路パイプ 9、9a、11 製品窒素ガス取出路パイプ 12 均圧パイプ 14 サ−ジタンク 16 製品窒素ガス輸送路パイプ 19 フラックス供給ホッパ− 20 垂直回転軸 21 インペラ− 22 るつぼ 23 溶湯
1 Air Compressor 2 Air-Dryer 3, 3a Adsorption Tower 4, 4a, 7, 7a, 10, 10a, 13, 13a, 1
5,17,18 Open / close valve 5,5a Air inflow passage pipe 8 Suction passage pipe 9,9a, 11 Product nitrogen gas extraction passage pipe 12 Pressure equalizing pipe 14 Surge tank 16 Product nitrogen gas transportation passage pipe 19 Flux supply hopper-20 Vertical rotary shaft 21 Impeller 22 Crucible 23 Molten metal

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分子ふるい炭素を充填した2塔以上の吸
着塔に原料空気を供給し、加圧吸着と減圧再生を順次繰
り返すことにより連続的に製品窒素ガスを取り出す圧力
スイング吸着式窒素ガス発生装置で得られた純度99.95
〜99.995%の窒素ガスを、アルミニウム溶湯の下部に吹
き込み、この窒素ガスを溶湯下部に取り付けられたイン
ペラ−により微細な気泡として溶湯全体に分散させるこ
とにより、溶存水素ガスを窒素ガスとともに溶湯上部に
浮上させ除去することを特徴とするアルミニウム溶湯の
脱水素方法。
1. A pressure swing adsorption type nitrogen gas generation method in which raw material air is supplied to two or more adsorption columns filled with molecular sieving carbon, and product nitrogen gas is continuously taken out by sequentially repeating pressure adsorption and pressure reduction regeneration. Purity obtained with the device 99.95
Approximately 99.995% of nitrogen gas is blown into the lower part of the molten aluminum, and this nitrogen gas is dispersed into the entire molten metal as fine bubbles by an impeller attached to the lower part of the molten metal. A method for dehydrogenating molten aluminum, characterized by floating and removing.
JP5252191A 1993-09-13 1993-09-13 Method for removing hydrogen in molten aluminum Pending JPH0790409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5252191A JPH0790409A (en) 1993-09-13 1993-09-13 Method for removing hydrogen in molten aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252191A JPH0790409A (en) 1993-09-13 1993-09-13 Method for removing hydrogen in molten aluminum

Publications (1)

Publication Number Publication Date
JPH0790409A true JPH0790409A (en) 1995-04-04

Family

ID=17233771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252191A Pending JPH0790409A (en) 1993-09-13 1993-09-13 Method for removing hydrogen in molten aluminum

Country Status (1)

Country Link
JP (1) JPH0790409A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171362B1 (en) 1998-12-25 2001-01-09 Kobe Steel, Ltd Method for refining molten aluminum alloy and flux for refining molten aluminum alloy
JP2001107154A (en) * 1999-09-03 2001-04-17 Norsk Hydro Asa Device for treating liquid
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
CN108586428A (en) * 2018-03-28 2018-09-28 中石化上海工程有限公司 A kind of method of low energy consumption lactide molten state drying
WO2020245542A1 (en) * 2019-06-07 2020-12-10 Constellium Issoire Device for trapping hydrogen
CN117452866A (en) * 2023-12-22 2024-01-26 中信戴卡股份有限公司 Dynamic intelligent control method for aluminum alloy refining

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144438A (en) * 1982-02-18 1983-08-27 Sumitomo Alum Smelt Co Ltd Method of refining aluminum molten metal and apparatus therefor
JPS63104629A (en) * 1986-10-18 1988-05-10 Kanebo Ltd Method and apparatus for separating air
JPS63201008A (en) * 1987-02-12 1988-08-19 Kanebo Ltd Production of carbon for molecular sieve
JPS63218230A (en) * 1987-03-06 1988-09-12 Kanebo Ltd Separation of gaseous mixture
JPH03232936A (en) * 1984-07-10 1991-10-16 Carborundum Co Device and method for dispersing gas into molten metal
JPH05156377A (en) * 1991-12-02 1993-06-22 Fukuoka Alum Kogyo Kk Device for treating molten metal and bubble generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144438A (en) * 1982-02-18 1983-08-27 Sumitomo Alum Smelt Co Ltd Method of refining aluminum molten metal and apparatus therefor
JPH03232936A (en) * 1984-07-10 1991-10-16 Carborundum Co Device and method for dispersing gas into molten metal
JPS63104629A (en) * 1986-10-18 1988-05-10 Kanebo Ltd Method and apparatus for separating air
JPS63201008A (en) * 1987-02-12 1988-08-19 Kanebo Ltd Production of carbon for molecular sieve
JPS63218230A (en) * 1987-03-06 1988-09-12 Kanebo Ltd Separation of gaseous mixture
JPH05156377A (en) * 1991-12-02 1993-06-22 Fukuoka Alum Kogyo Kk Device for treating molten metal and bubble generator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171362B1 (en) 1998-12-25 2001-01-09 Kobe Steel, Ltd Method for refining molten aluminum alloy and flux for refining molten aluminum alloy
JP2001107154A (en) * 1999-09-03 2001-04-17 Norsk Hydro Asa Device for treating liquid
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
CN108586428A (en) * 2018-03-28 2018-09-28 中石化上海工程有限公司 A kind of method of low energy consumption lactide molten state drying
CN108586428B (en) * 2018-03-28 2020-07-03 中石化上海工程有限公司 Method for drying lactide in molten state
WO2020245542A1 (en) * 2019-06-07 2020-12-10 Constellium Issoire Device for trapping hydrogen
FR3096987A1 (en) * 2019-06-07 2020-12-11 Constellium Issoire Device to trap hydrogen
US11932920B2 (en) 2019-06-07 2024-03-19 Constellium Issoire Device for trapping hydrogen
CN117452866A (en) * 2023-12-22 2024-01-26 中信戴卡股份有限公司 Dynamic intelligent control method for aluminum alloy refining
CN117452866B (en) * 2023-12-22 2024-03-22 中信戴卡股份有限公司 Dynamic intelligent control method for aluminum alloy refining

Similar Documents

Publication Publication Date Title
US4772319A (en) Process for treating molten aluminum to remove hydrogen gas and non-metallic inclusions therefrom
US20180135150A1 (en) Purifying an alloy melt
JPH0790409A (en) Method for removing hydrogen in molten aluminum
CN111876619A (en) Aluminum alloy melt refining treatment device and method for obtaining ultralow hydrogen and slag content
KR20180117648A (en) Method and apparatus for purifying a target material for an EUV light source
CN105358723B (en) The method of aluminium alloy of the production comprising lithium
CN111004948B (en) Method for local vacuum casting of aluminum alloy
Akhtar et al. Effect of hydrogen content, melt cleanliness and solidification conditions on tensile properties of A356 alloy
US4714494A (en) Trough shear diffusor apparatus for fluxing molten metal and method
CN107760902B (en) A kind of method of refining of aluminium silicon systems cast aluminium alloy gold
CN115679201B (en) Smelting method of high-purity martensitic heat-resistant stainless steel
CN105937003B (en) A kind of aluminum alloy materials and its centrifugal casting forming method substituting QT500 major diameters transmission wheel disc
Uludağ et al. The effect of bifilm and Sr modification on the mechanical properties of AlSi12Fe alloy
JPH06299261A (en) Method for cleaning copper or copper alloy
Zeng et al. Relationship between aluminum oxide inclusion and porosity in aluminum melt
Shih et al. Effects of degassing and fluxing on the quality of Al-7% Si and A356. 2 alloys
JP4205252B2 (en) Degassing method for molten copper or copper alloy
Gerrard Inclusions and hydrogen and their effects on the quality of direct chill cast and flat rolled aluminium alloys for aerospace applications
JP3654181B2 (en) Method for refining molten metal
Mitchell Melting processes and solidification in alloys 718-625
RU2715321C1 (en) Method of producing steel powders
JPH0790406A (en) Method for degassing molten aluminum and aluminum alloy and device therefor
JP7223725B2 (en) Molten aluminum treatment method
JPH08309496A (en) Manufacture of slab with few inclusion defect
CN112795802A (en) Melt purifying agent for vacuum melting of aluminum-manganese alloy and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees