JP4272410B2 - Heat treatment method for pearlite rail - Google Patents

Heat treatment method for pearlite rail Download PDF

Info

Publication number
JP4272410B2
JP4272410B2 JP2002328260A JP2002328260A JP4272410B2 JP 4272410 B2 JP4272410 B2 JP 4272410B2 JP 2002328260 A JP2002328260 A JP 2002328260A JP 2002328260 A JP2002328260 A JP 2002328260A JP 4272410 B2 JP4272410 B2 JP 4272410B2
Authority
JP
Japan
Prior art keywords
rail
head
accelerated cooling
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002328260A
Other languages
Japanese (ja)
Other versions
JP2004162106A (en
Inventor
正治 上田
公一郎 松下
和夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002328260A priority Critical patent/JP4272410B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to CA2749503A priority patent/CA2749503C/en
Priority to US10/482,753 priority patent/US20040187981A1/en
Priority to CNB03800576XA priority patent/CN1304618C/en
Priority to CA2451147A priority patent/CA2451147C/en
Priority to AU2003236273A priority patent/AU2003236273B2/en
Priority to EP11175030A priority patent/EP2388352A1/en
Priority to EP03745927A priority patent/EP1493831A4/en
Priority to BRPI0304718A priority patent/BRPI0304718B1/en
Priority to PCT/JP2003/004364 priority patent/WO2003085149A1/en
Publication of JP2004162106A publication Critical patent/JP2004162106A/en
Priority to HK05101368A priority patent/HK1068926A1/en
Priority to US11/780,166 priority patent/US7972451B2/en
Application granted granted Critical
Publication of JP4272410B2 publication Critical patent/JP4272410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高炭素含有のレール鋼において、初析セメンタイト組織の生成を抑制し、疲労強度や靭性の低下を防止し、さらに、レール頭部の耐摩耗性、レール長手方向の材質の均一性、レール頭部の延性を確保することを目的としたパーライトレールの熱処理方法に関するものである。
【0002】
【従来の技術】
近年、海外の石炭や鉄鉱石を輸送する重荷重鉄道や国内の貨物鉄道では、より一層の鉄道輸送の高効率化のために、貨物の高積載化を強力に進めており、特に急曲線のレールでは、G.C.部や頭側部の耐摩耗性が十分確保できず、摩耗によるレール寿命の低下が問題となってきた。このような背景から、現状の共析炭素含有の高強度レール以上の耐摩耗性を有するレールの開発が求められるようになってきた。
【0003】
この問題を解決するため、本発明者らは下記に示すようなレールを開発した。
▲1▼過共析鋼(C:0.85超〜1.20%)を用いて、パーライト組織中のラメラ中のセメンタイト密度を増加させた耐摩耗性に優れたレール(特許文献1)
▲2▼過共析鋼(C:0.85超〜1.20%)を用いて、パーライト組織中のラメラ中のセメンタイト密度を増加させ、同時に、頭部を熱処理することにより硬さを制御した、耐摩耗性に優れたレールおよびその製造法(特許文献2)。
▲3▼過共析鋼(C:0.85超〜1.20%)を用いて、パーライト組織中のラメラ中のセメンタイト密度を増加させ、同時に、頭部や柱部を熱処理することにより硬さを制御した、耐摩耗性に優れたレールおよびその製造法(特許文献3)。
【0004】
【特許文献1】
特開平8−144016号公報
【特許文献2】
特開平8−246100号公報
【特許文献3】
特開平9−137228号公報
【0005】
これらのレールの特徴は、鋼の炭素量を増加し、パーライトラメラ中のセメタイト相の体積比率を増加させ、さらに、頭部、柱部を熱処理することにより、硬さや組織を制御することにより、パーライト組織の耐摩耗性や靭性を向上させるものであった。
【0006】
【発明が解決しようとする課題】
上記の▲1▼に示されたパーライト組織を呈する発明レール鋼では、高炭素化により耐摩耗性の向上が図れる。しかし、上記の発明レール鋼は、現行の共析炭素含有の高強度レール鋼よりも炭素量が高く、初析セメンタイト組織が生成し易い。このため、初析セメンタイト組織が疲労き裂や脆性き裂の起点となり、レールの使用寿命が低下するといった問題があった。
【0007】
また、上記の▲2▼、▲3▼に示され熱処理方法では、レール頭部、さらには、柱部を加速冷却することにより、頭部のパーライト組織の硬さ確保や柱部の初析セメンタイト組織の生成抑制は可能である。しかし、レール足部は、上記熱処理方法では、初析セメンタイト組織の生成抑制は困難であった。
さらに、上記の▲2▼、▲3▼に示され熱処理方法は、レールの圧延長さの選択が不適切であると、レール長手方向で材質の均一性が確保されず、品質上大きな問題があった。また、最終圧延温度の選択が不適切であると、レール頭部の延性が大きく低下するといった問題があった。
【0008】
このような背景から、高炭素含有のレール鋼において、レール頭部、柱部、さらには、足部の初析セメンタイト組織の生成を抑制し、疲労き裂や脆性き裂の生成を防止し、同時に、レール頭部の耐摩耗性、レール長手方向の材質の均一性、レール頭部の延性を確保するレールの製造方法の開発が求められていた。
【0009】
すなわち、本発明は、高炭素含有のレール鋼において、熱間圧延終了後、ある一定時間内で、レール頭部、柱部、足部に加速冷却を行い、さらに、頭部の加速冷却速度、圧延時のレール長さ、最終圧延温度の選択の適正化を図り、初析セメンタイト組織の生成抑制より、疲労き裂や靭性き裂の発生を防止し、同時に、レール頭部の耐摩耗性、レール長手方向の材質の均一性やレール頭部の延性を確保することを目的としたものである。
【0010】
【課題を解決するための手段】
本発明は上記目的を達成するものであって、その要旨とするところは次の通りである。
(1)熱間圧延した長さ100〜200mのC:0.90〜1.20質量%を含有する高炭素鋼レールの冷却に当たり、熱間圧延終了後、200秒以内に加速冷却を開始し、鋼レールの頭部、柱部および足部をオーステナイト域温度から冷却速度範囲1〜10℃/secで、少なくとも650℃まで加速冷却することを特徴とするパーライトレールの熱処理方法。
(2)前記(1)に記載の熱処理方法において、鋼レールの頭部のオーステナイト域温度からの冷却速度を3〜15℃/secの範囲とし、少なくとも500℃まで加速冷却することを特徴とするパーライトレールの熱処理方法。
)レール頭部の熱間圧延終了温度が、850〜1000℃の範囲であることを特徴とする前記(1)または(2)に記載のパーライトレールの熱処理方法。
【0011】
【発明の実施の形態】
以下に本発明について詳細に説明する。
まず、本発明者らは、高炭素含有のレール鋼において、初析セメンタイト組織の生成が抑制可能な熱処理方法を検討した。その結果、熱間圧延後のレールにおいて、頭部、柱部に加えて、足部をオーステナイト域から加速冷却することにより、初析セメンタイト組織の生成が十分に抑制されることが確認された。
【0012】
次に、本発明者らは、実レール製造において、初析セメンタイト組織の生成が抑制可能な製造方法を検討した。その結果、実レール製造では、初析セメンタイト組は、熱間圧延終了後の経過時間とその後の加速冷却速度とのよい相関があり、熱間圧延終了後の経過時間をある一定範囲内とし、加速冷却速度をある一定範囲とし、その冷却終了温度を一定温度以上とすることにより、初析セメンタイト組織の生成が抑制できることを見出した。
【0013】
さらに、本発明者らは、上記処理方法において、レール頭部の耐摩耗性を確保するレールの処理方法を検討した。その結果、レール頭部、柱部および足部のオーステナイト域からの加速冷却時に、レール頭部の加速冷却速度を、上記の冷却速度範囲よりも高い冷却速度範囲とすることにより、レール頭部の高硬度化が図れ、耐摩耗性が確保できることを見出した。
【0014】
これらの処理方法に加えて、本発明者らは、上記処理方法において、レール長手方向の材質の均一性を確保するレールの製造方法を検討した。その結果、レール圧延時のレール長さがある一定の長さを超えると、圧延後のレール両端部と内部、さらには、圧延後のレール両端部の温度差が過大となり、上記のレール製造方法では、レール全長に渡る温度や冷却速度の制御が困難となり、レール長手方向の材質が不均一になることがわかった。そこで、実レールの圧延実験により、材質の不均性が確保される最適な圧延長さを検討した結果、経済性を考慮すると、圧延長さにある一定の範囲が存在することを知見した。
【0015】
さらに、本発明者らは、上記処理方法において、レール頭部の延性を確保するレールの処理方法を検討した。その結果、レール頭部の延性は熱間圧延終了温度と相関があり、レール頭部の熱間圧延終了温度をある一定範囲に制御することにより、レール頭部の延性が確保され、同時に、レール成形性も確保できることがわかった。
【0016】
したがって、本発明では、高炭素含有のレール鋼において、レール頭部、柱部、さらには、足部の初析セメンタイト組織の生成を抑制するため、熱間圧延終了後、ある一定時間内で、レール頭部、柱部、足部に加速冷却を行うことにより、疲労き裂や脆性き裂の発生に有害な初析セメンタイト組織の生成が抑制可能となり、さらに、頭部の加速冷却速度、圧延時のレール長さ、最終圧延温度の選択の適正化を図ることにより、レール頭部の耐摩耗性、レール長手方向の材質の均一性、レール頭部の延性を確保できることを知見した。
【0017】
すなわち、本発明は、高炭素含有のレール鋼において、初析セメンタイト組織の生成を抑制し、疲労強度や靭性の低下を防止し、さらに、レール頭部の耐摩耗性、レール長手方向の材質の均一性、レール頭部の延性を確保することを目的としたパーライトレールの熱処理方法に関するものである。
【0018】
次に、本発明の限定理由について詳細に説明する。
(1)鋼レールの化学成分の限定理由
請求項1において、レール鋼の炭素量を上記請求範囲に限定した理由について詳細に説明する。
Cは、パーライト変態を促進させて、かつ、耐摩耗性を確保する有効な元素である。C量が0.90%未満では、パーライト組織中のセメンタイト相の体積比率が確保できず、耐摩耗性が維持できない。また、C量が0.90%未満では、自然冷却においても初析セメンタイト組織の生成量が少なく、本発明の熱処理方法を適用しても十分な効果が得られない。また、C量が1.20%を超えると、初析セメンタイト組織の生成が促進され、本発明の熱処理方法を適用しても、初析セメンタイト組織の生成を抑制できず、レールの疲労強度や靭性が低下する。このため、C量を0.90〜1.20%に限定した。
【0019】
上記のような成分組成で構成されるレール鋼は、転炉、電気炉などの通常使用される溶解炉で溶製を行い、この溶鋼を造塊・分塊あるいは連続鋳造し、さらに熱間圧延を経てレールとして製造される。
次に、この熱間圧延した高温度の熱を保有するレール頭部、柱部、足部に上記限定の加速冷却を施すことにより、疲労き裂や脆性き裂の発生に有害な初析セメンタイト組織の生成を抑制することが可能となる。
【0020】
なお、本発明熱処理方法においては、上記の成分組成以外については、特に限定するものではないが、パーライト組織の硬度(強化)の向上、パーライト組織の延性や靭性の向上、溶接部の熱影響部の軟化の防止、レール頭部内部の断面硬度分布の制御、初析セメンタイト組織の生成抑制を図る目的で、必要に応じて、Si、Mn、Cr、Mo、V、Nb、B、Co、Cu、Ni、Ti、Mg、Ca、Al、Zr、N等の元素を1種または2種以上を含有する成分系が望ましい。
【0021】
(2)加速冷却条件の限定理由
請求項1において、熱間圧延終了後の加速冷却開始までの経過時間、加速冷却速度、加速冷却温度範囲を上記特許請求の範囲に限定した理由について詳細に説明する。
まず、熱間圧延終了後の加速冷却開始までの経過時間について説明する。
加熱間圧延終了後の加速冷却開始までの経過時間が200秒を超えると、本成分系では、加速冷却前に初析セメンタイト組織の生成し、レールの疲労強度や靭性を低下させるため、加速冷却開始までの経過時間を200秒以内とした。
【0022】
なお、熱間圧延終了直後のレールは、圧延時のロール抜熱等により、断面内において温度のムラが発生し、このため、加速冷却後のレール断面内の材質が不均一となる。断面内において温度のムラを抑制し、レール断面内の材質を不均一化するには、圧延後、5秒以上経過した後に加速冷却を施すことが望ましい。
【0023】
次に、加速冷却速度の範囲について説明する。
加速冷却速度が1℃/sec未満では、本成分系では、初析セメンタイト組織の生成の抑制が困難となる。また、加速冷却速度が10℃/secを超えると、本成分系では、レール柱偏析部や足部偏析部にマルテンサイト組織が生成し、レールの靭性が大きく低下する。このため、加速冷却速度の範囲を1〜10℃/secの範囲に限定した。
【0024】
なお、上記の加速冷却速度は、加速冷却開始から終了までの平均的な冷却速度であり、冷却途中の冷却速度を示すものではない。したがって、加速冷却開始から終了までの平均的な冷却速度が上記限定範囲内であれば、初析セメンタイト組織の生成の抑制が可能となる。
【0025】
次に、加速冷却温度の範囲について説明する。
650℃を超えた温度で加速冷却を終了すると、加速冷却終了後に、レール内部から過大な復熱が発生する。この結果、温度上昇により、パーライト組織が生成せず、初析セメンタイト組織が生成する。このため、少なくとも650℃まで加速冷却を行うことを限定した。
なお、加速冷却を終了する温度の下限値は特に限定してないが、初析セメンタイト組織の生成を抑制し、かつ、柱偏析部のマルテンサイト組織の生成を防止するには、実質的に500℃が下限となる。
【0026】
(3)頭部加速冷却条件の限定理由
請求項2において、レール頭部の加速冷却速度、加速冷却温度範囲を上記請求範囲に限定した理由について詳細に説明する。レール頭部の加速冷却速度を柱部や足部の冷却速度より速くすることで、レール頭部の耐摩耗性を向上させることが可能となる。
【0027】
まず、加速冷却速度の範囲について説明する。本発明の成分系でレール頭部の加速冷却速度が3℃/sec未満では、レール頭部の高硬度化が十分ではなく、レール頭部の耐摩耗性の確保が困難となる。また、加速冷却速度が15℃/secを超えると、本成分系では、マルテンサイト組織が生成し、レール頭部の靭性が大きく低下する。このため、レール頭部の加速冷却速度の範囲を3〜15℃/secの範囲に限定した。
【0028】
次に、加速冷却温度の範囲について説明する。
500℃を超えた温度でレール頭部の加速冷却を終了すると、加速冷却終了後に、レール内部から過大な復熱が発生する。この結果、温度上昇によりパーライト変態温度が上昇し、パーライト組織の高硬度が図れず、耐摩耗性を確保できない。このため、少なくとも500℃まで加速冷却を行うことを限定した。
なお、レール頭部の加速冷却を終了する温度の下限は特に限定してないが、レール頭部の硬度を確保し、かつ、頭部内部の偏析部等に生成しやすいマルテンサイト組織の生成を防止するには、実質的に400℃が下限となる。
【0029】
(4)熱間圧延後のレール長さの限定理由
請求項1において、熱間圧延後のレール長さを上記範囲内に限定した理由について詳細に説明する。
熱間圧延後のレール長さが200mを超えると、圧延後のレール両端部と内部、さらには、圧延後のレール両端部の温度差が過大となり、上記のレール製造方法を用いても、レール全長に渡る温度や冷却速度の制御が困難となり、レール長手方向の材質が不均一になる。また、熱間圧延後のレール長さが100m未満になると、圧延効率が低下し、レール製造がコストが増加する。このため、熱間圧延後のレール長さを100〜200mの範囲とした。
なお、製品としてレール長さを100〜200mを確保するには、この圧延長さに切りしろを加えて長さとすることが望ましい。
【0030】
(5)熱間圧延終了温度の限定理由
請求項3において、熱間圧延終了温度を上記範囲内に限定した理由について詳細に説明する。
熱間圧延終了温度が1000℃を超えると、上記の成分系では、レール頭部のパーライト組織が微細化せず、延性が十分に向上しない。また、熱間圧延終了温度が850℃未満では、レールとしての形状を制御することが困難となり、製品形状を満足したレールの製造が困難となる。また、レールの温度が低いため、圧延直後に初析セメンタイト組織が生成し、レールの疲労強度や靭性を低下させる。このため、熱間圧延終了温度を850〜1000℃の範囲とした。
【0031】
ここで、レールの部位について説明する。図1はレール各部位の呼称を示したものである。「頭部」とは、図1に示す主に車輪と接触する部分(符号:1)、「柱部」とは、図1に示すレール頭部よりも下部の断面厚さが薄い部分(符号:2)、「足部」とは、図1に示すレール柱部よりも下部の部分(符号:3)である。
【0032】
レール加速冷却時の冷却速度、加速冷却の温度範囲は、図1に示す頭部(符号:1)、足部(符号:3)のレール幅中央部、柱部(符号:2)のレール高さ中心部に相当する位置において、深さ0〜3mmの範囲を測定すれば、それぞれの部位を代表させることができる。
なお、レール断面内の硬度や組織形態を均一化するには、上記3点の冷却速度をなるべく同一とすることが望ましい。
【0033】
レール圧延時の圧延終了温度は、図1に示す頭部(符号:1)のレール幅中央部において、圧延直後の表面温度を測定すれば、所定の特性が得られる。
また、本製造方法によって製造された鋼レールの頭部の金属組織はパーライト組織であることが望ましいが、成分系、さらには、加速冷却条件の選択によっては、パーライト組織中に微量な初析フェライト組織、初析セメンタイト組織およびベイナイト組織が生成することがある。しかし、パーライト組織中にこれらの組織が微量に生成してもレールの疲労強度や靭性に大きな影響をおよぼさないため、本製造方法によって製造された鋼レールの頭部の組織としては、若干の初析フェライト組織、初析セメンタイト組織およびベイナイト組織の混在も含んでいる。
【0034】
【実施例】
次に、本発明の実施例について説明する。
表1に供試レール鋼の化学成分を示す。
表2は、表1に示す供試レール鋼を用いて、本発明の製造方法で製造したレールの最終圧延温度、圧延長さ、圧延終了後から加速冷却開始までの経過時間、レール頭部、柱部、足部の加速冷却条件、ミクロ組織、さらに、落重試験結果、頭部硬さ、頭部引張試験の全伸び値の値を示す。
【0035】
表3は、表1に示す供試レール鋼を用いて、比較製造方法で製造したレールの最終圧延温度、圧延長さ、圧延終了後から加速冷却開始までの経過時間、レール頭部、柱部、足部の加速冷却条件、ミクロ組織、さらに、落重試験結果、頭部硬さ、頭部引張試験の全伸び値の値を示す。
【0036】
なお、レールの構成は以下のとおりである。
・本発明熱処理レール(8本) 符号A〜H
上記成分範囲内のレール鋼を、上記限定範囲内の製造条件で製造したレール。・比較熱処理レール(8本) 符号I〜P
上記成分範囲内のレール鋼を、上記限定範囲外の製造条件で製造したレール。
【0037】
各種試験条件は下記のとおり。

Figure 0004272410
【0038】
Figure 0004272410
【0039】
表2、表3に示すように、表1に示した高炭素含有のレール鋼において、レール頭部、柱部、足部に、熱間圧延終了後、ある一定時間内で、加速冷却を行う本発明処理方法で製造したレール(符号:A〜H)は、比較処理方法で製造したレール(符号:I〜P)と比べて、初析セメンタイト組織の生成を抑制し、疲労強度や靭性の低下が防止できた。
さらに、表2、表3に示すように、レール頭部の加速冷却速度の制御、圧延長さの適正化、最終圧延温度の制御を行うことにより、レール頭部の耐摩耗性、レール長手方向の材質の均一性、レール頭部の延性を確保することができた。
【0040】
上記のように、高炭素含有のレール鋼において、レール頭部、柱部、さらには、足部の初析セメンタイト組織の生成を抑制するため、熱間圧延終了後、ある一定時間内で、レール頭部、柱部、足部に加速冷却を行うことにより、疲労き裂や脆性き裂の発生に有害な初析セメンタイト組織の生成が抑制可能となり、さらに、頭部の加速冷却速度、圧延時のレール長さ、最終圧延温度の選択の適正化を図ることにより、レール頭部の耐摩耗性、レール長手方向の材質の均一性、レール頭部の延性を確保できた。
【0041】
【表1】
Figure 0004272410
【0042】
【表2】
Figure 0004272410
【0043】
【表3】
Figure 0004272410
【0044】
【発明の効果】
高炭素含有のレール鋼において、初析セメンタイト組織の生成を抑制し、疲労強度や靭性の低下を防止し、さらに、レール頭部の耐摩耗性、レール長手方向の材質の均一性、レール頭部の延性を確保することができる。
【図面の簡単な説明】
【図1】レール各における部位の呼称を示す図。
【符号の説明】
1:頭部
2:柱部
3:足部[0001]
BACKGROUND OF THE INVENTION
The present invention suppresses the formation of pro-eutectoid cementite structure in the high carbon content rail steel, prevents the fatigue strength and toughness from decreasing, and further, wear resistance of the rail head and uniformity of the material in the longitudinal direction of the rail. The present invention relates to a heat treatment method for a pearlite rail intended to ensure the ductility of a rail head.
[0002]
[Prior art]
In recent years, heavy-duty railroads that transport coal and iron ore overseas and domestic freight railroads have been aggressively increasing the load of freight in order to further improve the efficiency of rail transport. In the rail, G. C. As a result, the wear resistance of the head portion and the head side portion cannot be sufficiently ensured, and the deterioration of the rail life due to wear has been a problem. Against this background, there has been a demand for the development of rails that have higher wear resistance than the current eutectoid carbon-containing high-strength rails.
[0003]
In order to solve this problem, the present inventors have developed a rail as shown below.
(1) Rail with excellent wear resistance in which hyper-eutectoid steel (C: more than 0.85 to 1.20%) is used to increase cementite density in lamellae in pearlite structure (Patent Document 1)
(2) Using hypereutectoid steel (C: more than 0.85 to 1.20%), increasing the cementite density in the lamellae in the pearlite structure and simultaneously controlling the hardness by heat treating the head A rail having excellent wear resistance and a method for producing the same (Patent Document 2).
(3) Using hypereutectoid steel (C: more than 0.85 to 1.20%), increasing the cementite density in the lamellae in the pearlite structure and simultaneously heat treating the head and the column part. A rail having excellent wear resistance and a manufacturing method thereof (Patent Document 3).
[0004]
[Patent Document 1]
JP-A-8-144016 [Patent Document 2]
JP-A-8-246100 [Patent Document 3]
Japanese Patent Laid-Open No. 9-137228
The characteristics of these rails are to increase the carbon content of the steel, increase the volume ratio of the cemetite phase in the pearlite lamella, and further by heat-treating the head and column, thereby controlling the hardness and structure, It was intended to improve the wear resistance and toughness of the pearlite structure.
[0006]
[Problems to be solved by the invention]
Inventive rail steel exhibiting the pearlite structure shown in (1) above can improve wear resistance due to high carbonization. However, the above-described inventive rail steel has a higher carbon content than the current eutectoid carbon-containing high-strength rail steel, and a proeutectoid cementite structure is easily generated. For this reason, there has been a problem that the pro-eutectoid cementite structure becomes the starting point of fatigue cracks and brittle cracks and the service life of the rail is reduced.
[0007]
In addition, in the heat treatment methods shown in the above (2) and (3), the rail head part and further the column part are accelerated and cooled, thereby ensuring the hardness of the pearlite structure of the head part and proeutectoid cementite of the column part. Tissue generation can be suppressed. However, it was difficult to suppress the formation of pro-eutectoid cementite structure in the rail foot by the above heat treatment method.
Furthermore, in the heat treatment methods shown in (2) and (3) above, if the selection of the rolling length of the rail is inappropriate, the uniformity of the material cannot be ensured in the rail longitudinal direction, resulting in a serious quality problem. there were. In addition, if the final rolling temperature is inappropriately selected, there is a problem that the duct head of the rail head is greatly reduced.
[0008]
From such a background, in the rail steel with high carbon content, the generation of the pro-eutectoid cementite structure of the rail head, column, and even the foot is suppressed, and the generation of fatigue cracks and brittle cracks is prevented, At the same time, there has been a demand for the development of a method for manufacturing a rail that ensures wear resistance of the rail head, uniformity of the material in the longitudinal direction of the rail, and ductility of the rail head.
[0009]
That is, the present invention, in a high carbon content rail steel, after the end of hot rolling, within a certain time, accelerated cooling to the rail head, pillar, foot, further, accelerated cooling rate of the head, By optimizing the selection of the rail length during rolling and the final rolling temperature, the generation of proeutectoid cementite structure is suppressed to prevent the occurrence of fatigue cracks and tough cracks. The object is to ensure the uniformity of the material in the longitudinal direction of the rail and the ductility of the rail head.
[0010]
[Means for Solving the Problems]
The present invention achieves the above object, and the gist thereof is as follows.
(1) Hot-rolled 100 to 200 m long C: Accelerated cooling is started within 200 seconds after completion of hot rolling in cooling of a high carbon steel rail containing 0.90 to 1.20% by mass. A method for heat treatment of a pearlite rail, characterized in that the steel rail head, column and foot are accelerated and cooled from an austenite temperature to a cooling rate of 1 to 10 ° C / sec to at least 650 ° C.
(2) In the heat treatment method according to (1) , the cooling rate from the austenite region temperature of the head of the steel rail is in the range of 3 to 15 ° C./sec and accelerated cooling to at least 500 ° C. A heat treatment method for pearlite rails.
( 3 ) The method for heat treating a pearlite rail according to (1) or (2) above, wherein the temperature at which the rail head is hot-rolled is in the range of 850 to 1000 ° C.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
First, the present inventors examined a heat treatment method capable of suppressing the formation of a proeutectoid cementite structure in a high carbon content rail steel. As a result, it was confirmed that in the rail after hot rolling, the formation of proeutectoid cementite structure is sufficiently suppressed by accelerated cooling of the foot portion from the austenite region in addition to the head portion and the column portion.
[0012]
Next, the present inventors examined a manufacturing method capable of suppressing the formation of a pro-eutectoid cementite structure in actual rail manufacturing. As a result, the actual rail manufacturing, pro-eutectoid cementite organization, there is a good correlation between the elapsed time after the end of hot rolling and subsequent accelerated cooling rate, and within a certain range in the elapsed time after the end of hot rolling The inventors have found that the generation of proeutectoid cementite structure can be suppressed by setting the accelerated cooling rate within a certain range and setting the cooling end temperature to a certain temperature or higher.
[0013]
Furthermore, the present inventors examined a rail processing method for ensuring the wear resistance of the rail head in the above processing method. As a result, at the time of accelerated cooling from the austenite region of the rail head portion, the column portion, and the foot portion, the acceleration cooling rate of the rail head portion is set to a higher cooling rate range than the above cooling rate range, thereby It has been found that the hardness can be increased and the wear resistance can be secured.
[0014]
In addition to these processing methods, the present inventors examined a method for manufacturing a rail that ensures the uniformity of the material in the longitudinal direction of the rail in the above processing method. As a result, if the rail length at the time of rail rolling exceeds a certain length, the temperature difference between both ends and inside of the rail after rolling, and further, both ends of the rail after rolling becomes excessive, and the above rail manufacturing method Then, it became difficult to control the temperature and cooling rate over the entire length of the rail, and the material in the rail longitudinal direction became uneven. Therefore, as a result of investigating the optimum rolling length that can ensure the material non-uniformity by the actual rail rolling experiment, it was found that there is a certain range in the rolling length in consideration of economy.
[0015]
Furthermore, the present inventors examined a rail processing method that ensures the duct head ductility in the above processing method. As a result, the ductility of the rail head has a correlation with the hot rolling end temperature, and by controlling the rail head hot rolling end temperature within a certain range, the rail head ductility is secured and at the same time, It was found that moldability can be secured.
[0016]
Therefore, in the present invention, in the high carbon content rail steel, in order to suppress the generation of the pro-eutectoid cementite structure of the rail head portion, the column portion, and the foot portion, within a certain fixed time after the end of hot rolling, By performing accelerated cooling on the rail head, column, and foot, it is possible to suppress the generation of proeutectoid cementite structure that is harmful to the occurrence of fatigue cracks and brittle cracks. It was found that by optimizing the selection of the rail length and the final rolling temperature, the wear resistance of the rail head, uniformity of the material in the rail longitudinal direction, and ductility of the rail head can be secured.
[0017]
That is, the present invention suppresses the formation of a proeutectoid cementite structure in a high carbon content rail steel, prevents a decrease in fatigue strength and toughness, and further reduces the wear resistance of the rail head and the material in the rail longitudinal direction. The present invention relates to a heat treatment method for a pearlite rail intended to ensure uniformity and ductility of a rail head.
[0018]
Next, the reason for limitation of the present invention will be described in detail.
(1) Reason for limiting chemical components of steel rail In claim 1, the reason why the carbon content of the rail steel is limited to the above claims will be described in detail.
C is an effective element that promotes pearlite transformation and ensures wear resistance. If the C content is less than 0.90%, the volume ratio of the cementite phase in the pearlite structure cannot be secured, and the wear resistance cannot be maintained. When the C content is less than 0.90%, the amount of pro-eutectoid cementite structure produced is small even in natural cooling, and a sufficient effect cannot be obtained even when the heat treatment method of the present invention is applied. Further, when the C content exceeds 1.20%, the generation of pro-eutectoid cementite structure is promoted, and even when the heat treatment method of the present invention is applied, the generation of pro-eutectoid cementite structure cannot be suppressed, and the fatigue strength of the rail Toughness decreases. For this reason, the amount of C was limited to 0.90 to 1.20%.
[0019]
Rail steel composed of the above components is melted in a commonly used melting furnace such as a converter, electric furnace, etc., and this molten steel is ingot-bundled or continuously cast, and further hot-rolled. After being manufactured as a rail.
Next, by applying the above-mentioned limited accelerated cooling to the rail heads, columns, and feet that hold this hot-rolled high temperature heat, it is a proeutectoid cementite that is harmful to the occurrence of fatigue cracks and brittle cracks. Tissue generation can be suppressed.
[0020]
In the heat treatment method of the present invention, the composition other than the above components is not particularly limited, but the hardness (strengthening) of the pearlite structure, the ductility and toughness of the pearlite structure, the heat affected zone of the welded part As needed, Si, Mn, Cr, Mo, V, Nb, B, Co, Cu are used for the purpose of preventing softening of the steel, controlling the cross-sectional hardness distribution inside the rail head, and suppressing the formation of proeutectoid cementite structure. A component system containing one or more elements such as Ni, Ti, Mg, Ca, Al, Zr, and N is desirable.
[0021]
(2) Reason for limitation of accelerated cooling condition In claim 1, the reason why the elapsed time until the start of accelerated cooling after the end of hot rolling, the accelerated cooling rate, and the accelerated cooling temperature range are limited to the above claims will be described in detail. To do.
First, the elapsed time from the end of hot rolling to the start of accelerated cooling will be described.
When the elapsed time from the end of hot rolling to the start of accelerated cooling exceeds 200 seconds, this component system generates proeutectoid cementite structure before accelerated cooling and reduces the fatigue strength and toughness of the rail. The elapsed time until the start was within 200 seconds.
[0022]
In addition, the rail immediately after the end of hot rolling causes temperature unevenness in the cross section due to heat removal from the roll during rolling, and therefore the material in the rail cross section after accelerated cooling becomes non-uniform. In order to suppress uneven temperature in the cross section and make the material in the rail cross section non-uniform, it is desirable to perform accelerated cooling after 5 seconds or more have elapsed after rolling.
[0023]
Next, the range of the accelerated cooling rate will be described.
When the accelerated cooling rate is less than 1 ° C./sec, it is difficult to suppress the formation of proeutectoid cementite structure in this component system. Further, when the accelerated cooling rate exceeds 10 ° C./sec, in this component system, a martensite structure is generated in the rail column segregation portion or the foot segregation portion, and the toughness of the rail is greatly reduced. For this reason, the range of the accelerated cooling rate was limited to the range of 1 to 10 ° C./sec.
[0024]
The accelerated cooling rate is an average cooling rate from the start to the end of accelerated cooling, and does not indicate a cooling rate during cooling. Therefore, if the average cooling rate from the start to the end of accelerated cooling is within the above-mentioned limited range, the generation of a proeutectoid cementite structure can be suppressed.
[0025]
Next, the range of the accelerated cooling temperature will be described.
When the accelerated cooling is finished at a temperature exceeding 650 ° C., excessive recuperation is generated from the inside of the rail after the accelerated cooling is finished. As a result, due to the temperature rise, a pearlite structure is not generated and a pro-eutectoid cementite structure is generated. For this reason, it was limited to perform accelerated cooling to at least 650 ° C.
The lower limit of the temperature at which accelerated cooling is terminated is not particularly limited, but in order to suppress the formation of pro-eutectoid cementite structure and to prevent the formation of martensite structure in the column segregation part, it is substantially 500. C is the lower limit.
[0026]
(3) Reason for limitation of head acceleration cooling condition In claim 2, the reason why the acceleration cooling rate and the acceleration cooling temperature range of the rail head are limited to the above-mentioned claims will be described in detail. The wear resistance of the rail head can be improved by making the accelerated cooling rate of the rail head faster than the cooling rate of the column part or the foot part.
[0027]
First, the range of the accelerated cooling rate will be described. If the accelerated cooling rate of the rail head in the component system of the present invention is less than 3 ° C./sec, the hardness of the rail head is not sufficient, and it is difficult to ensure the wear resistance of the rail head. When the accelerated cooling rate exceeds 15 ° C./sec, in this component system, a martensite structure is generated and the toughness of the rail head is greatly reduced. For this reason, the range of the accelerated cooling rate of the rail head is limited to the range of 3 to 15 ° C./sec.
[0028]
Next, the range of the accelerated cooling temperature will be described.
When the accelerated cooling of the rail head is completed at a temperature exceeding 500 ° C., excessive recuperation is generated from the inside of the rail after the accelerated cooling is completed. As a result, the pearlite transformation temperature rises due to the temperature rise, the pearlite structure cannot have a high hardness, and the wear resistance cannot be ensured. For this reason, it was limited to perform accelerated cooling to at least 500 ° C.
In addition, the lower limit of the temperature at which the accelerated cooling of the rail head is finished is not particularly limited. In order to prevent this, the lower limit is substantially 400 ° C.
[0029]
(4) Oite the reasons for limitations claim 1 rail length after hot rolling, the rail length after hot rolling will be described in detail the reasons for limiting the above range.
When the rail length after hot rolling exceeds 200 m, the temperature difference between both ends and inside of the rail after rolling, and further, both ends of the rail after rolling becomes excessive. It becomes difficult to control the temperature and cooling rate over the entire length, and the material in the rail longitudinal direction becomes non-uniform. In addition, when the rail length after hot rolling is less than 100 m, rolling efficiency is reduced, and the cost of rail manufacture increases. For this reason, the rail length after hot rolling was made into the range of 100-200 m.
In order to secure a rail length of 100 to 200 m as a product, it is desirable to add a margin to the rolling length to obtain a length.
[0030]
(5) Oite the reasons for limitations claim 3 of hot-rolling end temperature, the hot rolling finish temperature is described in detail the reasons for limiting the above range.
When the hot rolling finish temperature exceeds 1000 ° C., the pearlite structure of the rail head is not refined and the ductility is not sufficiently improved in the above component system. Further, if the hot rolling end temperature is less than 850 ° C., it is difficult to control the shape as a rail, and it becomes difficult to manufacture a rail that satisfies the product shape. Moreover, since the temperature of the rail is low, a pro-eutectoid cementite structure is generated immediately after rolling, thereby reducing the fatigue strength and toughness of the rail. For this reason, the hot rolling end temperature is set to a range of 850 to 1000 ° C.
[0031]
Here, the part of the rail will be described. FIG. 1 shows the designation of each part of the rail. The “head” is a portion mainly contacting the wheel shown in FIG. 1 (symbol: 1), and the “post” is a portion having a lower cross-sectional thickness (symbol) than the rail head shown in FIG. : 2), "foot part" is a lower part (symbol: 3) than the rail pillar part shown in FIG.
[0032]
The cooling speed at the time of rail accelerated cooling and the temperature range of accelerated cooling are as follows. The head width (reference numeral: 1), the foot width (reference numeral: 3), the center of the rail width, and the pillar height (reference numeral: 2). If a range of 0 to 3 mm in depth is measured at a position corresponding to the central portion, each part can be represented.
In order to make the hardness and the structure of the rail cross section uniform, it is desirable to make the three cooling rates as the same as possible.
[0033]
The rolling end temperature at the time of rail rolling can obtain a predetermined characteristic by measuring the surface temperature immediately after rolling at the center of the rail width of the head (reference numeral: 1) shown in FIG.
In addition, it is desirable that the metal structure of the head of the steel rail manufactured by this manufacturing method is a pearlite structure. However, depending on the selection of the component system and accelerated cooling conditions, a small amount of proeutectoid ferrite may be contained in the pearlite structure. Structures, proeutectoid cementite structures, and bainite structures may form. However, even if a small amount of these structures are formed in the pearlite structure, the fatigue strength and toughness of the rail are not greatly affected. Therefore, the structure of the head of the steel rail manufactured by this manufacturing method is slightly In other words, it contains a mixture of pro-eutectoid ferrite structure, pro-eutectoid cementite structure and bainite structure.
[0034]
【Example】
Next, examples of the present invention will be described.
Table 1 shows the chemical composition of the test rail steel.
Table 2 uses the test rail steel shown in Table 1, and the final rolling temperature and rolling length of the rail manufactured by the manufacturing method of the present invention, the elapsed time from the end of rolling to the start of accelerated cooling, the rail head, Accelerated cooling conditions for the column part and the foot part, the microstructure, the drop weight test results, the head hardness, and the total elongation values of the head tensile test are shown.
[0035]
Table 3 shows the final rolling temperature and rolling length of the rail manufactured by the comparative manufacturing method using the test rail steel shown in Table 1, the elapsed time from the end of rolling to the start of accelerated cooling, the rail head, the column , Accelerated cooling conditions of foot, microstructure, drop weight test result, head hardness, total elongation value of head tensile test.
[0036]
The configuration of the rail is as follows.
-Heat treatment rail of the present invention (eight) Codes A to H
The rail which manufactured the rail steel in the said component range on the manufacturing conditions in the said limited range.・ Comparison heat-treated rails (8) Symbols I to P
The rail which manufactured the rail steel within the said component range on the manufacturing conditions outside the said limited range.
[0037]
Various test conditions are as follows.
Figure 0004272410
[0038]
Figure 0004272410
[0039]
As shown in Tables 2 and 3, in the high carbon content rail steel shown in Table 1, accelerated cooling is performed on the rail head, column, and foot within a certain time after the hot rolling is completed. Compared with the rail (code | symbol: IP) manufactured by the comparative processing method, the rail manufactured by this invention processing method (code | symbol: AH) suppresses generation | occurrence | production of pro-eutectoid cementite structure | tissue, fatigue strength and toughness of The decrease could be prevented.
Furthermore, as shown in Tables 2 and 3, by controlling the accelerated cooling rate of the rail head, optimizing the rolling length, and controlling the final rolling temperature, the wear resistance of the rail head, the longitudinal direction of the rail It was possible to ensure the uniformity of the material and the duct head ductility.
[0040]
As described above, in the rail steel containing high carbon, in order to suppress the formation of the proeutectoid cementite structure of the rail head, the column, and the foot, within a certain time after the end of hot rolling, the rail By performing accelerated cooling on the head, column, and feet, it is possible to suppress the formation of proeutectoid cementite structure that is harmful to the occurrence of fatigue cracks and brittle cracks. By optimizing the selection of the rail length and final rolling temperature, it was possible to ensure the wear resistance of the rail head, uniformity of the material in the rail longitudinal direction, and ductility of the rail head.
[0041]
[Table 1]
Figure 0004272410
[0042]
[Table 2]
Figure 0004272410
[0043]
[Table 3]
Figure 0004272410
[0044]
【The invention's effect】
In high-carbon rail steel, it suppresses the formation of pro-eutectoid cementite structure, prevents fatigue strength and toughness from decreasing, and further, wear resistance of the rail head, uniformity of material in the rail longitudinal direction, rail head Can be ensured.
[Brief description of the drawings]
FIG. 1 is a diagram showing names of parts in each rail.
[Explanation of symbols]
1: Head 2: Column 3: Foot

Claims (3)

熱間圧延した長さ100〜200mのC:0.90〜1.20質量%を含有する高炭素鋼レールの冷却に当たり、熱間圧延終了後、200秒以内に加速冷却を開始し、鋼レールの頭部、柱部および足部をオーステナイト域温度から冷却速度範囲1〜10℃/secで、少なくとも650℃まで加速冷却することを特徴とするパーライトレールの熱処理方法。 When hot-rolled 100 to 200 m long C: 0.90 to 1.20 mass % of high-carbon steel rail containing steel is cooled , accelerated cooling is started within 200 seconds after hot rolling is completed. The pearlite rail heat-treating method is characterized in that the head, the column part, and the foot part are acceleratedly cooled from an austenite temperature to at least 650 ° C. at a cooling rate range of 1 to 10 ° C./sec. 請求項1に記載の熱処理方法において、鋼レールの頭部のオーステナイト域温度からの冷却速度を3〜15℃/secの範囲とし、少なくとも500℃まで加速冷却することを特徴とするパーライトレールの熱処理方法。In the heat treatment method according to claim 1, the cooling rate from the austenite region temperature of the steel rail head in a range of 3 to 15 ° C. / sec, heat treatment pearlite rail, characterized by accelerated cooling to at least 500 ° C. Method. レール頭部の熱間圧延終了温度が、850〜1000℃の範囲であることを特徴とする請求項1または2に記載のパーライトレールの熱処理方法。The method for heat treatment of a pearlite rail according to claim 1 or 2 , wherein the end rolling temperature of the rail head is in a range of 850 to 1000 ° C.
JP2002328260A 2002-04-05 2002-11-12 Heat treatment method for pearlite rail Expired - Fee Related JP4272410B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2002328260A JP4272410B2 (en) 2002-11-12 2002-11-12 Heat treatment method for pearlite rail
BRPI0304718A BRPI0304718B1 (en) 2002-04-05 2003-04-04 method for producing an excellent perlite steel rail for wear resistance and ductility
CNB03800576XA CN1304618C (en) 2002-04-05 2003-04-04 Pealite based rail excellent in wear resistance and ductility and method for production thereof
CA2451147A CA2451147C (en) 2002-04-05 2003-04-04 Pearlitic steel rail excellent in wear resistance and ductility and method for producing the same
AU2003236273A AU2003236273B2 (en) 2002-04-05 2003-04-04 Pealite based rail excellent in wear resistance and ductility and method for production thereof
EP11175030A EP2388352A1 (en) 2002-04-05 2003-04-04 Pearlitic steel rail excellent in wear resistance and ductility and method for producing the same
CA2749503A CA2749503C (en) 2002-04-05 2003-04-04 Pearlitic steel rail excellent in wear resistance and ductility and method for producing the same
US10/482,753 US20040187981A1 (en) 2002-04-05 2003-04-04 Pealite base rail excellent in wear resistance and ductility and method for production thereof
PCT/JP2003/004364 WO2003085149A1 (en) 2002-04-05 2003-04-04 Pealite based rail excellent in wear resistance and ductility and method for production thereof
EP03745927A EP1493831A4 (en) 2002-04-05 2003-04-04 Pealite based rail excellent in wear resistance and ductility and method for production thereof
HK05101368A HK1068926A1 (en) 2002-04-05 2005-02-18 Pealite based rail excellent in wear resistance and ductility and method for production thereof
US11/780,166 US7972451B2 (en) 2002-04-05 2007-07-19 Pearlitic steel rail excellent in wear resistance and ductility and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328260A JP4272410B2 (en) 2002-11-12 2002-11-12 Heat treatment method for pearlite rail

Publications (2)

Publication Number Publication Date
JP2004162106A JP2004162106A (en) 2004-06-10
JP4272410B2 true JP4272410B2 (en) 2009-06-03

Family

ID=32806608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328260A Expired - Fee Related JP4272410B2 (en) 2002-04-05 2002-11-12 Heat treatment method for pearlite rail

Country Status (1)

Country Link
JP (1) JP4272410B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5238930B2 (en) * 2009-02-12 2013-07-17 Jfeスチール株式会社 Abrasion resistant rail and method of manufacturing the same
DE102010016282A1 (en) * 2010-03-31 2011-10-06 Max-Planck-Institut Für Eisenforschung GmbH Ultrahigh-strength and wear-resistant quasi-eutectoid rail steels
AT521405B1 (en) * 2018-07-10 2021-09-15 Voestalpine Schienen Gmbh Track part made from hypereutectoid steel
CA3130062C (en) * 2019-03-15 2023-09-26 Nippon Steel Corporation Railway rail
JP7063400B2 (en) * 2019-10-11 2022-05-09 Jfeスチール株式会社 Rail and its manufacturing method

Also Published As

Publication number Publication date
JP2004162106A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4644105B2 (en) Heat treatment method for bainite steel rail
JPH09316598A (en) Pearlitic rail, excellent in wear resistance and weldability, and its production
JP3445619B2 (en) Rail with excellent wear resistance and internal damage resistance, and method of manufacturing the same
JPH08144016A (en) Highly wear resisting pearlitic rail
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
JPH0730401B2 (en) Method for producing high strength rail with excellent toughness
JP4998716B2 (en) Manufacturing method of wear-resistant steel plate
JP5326343B2 (en) Manufacturing method of high internal hardness rail
JP2007291413A (en) Method for manufacturing pearlitic rail excellent in wear resistance and ductility
JP4949144B2 (en) Perlite rail excellent in surface damage resistance and wear resistance and method for producing the same
JP4272410B2 (en) Heat treatment method for pearlite rail
JP6796472B2 (en) Hollow member and its manufacturing method
JPH10195601A (en) Pearlitic steel rail excellent in wear resistance and internal fatigue fracture resistance and manufacture therefor
JPH09111352A (en) Production of pearlitic rail excellent in wear resistance
JP2007169727A (en) High-strength pearlitic rail, and its manufacturing method
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP2000178690A (en) Pearlitic rail excellent in resistance to wear and internal fatigue damage, and its manufacture
JP2004359992A (en) Wire rod for high strength steel wire, high strength steel wire, and their production method
JP4272437B2 (en) High carbon steel rail manufacturing method
JPH08246101A (en) Pearlitic rail excellent in wear resistance and damage resistance and its production
JP4267334B2 (en) Heat treatment method for high carbon steel pearlite rail
JP3117916B2 (en) Manufacturing method of pearlitic rail with excellent wear resistance
JP3117915B2 (en) Manufacturing method of high wear resistant pearlite rail
JP3950212B2 (en) Manufacturing method of high-strength pearlitic rail with excellent wear resistance
JP4061141B2 (en) Perlite high-strength rail excellent in ductility and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4272410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees