JP2000328138A - Production of bainite type rail excellent in wear resistance and flaking resistance - Google Patents

Production of bainite type rail excellent in wear resistance and flaking resistance

Info

Publication number
JP2000328138A
JP2000328138A JP11139643A JP13964399A JP2000328138A JP 2000328138 A JP2000328138 A JP 2000328138A JP 11139643 A JP11139643 A JP 11139643A JP 13964399 A JP13964399 A JP 13964399A JP 2000328138 A JP2000328138 A JP 2000328138A
Authority
JP
Japan
Prior art keywords
less
resistance
rail
flaking
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11139643A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yokoyama
泰康 横山
Shinji Mitao
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11139643A priority Critical patent/JP2000328138A/en
Publication of JP2000328138A publication Critical patent/JP2000328138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a bainite type rail having characteristics of being excellent in wear resistance and flaking damage resistance. SOLUTION: As to the method for producing a bainite type rail having characteristics of being excellent in wear resistance and flaking damage resistance, steel contg., by weight, 0.35 to 0.5% C, <=41% Si, 0.4 to 2.5% Mn, <=0.035% P, <=0.035% S and 0.05 to 0.5% Nb is heated at 1100 to 1350 deg.C and is subjected to hot rolling in such a manner that the rolling finishing temp. is controlled to >=850 deg.C to form a rail stock, and next, the head of the rail is subjected to controlled cooling to <=500 deg.C at a cooling rate of <=5 deg.C/S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海外の鉱山鉄道の
ような急曲線区間が多く且つ、高軸荷重条件下で使用さ
れる耐摩耗性及び耐フレーキング損傷性に優れた特性を
有するベイナイト型レールの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bainite which has many sharply curved sections, such as an overseas mining railway, and has excellent abrasion resistance and flaking damage resistance used under high axial load conditions. The present invention relates to a method for manufacturing a mold rail.

【0002】[0002]

【従来の技術】海外の鉱山鉄道のように鉱石の運搬を主
とする車両の車輪軸に架かる荷重は客車に比較して遥か
に大きな値であり、このような高軸重鉄道に使用される
レール鋼には従来、耐摩耗性重視の観点からパーライト
鋼が用いられている。近年、更なる耐摩耗性向上を目指
して特開平8−109439号公報、特開平8−144
016号公報ではC量を0.85%〜1.20%に増加
し、特開平8−246100号公報、特開平8−246
101号公報ではC量を0.85%〜1.20%とする
とともにレール頭部に熱処理を施す等C量を増加して、
セメンタイト分率の増加により耐摩耗性の向上を図る等
の工夫がなされている。
2. Description of the Related Art The load applied to the wheel axle of a vehicle that mainly transports ore, such as an overseas mining railway, is much larger than that of a passenger car, and is used for such a high axle heavy railway. Conventionally, pearlite steel is used as the rail steel from the viewpoint of emphasizing wear resistance. In recent years, with the aim of further improving wear resistance, Japanese Patent Application Laid-Open Nos. 8-109439 and 8-144 have been disclosed.
No. 016, the C content is increased from 0.85% to 1.20%.
In Japanese Patent Publication No. 101, the C content is increased to 0.85% to 1.20% and the amount of C is increased by performing heat treatment on the rail head.
Some measures have been taken to improve the wear resistance by increasing the cementite fraction.

【0003】一方、高軸重鉄道の曲線区間のレールに
は、車輪による転がり応力と遠心力による滑り力が加わ
るためレールの摩耗がより激しくなるとともに滑りに起
因したフレーキング損傷が発生する。フレーキング損傷
は曲線区間においてレール頭頂面と車輪の転動面が転が
り方向以外にも滑ることによりレール頭頂面直下に塑性
変形が生じて、これを基点として亀裂が生ずるという問
題がある。フレーキング損傷の防止策として日本鉄鋼協
会講演論文集「材料とプロセス」vol.10(199
7)p1365ではレール鋼の材質として降伏点又は耐
力を上昇させること、脆いセメンタイト等の炭化物を低
減させることが提案されている。
[0003] On the other hand, a rail in a curved section of a high axle heavy railway is subjected to a rolling force due to wheels and a sliding force due to centrifugal force, so that the rail is more worn and flaking damage due to the sliding occurs. The flaking damage has a problem that, in a curved section, the rail top surface and the rolling surface of the wheel slide in directions other than the rolling direction, so that plastic deformation occurs immediately below the rail top surface, and a crack is generated based on the plastic deformation. Proceedings of the Iron and Steel Institute of Japan, “Materials and Processes” vol. 10 (199
7) In p1365, it is proposed to increase the yield point or proof stress as a material of the rail steel and to reduce carbides such as brittle cementite.

【0004】しかし、パーライト組織の耐力はセメンタ
イトとパーライトの層状組織の層間隔によりほぼ決定さ
れるためC量の増大による降伏点の上昇は期待できない
こと、更にはC量の増大は脆いセメンタイト層の量が増
加するため耐フレーキング損傷性の向上は見込めない事
等、パーライト組織を有するレール鋼において耐摩耗性
と耐フレーキング損傷性の両特性を満足させることは困
難であつた。
[0004] However, the yield strength of the pearlite structure is almost determined by the layer spacing of the layered structure of cementite and pearlite, so that an increase in the yield point due to an increase in the amount of C cannot be expected. It was difficult to satisfy both the properties of the wear resistance and the resistance to flaking damage in a rail steel having a pearlite structure, for example, it was difficult to improve the resistance to flaking damage due to the increased amount.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような問
題に鑑みなされたもので、従来の亜共析、共析及び過共
析型パーライトレール鋼に比べて耐摩耗性と耐フレーキ
ング損傷性の両特性に優れたベイナイト組織を有するレ
ールの製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been developed in consideration of wear resistance and flaking resistance as compared with conventional hypoeutectoid, eutectoid and hypereutectoid pearlite rail steels. An object of the present invention is to provide a method for producing a rail having a bainite structure excellent in both properties.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、 (1)重量%でC:0.35〜0.5%、Si:1%以
下、Mn:0.4〜2.5%、P:0.035%以下、
S:0.035%以下、Nb:0.05〜0.5%を含
有する鋼を、1100〜1350℃に加熱し、圧延仕上
温度が850℃以上となるように熱間圧延してレール素
材を成形し、次いでレール頭部を5℃/s以下の冷却速
度で500℃以下の温度まで制御冷却することを特徴と
する耐摩耗性、耐フレーキング損傷性に優れたベイナイ
ト型レールの製造方法を提供する。
In order to solve the above problems, the present invention provides: (1) C: 0.35 to 0.5% by weight, Si: 1% or less, Mn: 0.4 to 2.5%, P: 0.035% or less,
Steel containing S: 0.035% or less and Nb: 0.05 to 0.5% is heated to 1100 to 1350 ° C, and hot-rolled so that the rolling finish temperature becomes 850 ° C or more, to obtain a rail material. And then controlling the rail head at a cooling rate of 5 ° C./s or less to a temperature of 500 ° C. or less to produce a bainite-type rail excellent in abrasion resistance and flaking damage resistance. I will provide a.

【0007】(2)重量%でC:0.35〜0.5%、
Si:1%以下、Mn:0.4〜2.5%、P:0.0
35%以下、S:0.035%以下、Nb:0.05〜
0.2%を含有する鋼を、1100〜1350℃に加熱
し、圧延仕上温度が850℃以上となるように熱間圧延
してレール素材を成形し、次いでレール頭部を5℃/s
以下の冷却速度で500℃以下の温度まで制御冷却する
ことを特徴とする耐摩耗性、耐フレーキング損傷性に優
れたベイナイト型レールの製造方法を提供する。
(2) C: 0.35 to 0.5% by weight%
Si: 1% or less, Mn: 0.4 to 2.5%, P: 0.0
35% or less, S: 0.035% or less, Nb: 0.05 to
A steel containing 0.2% is heated to 1100 to 1350 ° C, and hot-rolled so that a rolling finish temperature is 850 ° C or higher to form a rail material, and then the rail head is heated at 5 ° C / s.
Provided is a method for manufacturing a bainite type rail excellent in wear resistance and flaking damage resistance, characterized in that controlled cooling to a temperature of 500 ° C. or less is performed at a cooling rate of below.

【0008】(3)重量%でC:0.35〜0.5%、
Si:1%以下、Mn:0.4〜2.5%、P:0.0
35%以下、S:0.035%以下、Nb:0.05〜
0.5%を含有し、更にCr:1.5%以下、Cu:1
%以下、Ni:1%以下、Mo:2%以下、V:0.2
%以下の1種または2種以上を含有する鋼を、1100
〜1350℃に加熱し、圧延仕上温度が850℃以上と
なるように熱間圧延してレール素材を成形し、次いでレ
ール頭部を5℃/s以下の冷却速度で500℃以下の温
度まで制御冷却することを特徴とする耐摩耗性、耐フレ
ーキング損傷性に優れたベイナイト型レールの製造方法
を提供する。
(3) C: 0.35 to 0.5% by weight,
Si: 1% or less, Mn: 0.4 to 2.5%, P: 0.0
35% or less, S: 0.035% or less, Nb: 0.05 to
0.5%, Cr: 1.5% or less, Cu: 1
%, Ni: 1% or less, Mo: 2% or less, V: 0.2
% Or less of one or more kinds of steel,
~ 1350 ° C, hot-rolled so that the rolling finish temperature is 850 ° C or higher to form a rail material, and then control the rail head at a cooling rate of 5 ° C / s or less to a temperature of 500 ° C or less. Provided is a method for manufacturing a bainite type rail which is excellent in wear resistance and flaking damage resistance characterized by cooling.

【0009】(4)重量%でC:0.35〜0.5%、
Si:1%以下、Mn:0.4〜2.5%、P:0.0
35%以下、S:0.035%以下、Nb:0.05〜
0.2%を含有し、更にCr:1.5%以下、Cu:1
%以下、Ni:1%以下、Mo:2%以下、V:0.2
%以下の1種または2種以上を含有する鋼を、1100
〜1350℃に加熱し、圧延仕上温度が850℃以上と
なるように熱間圧延してレール素材を成形し、次いでレ
ール頭部を5℃/s以下の冷却速度で500℃以下の温
度まで制御冷却することを特徴とする耐摩耗性、耐フレ
ーキング損傷性に優れたベイナイト型レールの製造方法
を提供する。
(4) C: 0.35 to 0.5% by weight,
Si: 1% or less, Mn: 0.4 to 2.5%, P: 0.0
35% or less, S: 0.035% or less, Nb: 0.05 to
0.2%, Cr: 1.5% or less, Cu: 1
%, Ni: 1% or less, Mo: 2% or less, V: 0.2
% Or less of one or more kinds of steel,
~ 1350 ° C, hot-rolled to a rolling finish temperature of 850 ° C or higher to form a rail material, and then control the rail head to a temperature of 500 ° C or less at a cooling rate of 5 ° C / s or less. Provided is a method for manufacturing a bainite type rail which is excellent in wear resistance and flaking damage resistance characterized by cooling.

【0010】[0010]

【発明の実施の形態】以下、本発明に係るレールの成分
組成、ミクロ組織及び製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the component composition, microstructure and manufacturing method of a rail according to the present invention will be described.

【0011】本発明のレール鋼の製造方法はC量を0.
35〜0.5%と従来のパーライト型レール鋼に比較し
て著しくC量を減少させ、Nbを0.05%〜0.5%添
加してミクロ組織をベイナイトとして耐フレーキング損
傷性の向上を図ると共に、セメンタイトに比べて高硬度
を持つNb炭化物等の特殊炭化物を鋼中に微細分散させて
耐摩耗性の向上を図るために、熱間圧延条件と熱間圧延
後の冷却方法を規定したものである。
According to the method for producing rail steel of the present invention, the C content is set to 0.1.
35-0.5%, significantly reduced C content compared to conventional pearlitic rail steel, 0.05% -0.5% Nb added to improve microstructure to bainite to improve flaking damage resistance In order to improve wear resistance by finely dispersing special carbides such as Nb carbide with high hardness compared to cementite in steel, the hot rolling conditions and cooling method after hot rolling are specified. It was done.

【0012】(成分組成) C :0.35〜0.5%とする。Cは強度と耐摩耗性を
確保するための必須元素である。しかし、0.35%未
満では耐摩耗性を保持するために必要な特殊炭化物を充
分に確保することが難しく、0.5%を超えると均一な
ベイナイト組織が得られず、パーライトもしくはマルテ
ンサイトとの混合組織となり、耐フレーキング損傷性が
著しく低下する。従って、C量を0.35%〜0.5%
の範囲とする。
(Component composition) C: 0.35 to 0.5%. C is an essential element for ensuring strength and wear resistance. However, if it is less than 0.35%, it is difficult to secure a sufficient amount of special carbide necessary for maintaining wear resistance, and if it exceeds 0.5%, a uniform bainite structure cannot be obtained, and pearlite or martensite cannot be obtained. And the flaking damage resistance is significantly reduced. Therefore, the amount of C is 0.35% to 0.5%
Range.

【0013】Si:1%以下とする。Siは脱酸材として有
効であるが、1%を超えるとSiの有する高い酸素との結
合力のために溶接特性が劣化する。従って、Si量は1%
以上の範囲とする。
Si: 1% or less. Although Si is effective as a deoxidizing material, if it exceeds 1%, the welding characteristics deteriorate due to the high bonding force of Si with oxygen. Therefore, the amount of Si is 1%
The above range is set.

【0014】Mn:0.4%〜2.5%とする。Mnはパー
ライト変態温度を低下させ、焼入性を高めることにより
組織のベイナイト化を促進し、レールの高強度化、高延
靭性化に寄与する元素である。しかし、0.4%未満で
は充分な効果が得られず、2.5%を超えると鋼のミク
ロ偏析によるマルテンサイト組織を生じ易く、熱処理時
及び溶接時に硬化や脆化を生じ材質劣化を来すので好ま
しくない。従って、Mn量を0.4%〜2.5%の範囲と
する。
Mn: 0.4% to 2.5%. Mn is an element that lowers the pearlite transformation temperature and enhances hardenability, thereby promoting the formation of bainite in the structure, and contributing to higher rail strength and higher ductility. However, if the content is less than 0.4%, a sufficient effect cannot be obtained. If the content is more than 2.5%, a martensitic structure is liable to be generated due to micro-segregation of steel, and hardening or embrittlement occurs during heat treatment and welding to deteriorate the material. It is not preferred. Therefore, the Mn content is set in the range of 0.4% to 2.5%.

【0015】P :0.035%以下とする。Pは靭性を
劣化させる元素であることから、0.035%以下とす
る。
P: 0.035% or less. Since P is an element that deteriorates toughness, it is set to 0.035% or less.

【0016】S :0.035%以下とする。Sは主に介
在物の形態で鋼中に存在するが0.035%を超えると
この介在物量が著しく増加し、材質の劣化を引き起こす
ので0.035%以下とする。
S: 0.035% or less. S is mainly present in the form of inclusions in the steel, but if it exceeds 0.035%, the amount of these inclusions will increase significantly and cause deterioration of the material.

【0017】Nb:0.05〜0.5%とする。Nbは、焼
入性を増加させてミクロ組織をベイナイト化するだけで
なく、鋼中のCと結び付いて熱間圧延後に炭化物として
微細に析出するので、レール頭部の内部まで変態強化と
析出強化により硬度上昇が可能となる。その結果、耐摩
耗性と耐フレーキング損傷性が向上するのでレールの寿
命延長に大きく寄与する。しかし、0.05%未満では
その効果が有効に発揮されず、逆に0.5%を超えて添
加すると溶接性が劣化する。従って、Nb量を0.05%
〜0.5%の範囲とする。なお、耐摩耗性、耐フレーキ
ング損傷性向上の効果、経済性の観点からは、0.05
%〜0.2%の範囲が好ましい。
Nb: 0.05 to 0.5%. Nb not only increases the hardenability to bainite the microstructure, but also combines with C in the steel and precipitates finely as carbide after hot rolling, so transformation strengthening and precipitation strengthening up to the inside of the rail head Thereby, the hardness can be increased. As a result, abrasion resistance and flaking damage resistance are improved, which greatly contributes to extending the life of the rail. However, if the content is less than 0.05%, the effect is not effectively exhibited. Conversely, if the content exceeds 0.5%, the weldability deteriorates. Therefore, the Nb content is set to 0.05%
0.50.5%. In addition, from the viewpoints of abrasion resistance, the effect of improving the resistance to flaking damage, and economic efficiency, 0.05
% Is preferred.

【0018】Cr:1.5%以下とする。Crは焼入性を増
加させてミクロ組織のベイナイト化を促進する元素であ
る。しかし、1.5%を超えるとCrの有する高い酸素と
の結合力のために溶接性を害するので1.5%以下とし
た。
Cr: 1.5% or less. Cr is an element that increases the hardenability and promotes the microstructure to be bainite. However, if the content exceeds 1.5%, the weldability is impaired due to the high bonding strength of Cr with oxygen, so the content is set to 1.5% or less.

【0019】Cu:1%以下とする。Cuは固溶強化により
強度上昇を図る元素であるが、1%を超えるとCu割れを
生じるので、1%以下とする。
Cu: 1% or less. Cu is an element that aims to increase the strength by solid solution strengthening, but if it exceeds 1%, Cu cracks occur, so it is set to 1% or less.

【0020】Ni:1%以下とする。Niは固溶強化による
強度上昇と靭性強化を図る元素である。又、Cuと複合添
加することによりCu割れを抑制するので、Cuを添加する
場合にはNi添加が望ましい。しかし、1%を超えると強
度,靭性向上の効果は飽和するので1%以下とする。
Ni: 1% or less. Ni is an element for increasing strength and toughness by solid solution strengthening. In addition, since Cu cracking is suppressed by adding Cu in combination, Ni is preferably added when Cu is added. However, if it exceeds 1%, the effect of improving strength and toughness saturates, so it is set to 1% or less.

【0021】Mo:2%以下とする。Moはミクロ組織のベ
イナイト化を促進する元素であるが、2%を超えると焼
入性が更に向上してマルテンサイト組織が生じやすくな
り耐フレーキング損傷性が低下するので、2%以下とす
る。
Mo: 2% or less. Mo is an element that promotes the formation of bainite in the microstructure. However, if it exceeds 2%, the hardenability is further improved, a martensite structure is easily generated, and the flaking damage resistance is reduced. .

【0022】V :0.2%以下とする。Vは鋼中のCと結
び付いて熱間圧延後に炭化物として微細析出するので、
レール頭部の内部まで析出強化により硬度上昇が可能で
あり、レールの寿命延長に有効であるが、0.2%を超
えて添加してもその効果は飽和するので、0.2%以下
とする。
V: 0.2% or less. V is finely precipitated as carbide after hot rolling in combination with C in steel,
The hardness can be increased by precipitation strengthening up to the inside of the rail head, which is effective for extending the life of the rail. However, even if added over 0.2%, the effect is saturated. I do.

【0023】(製造方法)本発明では、上述した組成の
鋼、具体的には鋼片を1100℃以上1350℃以下に
加熱し、前記鋼片を圧延仕上温度が850℃以上となる
ように熱間圧延してレールとし、ついで前記レールの頭
部を5℃/s以下の冷却速度で500℃以下まで制御冷
却する。
(Manufacturing method) In the present invention, the steel having the above-described composition, specifically, a steel slab is heated to 1100 ° C or higher and 1350 ° C or lower, and the steel slab is heated to a rolling finish temperature of 850 ° C or higher. Then, the head of the rail is controlled and cooled to 500 ° C. or less at a cooling rate of 5 ° C./s or less.

【0024】加熱温度:1100℃以上1350℃以下
とする。レールのような複雑な立体形状に寸法精度良く
圧延するためには、鋼の熱間変形抵抗値が極力低くなる
高温域(再結晶γ域)で熱間圧延することが望ましいの
で、鋼片の加熱温度の下限を1100℃以上とする。一
方、加熱温度が1350℃を超えると鋼片に傷が発生し
やすくなり仕上圧延後のレールの表面性状に問題を生じ
るので加熱温度の上限を1350℃以下とする。
The heating temperature is from 1100 ° C. to 1350 ° C. In order to roll a complicated three-dimensional shape such as a rail with high dimensional accuracy, it is desirable to perform hot rolling in a high temperature region (recrystallization γ region) where the hot deformation resistance value of the steel is as low as possible. The lower limit of the heating temperature is 1100 ° C. or higher. On the other hand, if the heating temperature exceeds 1350 ° C., the steel slab is likely to be scratched, which causes a problem in the surface properties of the rail after finish rolling. Therefore, the upper limit of the heating temperature is 1350 ° C. or less.

【0025】冷却速度:5℃/s以下とする。仕上圧延
後のレール頭部の冷却速度は5℃/s以下の冷却速度の
範囲内であれば、均質なベイナイト組織が得られ所望の
特性が確保できる。しかし、5℃/sを超える冷却速度
となるとマルテンサイト組織が生成し、耐フレーキング
損傷性が低下するので冷却速度は5℃/s以下とする。
Cooling rate: 5 ° C./s or less. If the cooling rate of the rail head after finish rolling is within the range of 5 ° C./s or less, a uniform bainite structure can be obtained and desired characteristics can be secured. However, if the cooling rate exceeds 5 ° C./s, a martensite structure is formed, and the resistance to flaking damage decreases, so the cooling rate is set to 5 ° C./s or less.

【0026】冷却停止温度:500℃以下とする。本発
明の組成の鋼の上記冷却速度におけるベイナイト変態開
始温度は550℃〜650℃となるので上記冷却速度で
均質なベイナイト組織を得るためには、冷却停止温度は
ベイナイト変態開始温度以下50℃は確保する必要があ
る。従って、冷却停止温度は500℃以下とする。
Cooling stop temperature: 500 ° C. or less. Since the bainite transformation start temperature at the above cooling rate of the steel of the composition of the present invention is 550 ° C. to 650 ° C., in order to obtain a homogeneous bainite structure at the above cooling rate, the cooling stop temperature is 50 ° C. or lower than the bainite transformation start temperature. Need to secure. Therefore, the cooling stop temperature is set to 500 ° C. or less.

【0027】(耐摩耗試験)耐摩耗性に関しては、レー
ルの実敷設による評価が最も望ましいが、西原式摩耗試
験機を用いて実際の接触条件をシミュレートした比較試
験により評価する方法も有効である。
(Abrasion Resistance Test) Regarding the abrasion resistance, it is most desirable to evaluate by actual laying of the rail. However, a method of evaluating by a comparative test simulating actual contact conditions using a Nishihara type abrasion tester is also effective. is there.

【0028】この試験によれば短期間で耐摩耗性を評価
することができるので、本発明の実施例は西原式摩耗試
験機により評価した結果を示す。図3に示す外形30m
m、幅8mmの西原式摩耗試験片をレール頭部から採取
し、接触圧力:1.5GPa、滑り率:−10%、試験環
境条件:乾燥状態で10万回転後の摩耗量を測定した。
According to this test, the abrasion resistance can be evaluated in a short period of time. Therefore, the results of the examples of the present invention evaluated by a Nishihara type abrasion tester are shown. 30m shown in Fig. 3
A Nishihara type abrasion test piece having a width of 8 mm and a width of 8 mm was collected from the rail head, and the contact pressure: 1.5 GPa, the slip ratio: -10%, the test environment conditions: The amount of wear after 100,000 rotations in a dry state was measured.

【0029】(耐フレーキング損傷試験)耐フレーキン
グ損傷性の評価もレールを曲線区間に実敷設してフレー
キング発生の有無により評価することが最も望ましいが
本特性の評価も耐摩耗性の評価と同様に西原式摩耗試験
機により実際にフレーキングが発生する接触条件をシミ
ュレートした比較試験により評価できる。具体的条件
は、接触圧力:2.1GPa、滑り率:−20%、試験環
境条件:油潤滑状態で2.5万回転毎に試験片の接触面
を観察し、亀裂もしくは剥離が発生した時間をフレーキ
ング発生寿命とした。
(Flaking damage resistance test) It is most desirable to evaluate the flaking damage resistance by actually laying a rail in a curved section and evaluating the occurrence of flaking. However, the evaluation of this characteristic is also the evaluation of abrasion resistance. In the same manner as in the above, it can be evaluated by a comparative test that simulates the contact conditions under which flaking actually occurs with a Nishihara-type abrasion tester. Specific conditions were as follows: contact pressure: 2.1 GPa, slip rate: -20%, test environment condition: the contact surface of the test piece was observed every 25,000 revolutions in an oil lubricated state, and the time when cracks or peeling occurred Was defined as the flaking occurrence life.

【0030】[0030]

【実施例】以下に本発明の具体的実施例について説明す
る。
EXAMPLES Specific examples of the present invention will be described below.

【0031】(実施例1)表1に示す成分組成を有する
供試鋼を1250℃に加熱し、920℃で熱間圧延を終
了後、0.5〜3℃/sで冷却して製造したレールから
耐摩耗試験片、耐フレーキング損傷試験片、硬さ試験片
を採取して前記した試験条件により評価試験を行った。
Example 1 A test steel having the composition shown in Table 1 was heated to 1250 ° C., hot rolled at 920 ° C., and cooled at 0.5 to 3 ° C./s. An abrasion test piece, a flaking damage test piece, and a hardness test piece were sampled from the rail, and an evaluation test was performed under the test conditions described above.

【0032】[0032]

【表1】 [Table 1]

【0033】耐摩耗性の評価は現状、レールとして使用
されている鋼種A−27即ち、C量が0.68%のパー
ライト型熱処理レール(以下基準材1と呼ぶ)の摩耗量
を基準とし、本基準摩耗量に対する各鋼種の摩耗量の増
減を%で示した。基準摩耗量に対して3%以上摩耗量が
少ない値が得られれば充分耐摩耗性が向上したと判断し
た。
The evaluation of wear resistance is based on the wear amount of steel type A-27 currently used as a rail, that is, a pearlite-type heat-treated rail having a C content of 0.68% (hereinafter referred to as reference material 1). The increase / decrease of the wear amount of each steel type with respect to the reference wear amount is shown in%. It was determined that the abrasion resistance was sufficiently improved if a value of 3% or more with respect to the reference wear amount was obtained.

【0034】耐フレーキング損傷性の評価は前記した基
準材1に比較してフレーキング発生寿命が1.5倍以上
となった場合を耐フレーキング損傷性が十分に向上した
と判断した。表2に評価試験結果を示す。
In the evaluation of the flaking damage resistance, it was judged that the flaking damage resistance was sufficiently improved when the flaking generation life was 1.5 times or more as compared with the reference material 1 described above. Table 2 shows the evaluation test results.

【0035】[0035]

【表2】 [Table 2]

【0036】C量が低いNo1-1,1-2,1-3,1-21,1-22,1-23,
1-24は基準材1(No1-27)と比較して3%以上の摩耗量
の減少が認められず耐摩耗性の向上効果は少なかった。
また、本発明よりもC量が高いNo1-8,1-9,1-10,1-12,1-1
4,1-18,1-19,1-26はミクロ組織が粗いパーライト組織も
しくはマルテンサイトとベイナイトの混合組織を呈して
いるため基準材(No1-27)の1.5倍未満と耐フレーキン
グ損傷性の向上は期待できなかった。No1-13はMn量が低
いために耐摩耗性にが低下した。一方、No1-25はMo量が
多く組織がマルテンサイトとベイナイトの混合組織を呈
しているため硬さは高いがフレーキング発生寿命は短か
くなった。これに対して成分組成が本発明の範囲を満た
すNo1-4,1-5,1-6,1-7,1-11,1-15,1-16,1-17,1-20は硬さ
がHv280以上あり、耐摩耗性、耐フレーキング損傷
性のいずれも優れた特性を示した。
No1-1,1-2,1-3,1-21,1-22,1-23,
No. 1-24 did not show a reduction in the amount of wear of 3% or more as compared with Reference Material 1 (No. 1-27), and the effect of improving the wear resistance was small.
Also, the amount of C higher than the present invention No1-8, 1-9, 1-10, 1-12, 1-1
4,1-18,1-19,1-26 have flaking resistance less than 1.5 times that of the reference material (No1-27) because microstructure shows coarse pearlite structure or mixed structure of martensite and bainite No improvement in damage was expected. No1-13 had low wear resistance due to low Mn content. On the other hand, No. 1-25 had a high Mo content and a structure with a mixed structure of martensite and bainite, so that the hardness was high but the flaking generation life was short. On the other hand, Nos. 1-4, 1-5, 1-6, 1-7, 1-11, 1-15, 1-16, 1-17 and 1-20 whose component compositions satisfy the range of the present invention are hard. Hv280 or more, and exhibited excellent properties in both abrasion resistance and flaking damage resistance.

【0037】図1に鋼種A-1〜A-10のデータをもとに耐
摩耗性、耐フレーキング損傷性に及ぼすC量の影響を示
す。本発明の範囲であるC量0.35〜0.5%のベイナイト組
織において良好な耐摩耗性、耐フレーキング損傷性が得
られることがわかる。
FIG. 1 shows the effect of the amount of carbon on wear resistance and flaking damage resistance based on data on steel types A-1 to A-10. It can be seen that good wear resistance and anti-flaking damage can be obtained with a bainite structure having a C content of 0.35 to 0.5%, which is within the range of the present invention.

【0038】(実施例2)表3に示す成分組成を有する
供試鋼を1280℃に加熱し、950℃で熱間圧延を終
了後、0.5〜3℃/sで冷却して製造したレールから
耐摩耗試験片、耐フレーキング損傷試験片、硬さ試験片
を採取して実施例1と同様の試験条件により評価試験を
行った。表4に評価試験結果を示す。
Example 2 A test steel having the composition shown in Table 3 was heated to 1280 ° C., hot rolled at 950 ° C., and cooled at 0.5 to 3 ° C./s. An abrasion resistance test piece, a flaking resistance damage test piece, and a hardness test piece were collected from the rail, and an evaluation test was performed under the same test conditions as in Example 1. Table 4 shows the evaluation test results.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】鋼種B-12は耐摩耗試験、耐フレーキング損
傷試験の基準材となる0.68%Cのパーライト型熱処理レー
ル材(以下基準材2と呼ぶ)である。表4は耐摩耗試
験、耐フレーキング損傷試験、硬さ試験結果であり、No
2-12は基準材2の評価結果である。
Steel type B-12 is a pearlite-type heat-treated rail material (hereinafter referred to as reference material 2) of 0.68% C, which is a reference material for a wear resistance test and a flaking resistance test. Table 4 shows the results of the abrasion test, the anti-flaking damage test, and the hardness test.
2-12 shows the evaluation result of Reference Material 2.

【0042】図2には鋼種B-1〜B-11の試験結果からN
b量と摩耗特性の関係を図示した。表4、図2から明ら
かなようにNb含有量が少ないNo 2-1,2-2では摩耗量が
多く基準材2と比較して3%以上の摩耗量の減少、フレ
ーキング発生寿命の1.5倍以上の延長を達成すること
は困難であった。一方Nb含有量が0.05%以上では
優れた耐摩耗性と耐フレーキング損傷性が得られた。従
って、溶接性も考慮してNb添加量は0.05%以上
0.5%以下とすることによって優れた耐摩耗性と耐フ
レーキング損傷性が得られることがわかる。一方Nb添
加による耐摩耗性と耐フレーキング損傷性の向上効果は
0.2%以上では飽和する傾向にあるので、合金添加量
の経済性も考慮するとNb添加量は0.05%〜0.2
%とするのがより好ましい。
FIG. 2 shows N based on the test results of steel types B-1 to B-11.
The relationship between the amount of b and the wear characteristics is illustrated. As is clear from Table 4 and FIG. 2, No. 2-1, 2-2 having a small Nb content has a large amount of abrasion and a reduction in abrasion of 3% or more compared to the reference material 2 and a reduction in the life of flaking. It was difficult to achieve an extension of more than .5 times. On the other hand, when the Nb content was 0.05% or more, excellent abrasion resistance and flaking damage resistance were obtained. Therefore, it can be seen that excellent wear resistance and anti-flaking damage can be obtained by setting the Nb addition amount to 0.05% or more and 0.5% or less in consideration of weldability. On the other hand, the effect of improving the wear resistance and the resistance to flaking damage due to the addition of Nb tends to saturate at 0.2% or more. Therefore, considering the economics of the alloy addition, the Nb addition is 0.05% to 0.1%. 2
% Is more preferable.

【0043】(実施例3)表5に示す成分組成を有する
供試鋼を用いて、表6に列記した製造条件で製造したレ
ールから耐摩耗試験片、耐フレーキング損傷試験片、硬
さ試験片を採取して実施例1と同様の試験条件により評
価試験を行った。
(Example 3) Using test steels having the component compositions shown in Table 5, abrasion test pieces, flaking damage test pieces, and hardness tests were made from rails manufactured under the manufacturing conditions listed in Table 6. The pieces were sampled and subjected to an evaluation test under the same test conditions as in Example 1.

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】鋼種C-2は耐摩耗試験、耐フレーキング損
傷試験の基準材となる0.68%Cのパーライト型熱処理レー
ル材(以下基準材3と呼ぶ)である。表7に評価試験結
果を示す。
Steel type C-2 is a 0.68% C pearlite-type heat-treated rail material (hereinafter referred to as reference material 3) which is a reference material for a wear resistance test and a flaking resistance test. Table 7 shows the evaluation test results.

【0047】[0047]

【表7】 [Table 7]

【0048】No3-12は基準材3の評価結果である。No 3
-1は鋼片の加熱温度が低すぎて圧延後のレールの寸法精
度が悪く製品とすることができなかった。又,No 3-2は
鋼片の加熱温度が高すぎて加熱中に鋼片に発生した傷が
圧延後もレールに残存したためNo 3-1と同様に製品とす
ることができなかった。 No 3- 3は圧延仕上げ温度が低
いためにミクロ組織が均一なベイナイト組織が得られず
フェライトとベイナイトの混合組織を呈したために耐摩
耗性、耐フレーキング損傷性が共に基準材3よりも劣っ
た結果となった。No 3-4は冷却速度が5℃/Sを超えて
いるためにミクロ組織がベイナイトとマルテンサイトの
混合組織を呈しており耐フレーキング損傷性が劣る結果
となった。No 3-5は冷却停止温度が高すぎてラス間隔の
細かい均質なベイナイト組織が得られなかったために耐
フレーキング損傷性が劣化した。一方、No 3-6, 3-7, 3
-8, 3-9, 3-10, 3-11は製造条件がすべて本発明の請求
の範囲を満たしているので耐摩耗性、耐フレーキング損
傷性、寸法精度、表面性状、組織のすべてに優れたレー
ルが得られた。
No. 3-12 are evaluation results of the reference material 3. No 3
In case of -1, the heating temperature of the slab was too low, and the dimensional accuracy of the rail after rolling was poor, so that it could not be a product. In addition, No. 3-2 could not be made into a product like No. 3-1 because the heating temperature of the slab was too high and the scratches generated in the slab remained on the rail even after rolling. In No. 3-3, the bainite structure with a uniform microstructure was not obtained due to the low rolling finish temperature, and a mixed structure of ferrite and bainite was exhibited, so that both the wear resistance and the flaking damage resistance were inferior to the reference material 3. Was the result. In No. 3-4, since the cooling rate exceeded 5 ° C./S, the microstructure exhibited a mixed structure of bainite and martensite, resulting in inferior flaking damage resistance. In No. 3-5, the cooling stop temperature was too high, and a homogeneous bainite structure with a fine lath interval could not be obtained. On the other hand, No 3-6, 3-7, 3
-8, 3-9, 3-10, and 3-11 all meet the requirements of the present invention, so wear resistance, flaking damage resistance, dimensional accuracy, surface texture, and texture Excellent rails were obtained.

【0049】[0049]

【発明の効果】本発明によれば、高軸荷重条件下で使用
される耐摩耗性、耐フレーキング損傷性に優れた特性を
有するベイナイト型レールの製造方法が提供される。
According to the present invention, there is provided a method of manufacturing a bainite type rail having excellent characteristics of abrasion resistance and flaking damage resistance used under high axial load conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】摩耗減量、フレーキング発生寿命とC量との関
係を示す図。
FIG. 1 is a graph showing the relationship between the amount of wear, the life of flaking, and the amount of carbon.

【図2】摩耗減量とNb量との関係を示す図。FIG. 2 is a view showing a relationship between a wear loss and an Nb amount.

【図3】耐摩耗,耐フレーキング損傷性評価用試験片の
形状を示す図。
FIG. 3 is a view showing the shape of a test piece for evaluating abrasion resistance and flaking damage resistance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.35〜0.5%、S
i:1%以下、Mn:0.4〜2.5%、P:0.03
5%以下、S:0.035%以下、Nb:0.05〜
0.5%を含有する鋼を、1100〜1350℃に加熱
し、圧延仕上温度が850℃以上となるように熱間圧延
してレール素材を成形し、次いでレール頭部を5℃/s
以下の冷却速度で500℃以下の温度まで制御冷却する
ことを特徴とする耐摩耗性、耐フレーキング損傷性に優
れたベイナイト型レールの製造方法。
1. C: 0.35 to 0.5% by weight, S
i: 1% or less, Mn: 0.4 to 2.5%, P: 0.03
5% or less, S: 0.035% or less, Nb: 0.05 to
A steel containing 0.5% is heated to 1100 to 1350 ° C., and hot-rolled to a rolling finish temperature of 850 ° C. or higher to form a rail material, and then the rail head is heated to 5 ° C./s.
A method for producing a bainite-type rail excellent in wear resistance and flaking damage resistance, characterized by controlled cooling to a temperature of 500 ° C. or lower at the following cooling rate.
【請求項2】 重量%でNb:0.05〜0.2%を含
有する請求項1記載の耐摩耗性、耐フレーキング損傷性
に優れたベイナイト型レールの製造方法。
2. The method for producing a bainite type rail according to claim 1, which contains 0.05 to 0.2% by weight of Nb.
【請求項3】 重量%で、Cr:1.5%以下、Cu:
1%以下、Ni:1%以下、Mo:2%以下、V:0.
2%以下の1種または2種以上を含有する請求項1、又
は2記載の耐摩耗性、耐フレーキング損傷性に優れたベ
イナイト型レールの製造方法。
3. Cr: 1.5% or less, Cu:
1% or less, Ni: 1% or less, Mo: 2% or less, V: 0.
The method for producing a bainite type rail excellent in wear resistance and flaking damage resistance according to claim 1 or 2, which contains one or more kinds of 2% or less.
JP11139643A 1999-05-20 1999-05-20 Production of bainite type rail excellent in wear resistance and flaking resistance Pending JP2000328138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11139643A JP2000328138A (en) 1999-05-20 1999-05-20 Production of bainite type rail excellent in wear resistance and flaking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11139643A JP2000328138A (en) 1999-05-20 1999-05-20 Production of bainite type rail excellent in wear resistance and flaking resistance

Publications (1)

Publication Number Publication Date
JP2000328138A true JP2000328138A (en) 2000-11-28

Family

ID=15250066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11139643A Pending JP2000328138A (en) 1999-05-20 1999-05-20 Production of bainite type rail excellent in wear resistance and flaking resistance

Country Status (1)

Country Link
JP (1) JP2000328138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544657B1 (en) * 2001-12-21 2006-01-23 재단법인 포항산업과학연구원 Steel used in trail-rail having bainite structure with wear-resistance
KR100955222B1 (en) 2002-12-26 2010-04-29 재단법인 포항산업과학연구원 Manufacturing Method of Bainitic Rail Steel With Excellent Wedability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544657B1 (en) * 2001-12-21 2006-01-23 재단법인 포항산업과학연구원 Steel used in trail-rail having bainite structure with wear-resistance
KR100955222B1 (en) 2002-12-26 2010-04-29 재단법인 포항산업과학연구원 Manufacturing Method of Bainitic Rail Steel With Excellent Wedability

Similar Documents

Publication Publication Date Title
EP2135966B1 (en) Pearlite steel rail of high internal hardness type excellent in wear resistance and fatigue failure resistance and process for production of the same
EP2196552B1 (en) Pearlite steel rail of high internal hardness type excellent in wear resistance, fatigue failure resistance and delayed fracture resistance and process for production of the same
JPH09316598A (en) Pearlitic rail, excellent in wear resistance and weldability, and its production
JPH08144016A (en) Highly wear resisting pearlitic rail
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
JP3287496B2 (en) Manufacturing method of bainite steel rail with excellent surface damage resistance
JP4736790B2 (en) High-strength pearlite rail and manufacturing method thereof
JP2000178690A (en) Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacture
EP3821040A1 (en) Track part made of a hypereutectoid steel
JPS613842A (en) Manufacture of high strength rail
JP2000328138A (en) Production of bainite type rail excellent in wear resistance and flaking resistance
JP3267124B2 (en) High-strength rail excellent in delayed fracture resistance, wear resistance and toughness, and a method for manufacturing the same
JP3832169B2 (en) Method for manufacturing pearlitic steel rails with excellent wear resistance and ductility
JP4272410B2 (en) Heat treatment method for pearlite rail
JP4061141B2 (en) Perlite high-strength rail excellent in ductility and manufacturing method thereof
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
JP2002249825A (en) Method for producing high strength bainitic rail
JP2000160282A (en) Bainitic rail excellent in wear resistance and flaking resistance
JP2000008142A (en) Pearlitic rail excellent in inside fatigue damage resistance and its production
JP4736621B2 (en) Perlite steel rail with excellent wear resistance and fatigue damage resistance
JP6822575B2 (en) Rails and their manufacturing methods
JP4767431B2 (en) Perlite rail with excellent wear resistance and toughness
JP4410342B2 (en) Rails with low thermal expansion and excellent wear resistance
JPH10158787A (en) High strength bainitic rail excellent in gas pressure weldability and its production
JP2008138241A (en) Pearlitic steel rail with excellent fatigue damage resistance and corrosion resistance, and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070129