JP2000314645A - Heater drive circuit - Google Patents

Heater drive circuit

Info

Publication number
JP2000314645A
JP2000314645A JP11124840A JP12484099A JP2000314645A JP 2000314645 A JP2000314645 A JP 2000314645A JP 11124840 A JP11124840 A JP 11124840A JP 12484099 A JP12484099 A JP 12484099A JP 2000314645 A JP2000314645 A JP 2000314645A
Authority
JP
Japan
Prior art keywords
resistor
heater
temperature
input terminal
inverting input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11124840A
Other languages
Japanese (ja)
Inventor
Kiyoshi Oda
清志 小田
Michiaki Yamaura
路明 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP11124840A priority Critical patent/JP2000314645A/en
Publication of JP2000314645A publication Critical patent/JP2000314645A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heater drive circuit by which the temperature difference between a heater temperature and an outside temperature can be made constant. SOLUTION: A fixed resistor RR and a temperature measuring resistor RR are connected across the - terminal of an operational amplifier OP2 and a ground. A heater resistor RH is connected across the + terminal of the operational amplifier OP2 and the ground. A fixed resistor Ra is connected across the + terminal of the operational amplifier OP2 and a transistor Q2. A variable resistor Rb is connected across the - terminal of the operational amplifier OP2 and the transistor Q2. When the fixed resistor RU does not exist, the potential difference between a point A and a point B becomes zero, a prescribed current flows to the heater resistor RH, and a heater is heated. In addition, when the fixed resistor RU is connected in series with the temperature measuring resistor RR, the potential difference becomes large by a portion of the inserted fixed resistance RU. As a result, the transistor Q2 increases a current to the heater resistor RH more than the prescribed current in such a way that the potential difference becomes zero, and a heater temperature rises with reference to an external temperature by a portion of the inserted fixed resistor RH.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒータを有するセ
ンサ・デバイス、例えばマイクロフローセンサのヒータ
を駆動するヒータ駆動回路に関する。
The present invention relates to a sensor device having a heater, for example, a heater drive circuit for driving a heater of a micro flow sensor.

【0002】[0002]

【従来の技術】従来より流量計としては、例えばマイク
ロフローセンサが用いられており、このマイクロフロー
センサは、シリコンの基板台上にヒータ抵抗とこのヒー
タ抵抗の両側に配置された周囲温度測定用の測温エレメ
ントを有し、ヒータ抵抗から発生する熱の温度分布変化
を測温エレメントによって検出することにより、ガス等
の流量を測定している。
2. Description of the Related Art Conventionally, for example, a micro flow sensor has been used as a flow meter. This micro flow sensor is used for measuring a heater resistance on a silicon substrate base and an ambient temperature disposed on both sides of the heater resistance. And the flow rate of gas or the like is measured by detecting a change in the temperature distribution of heat generated from the heater resistance by the temperature measuring element.

【0003】また、その他の流量計として熱線式フロー
センサが用いられており、この熱線式フローセンサは、
温度係数の大きなヒータ線を流路中に配し、そのヒータ
線からうばわれる熱量を検出することによりガス等の流
量を測定している。
[0003] A hot wire type flow sensor is used as another flow meter.
A heater wire having a large temperature coefficient is arranged in the flow path, and the flow rate of gas or the like is measured by detecting the amount of heat radiated from the heater wire.

【0004】これらのフローセンサに有するヒータは、
図5に示すようなヒータ駆動回路あるいは図6に示すよ
うなヒータ駆動回路によって駆動される。ここで、図5
に示すヒータ駆動回路についてのみ説明する。
The heaters of these flow sensors are:
It is driven by a heater drive circuit as shown in FIG. 5 or a heater drive circuit as shown in FIG. Here, FIG.
Only the heater drive circuit shown in FIG.

【0005】ヒータ駆動回路は、オペアンプOP1と、
PNP型のトランジスタQ1と、オペアンプOP1の反
転入力端子と大地との間に接続される測温抵抗RRと、
オペアンプOP1の反転入力端子とトランジスタQ1の
コレクタとの間に接続される固定抵抗R2と、オペアン
プOP1の非反転入力端子と大地との間に接続されるヒ
ータ抵抗RHと、オペアンプOP1の非反転入力端子と
トランジスタQ1のコレクタとの間に接続される固定抵
抗R1と、オペアンプOP1の出力端子とトランジスタ
Q1のベースとの間に接続される固定抵抗R3とを備え
て構成される。
The heater driving circuit includes an operational amplifier OP1 and
The transistor Q1 of the PNP type, and the resistance thermometer R R which is connected between the inverting input terminal and ground of the operational amplifier OP1,
A fixed resistor R 2 connected between the collector of the inverting input terminal and the transistor Q1 of the operational amplifier OP1, and a heater resistor R H, which is connected between the non-inverting input terminal and ground of the operational amplifier OP1, a non-operational amplifier OP1 a fixed resistor R 1 is connected between the collector of the inverting input terminal of transistor Q1, constructed and a fixed resistor R 3 connected between the base of the output terminal and the transistor Q1 of the operational amplifier OP1.

【0006】固定抵抗R1、固定抵抗R2、測温抵抗
R、及びヒータ抵抗RHによりブリッジ回路を構成して
いる。
[0006] fixed resistors R 1, the fixed resistors R 2, it forms a bridge circuit by the resistance thermometer R R, and a heater resistor R H.

【0007】ヒータ駆動回路は、オペアンプOP1の反
転入力端子−非反転入力端子間(A−B間)の電位差に
基づき電流負帰還をかけることにより、ヒータ抵抗RR
の抵抗値を一定値に保つように動作する。
The heater driving circuit applies a current negative feedback based on a potential difference between the inverting input terminal and the non-inverting input terminal (between A and B) of the operational amplifier OP1 to thereby provide a heater resistance R R.
Operates so as to keep the resistance value of the constant.

【0008】ここで、各抵抗値の関係式は、次式で表さ
れる。
Here, a relational expression of each resistance value is expressed by the following expression.

【0009】RH・R2=RR・R1 すなわち、ヒータ抵抗RRが正の温度係数を持つ場合
に、ヒータ温度が低くヒータ抵抗RRが小さいときに
は、ヒータ抵抗RRの電位差は小さくなる。このため、
オペアンプOP1の出力は、マイナス方向に振れて、ト
ランジスタQ1のベース電流が大となり、これによって
コレクタ電流が大きくなる。その結果、ブリッジ回路に
流れる電流が大きくなり、ヒータ抵抗RHが温まって温
度が上昇するからヒータ抵抗RHが大きくなる。このた
め、ヒータ抵抗RHの抵抗値が一定値になる。なお、ヒ
ータ温度が高すぎる場合には、ヒータ温度が低い場合の
制御と逆の制御を行うことになる。
[0009] R H · R 2 = R R · R 1 In other words, if the heater resistance R R has a positive temperature coefficient, when the heater temperature is the heater resistance R R is small low, the potential difference between the heater resistance R R is smaller Become. For this reason,
The output of the operational amplifier OP1 swings in the negative direction, so that the base current of the transistor Q1 increases, thereby increasing the collector current. As a result, the current flowing through the bridge circuit increases, and the heater resistance RH warms and the temperature rises, so that the heater resistance RH increases. For this reason, the resistance value of the heater resistance RH becomes a constant value. If the heater temperature is too high, control that is the reverse of the control when the heater temperature is low is performed.

【0010】また、従来のヒータ駆動回路としては、例
えば、特開平4−34315号公報に記載された流量計
のヒータ制御装置が知られている。この流量計のヒータ
制御装置の回路構成を図7に示す。図7において、オペ
アンプ101の反転入力端子(−)と大地との間には測
温抵抗103が接続され、オペアンプ101の反転入力
端子とトランジスタ111のエミッタとの間には固定抵
抗105が接続されている。オペアンプ101の非反転
入力端子(+)と大地との間には固定抵抗107が接続
され、オペアンプ101の出力は、固定抵抗109を介
してトランジスタ111のベースに接続されている。ト
ランジスタ111のコレクタと大地との間にはヒータ抵
抗113が接続され、トランジスタ111のコレクタと
オペアンプ101の非反転入力端子との間には固定抵抗
115が接続されている。
As a conventional heater drive circuit, for example, a heater control device of a flow meter described in Japanese Patent Application Laid-Open No. 4-34315 is known. FIG. 7 shows a circuit configuration of the heater control device of the flow meter. 7, a temperature measuring resistor 103 is connected between the inverting input terminal (-) of the operational amplifier 101 and the ground, and a fixed resistor 105 is connected between the inverting input terminal of the operational amplifier 101 and the emitter of the transistor 111. ing. The fixed resistor 107 is connected between the non-inverting input terminal (+) of the operational amplifier 101 and the ground, and the output of the operational amplifier 101 is connected to the base of the transistor 111 via the fixed resistor 109. A heater resistor 113 is connected between the collector of the transistor 111 and the ground, and a fixed resistor 115 is connected between the collector of the transistor 111 and the non-inverting input terminal of the operational amplifier 101.

【0011】なお、オペアンプ101,固定抵抗10
7,固定抵抗109及び固定抵抗115により増幅回路
を構成しており、トランジスタ111は、ヒータ抵抗1
13に流れる電流を増幅する。
An operational amplifier 101, a fixed resistor 10
7, a fixed resistor 109 and a fixed resistor 115 constitute an amplifier circuit.
13 is amplified.

【0012】以上の構成において、固定抵抗105の抵
抗値を測温抵抗103の抵抗値よりも十分に大きくとる
と、測温抵抗103に流れる電流は、測温抵抗103の
抵抗値が変化しても一定となる。このとき、測温抵抗1
03の温度係数とヒータ抵抗113の温度係数とは同一
としてあるため、周囲温度が変化してもヒータ抵抗11
3の発熱量は、一定値となり、適切な温度補正が行われ
る。
In the above configuration, if the resistance value of the fixed resistor 105 is set to be sufficiently larger than the resistance value of the temperature measuring resistor 103, the current flowing through the temperature measuring resistor 103 changes because the resistance value of the temperature measuring resistor 103 changes. Is also constant. At this time, the resistance
03 is the same as the temperature coefficient of the heater resistor 113, so that even if the ambient temperature changes, the heater resistance 11
The heat value of No. 3 becomes a constant value, and appropriate temperature correction is performed.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、図5及
び図6に示す従来のヒータ駆動回路にあっては、ヒータ
温度を一定温度に制御する回路であったため、また、図
7に示すヒータ制御装置は、ヒータにかかる電力を調整
する回路であったため、ヒータ温度を外部温度よりも一
定温度だけ高くするというような要求には対応できなか
った。すなわち、ヒータ温度と外部温度との温度差を一
定にするような要求には対応不可能であった。
However, in the conventional heater driving circuits shown in FIGS. 5 and 6, since the heater temperature is controlled to a constant temperature, the heater control circuit shown in FIG. Is a circuit for adjusting the power applied to the heater, and thus cannot meet the requirement that the heater temperature be higher than the external temperature by a certain temperature. That is, it is impossible to cope with a demand for making the temperature difference between the heater temperature and the external temperature constant.

【0014】本発明は、ヒータ温度と外部温度との温度
差を一定にすることができるヒータ駆動回路を提供する
ことを課題とする。
It is an object of the present invention to provide a heater driving circuit capable of keeping a temperature difference between a heater temperature and an external temperature constant.

【0015】[0015]

【課題を解決するための手段】本発明は前記課題を解決
するために以下の構成とした。請求項1の発明は、ヒー
タ抵抗と周囲温度測定用の測温抵抗と第1の抵抗と第2
の抵抗とが閉ループ状に接続されて構成され、4つの接
続端子の内の第1の接続端子に電源が供給され第2の接
続端子が接地されるブリッジ回路と、このブリッジ回路
の第3の接続端子の電圧と第4の接続端子の電圧との電
位差を増幅する差動増幅器と、 この差動増幅器で増幅
された電位差を零とするように前記電源から前記ブリッ
ジ回路への電流を制御する電流制御部と、前記測温抵抗
に直列に接続された固定抵抗とを備えることを特徴とす
る。
The present invention has the following arrangement to solve the above-mentioned problems. The invention according to claim 1 is characterized in that the heater resistance, the temperature measurement resistance for measuring the ambient temperature, the first resistance, and the second resistance.
And a bridge circuit in which power is supplied to a first connection terminal of the four connection terminals and the second connection terminal is grounded, and a third of the bridge circuit A differential amplifier for amplifying the potential difference between the voltage of the connection terminal and the voltage of the fourth connection terminal; and controlling the current from the power supply to the bridge circuit so that the potential difference amplified by the differential amplifier becomes zero. It is characterized by comprising a current control unit and a fixed resistor connected in series to the temperature measuring resistor.

【0016】請求項1の発明によれば、固定抵抗がない
場合には電位差は、零となり、ブリッジ回路のヒータ抵
抗に所定の電流が流れて、ヒータが加熱される。また、
固定抵抗が測温抵抗に直列に接続された場合には、固定
抵抗を挿入した分だけ、電位差が大きくなるため、電位
差が零となるように電流制御部がブリッジ回路のヒータ
抵抗への電流を増加させる。すなわち、固定抵抗が挿入
された分だけ、外部温度に対してヒータ温度が上昇す
る。従って、外部温度とヒータ温度との温度差を一定に
するヒータ駆動回路を実現することができる。
According to the first aspect of the present invention, when there is no fixed resistance, the potential difference becomes zero, a predetermined current flows through the heater resistance of the bridge circuit, and the heater is heated. Also,
When the fixed resistor is connected in series with the temperature measuring resistor, the potential difference increases by the amount of the fixed resistor inserted, so the current control unit controls the current to the heater resistor of the bridge circuit so that the potential difference becomes zero. increase. That is, the heater temperature rises with respect to the external temperature by an amount corresponding to the insertion of the fixed resistor. Therefore, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0017】請求項2の発明の前記電流制御部は、トラ
ンジスタであり、前記固定抵抗及び前記測温抵抗は、前
記差動増幅器の反転入力端子と大地との間に接続され、
前記ヒータ抵抗は、前記差動増幅器の非反転入力端子と
大地との間に接続され、前記第1の抵抗は、前記差動増
幅器の非反転入力端子と前記トランジスタとの間に接続
され、前記第2の抵抗は、前記差動増幅器の反転入力端
子と前記トランジスタとの間に接続されることを特徴と
する。
According to a second aspect of the present invention, the current control section is a transistor, and the fixed resistor and the temperature measuring resistor are connected between an inverting input terminal of the differential amplifier and the ground,
The heater resistor is connected between a non-inverting input terminal of the differential amplifier and the ground, and the first resistor is connected between a non-inverting input terminal of the differential amplifier and the transistor. The second resistor is connected between the inverting input terminal of the differential amplifier and the transistor.

【0018】請求項2の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の反転入力端子と大地との間に接続
し、ヒータ抵抗を差動増幅器の非反転入力端子と大地と
の間に接続し、第1の抵抗を差動増幅器の非反転入力端
子とトランジスタとの間に接続し、第2の抵抗を差動増
幅器の反転入力端子とトランジスタとの間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the second aspect of the present invention, the fixed resistor and the temperature measuring resistor are connected between the inverting input terminal of the differential amplifier and the ground, and the heater resistor is connected between the non-inverting input terminal of the differential amplifier and the ground. A first resistor is connected between the non-inverting input terminal of the differential amplifier and the transistor, and a second resistor is connected between the inverting input terminal of the differential amplifier and the transistor. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0019】請求項3の発明の前記電流制御部は、トラ
ンジスタであり、前記固定抵抗及び前記測温抵抗は、前
記差動増幅器の非反転入力端子と前記トランジスタとの
間に接続され、前記ヒータ抵抗は、前記差動増幅器の非
反転入力端子と大地との間に接続され、前記第1の抵抗
は、前記差動増幅器の反転入力端子と前記大地との間に
接続され、前記第2の抵抗は、前記差動増幅器の反転入
力端子と前記トランジスタとの間に接続されることを特
徴とする。
According to a third aspect of the present invention, the current control section is a transistor, wherein the fixed resistor and the temperature measuring resistor are connected between a non-inverting input terminal of the differential amplifier and the transistor, and A resistor connected between a non-inverting input terminal of the differential amplifier and the ground; a first resistor connected between an inverting input terminal of the differential amplifier and the ground; The resistor is connected between the inverting input terminal of the differential amplifier and the transistor.

【0020】請求項3の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の非反転入力端子とトランジスタと
の間に接続し、ヒータ抵抗を差動増幅器の非反転入力端
子と大地との間に接続し、第1の抵抗を差動増幅器の反
転入力端子と大地との間に接続し、第2の抵抗を差動増
幅器の反転入力端子とトランジスタとの間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the third aspect of the present invention, the fixed resistor and the temperature measuring resistor are connected between the non-inverting input terminal of the differential amplifier and the transistor, and the heater resistor is connected between the non-inverting input terminal of the differential amplifier and the ground. And a first resistor is connected between the inverting input terminal of the differential amplifier and the ground, and a second resistor is connected between the inverting input terminal of the differential amplifier and the transistor. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0021】請求項4の発明の前記電流制御部は、トラ
ンジスタであり、前記固定抵抗及び前記測温抵抗は、前
記差動増幅器の非反転入力端子と前記トランジスタとの
間に接続され、前記ヒータ抵抗は、前記差動増幅器の反
転入力端子と前記トランジスタとの間に接続され、前記
第1の抵抗は、前記差動増幅器の反転入力端子と大地と
の間に接続され、前記第2の抵抗は、前記差動増幅器の
非反転入力端子と前記大地との間に接続されることを特
徴とする。
According to a fourth aspect of the present invention, the current control section is a transistor, wherein the fixed resistor and the temperature measuring resistor are connected between a non-inverting input terminal of the differential amplifier and the transistor, and A resistor connected between the inverting input terminal of the differential amplifier and the transistor; the first resistor connected between the inverting input terminal of the differential amplifier and ground; Is connected between the non-inverting input terminal of the differential amplifier and the ground.

【0022】請求項4の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の非反転入力端子とトランジスタと
の間に接続し、ヒータ抵抗を差動増幅器の反転入力端子
とトランジスタとの間に接続し、第1の抵抗を差動増幅
器の反転入力端子と大地との間に接続し、第2の抵抗を
差動増幅器の非反転入力端子と大地との間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the present invention, the fixed resistor and the temperature measuring resistor are connected between the non-inverting input terminal of the differential amplifier and the transistor, and the heater resistor is connected between the inverting input terminal of the differential amplifier and the transistor. A first resistor is connected between the inverting input terminal of the differential amplifier and the ground, and a second resistor is connected between the non-inverting input terminal of the differential amplifier and the ground. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0023】請求項5の発明の前記電流制御部は、トラ
ンジスタであり、前記固定抵抗及び前記測温抵抗は、前
記差動増幅器の反転入力端子と大地との間に接続され、
前記ヒータ抵抗は、前記差動増幅器の反転入力端子と前
記トランジスタとの間に接続され、前記第1の抵抗は、
前記差動増幅器の非反転入力端子と前記トランジスタと
の間に接続され、前記第2の抵抗は、前記差動増幅器の
非反転入力端子と前記大地との間に接続されることを特
徴とする。
According to a fifth aspect of the present invention, the current control section is a transistor, and the fixed resistor and the temperature measuring resistor are connected between an inverting input terminal of the differential amplifier and the ground,
The heater resistance is connected between an inverting input terminal of the differential amplifier and the transistor, and the first resistance is
The transistor is connected between a non-inverting input terminal of the differential amplifier and the transistor, and the second resistor is connected between a non-inverting input terminal of the differential amplifier and the ground. .

【0024】請求項5の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の反転入力端子と大地との間に接続
し、ヒータ抵抗を差動増幅器の反転入力端子とトランジ
スタとの間に接続し、第1の抵抗を差動増幅器の非反転
入力端子とトランジスタとの間に接続し、第2の抵抗を
差動増幅器の非反転入力端子と大地との間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the fifth aspect of the present invention, the fixed resistor and the temperature measuring resistor are connected between the inverting input terminal of the differential amplifier and the ground, and the heater resistor is connected between the inverting input terminal of the differential amplifier and the transistor. And a first resistor is connected between the non-inverting input terminal of the differential amplifier and the transistor, and a second resistor is connected between the non-inverting input terminal of the differential amplifier and the ground. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0025】請求項6の発明の前記固定抵抗は温度特性
を持たず、且つ前記第1の抵抗の温度係数及び前記第2
の抵抗の温度係数が同一値であることを特徴とする。
According to a sixth aspect of the present invention, the fixed resistor does not have a temperature characteristic, and has a temperature coefficient of the first resistor and the second resistor.
Are characterized by the same temperature coefficient of resistance.

【0026】請求項6の発明によれば、固定抵抗は温度
特性を持たず、且つ第1の抵抗の温度係数及び第2の抵
抗の温度係数が同一値であることにより、固定抵抗によ
るヒータ温度の外部温度に対する変化がなくなる。
According to the sixth aspect of the present invention, the fixed resistor has no temperature characteristic, and the temperature coefficient of the first resistor and the temperature coefficient of the second resistor have the same value. Changes with respect to the external temperature.

【0027】請求項7の発明は、前記第1の抵抗の温度
係数及び前記第2の抵抗の温度係数が同一値であり、前
記測温抵抗の抵抗値が前記測温抵抗の静抵抗値と略同一
値であり、前記ヒータ抵抗の温度係数及び前記測温抵抗
の温度係数が同一値であり、前記ヒータ抵抗の静抵抗値
と前記測温抵抗の静抵抗値との比が前記第1の抵抗の抵
抗値と前記第2の抵抗の抵抗値との比と同じ値であるこ
とを特徴とする。
According to a seventh aspect of the present invention, the temperature coefficient of the first resistor and the temperature coefficient of the second resistor have the same value, and the resistance value of the temperature measuring resistor is equal to the static resistance value of the temperature measuring resistor. The temperature coefficient of the heater resistance and the temperature coefficient of the temperature measurement resistor are substantially the same value, and the ratio between the static resistance value of the heater resistance and the static resistance value of the temperature measurement resistance is the first value. The ratio of the resistance value of the resistor to the resistance value of the second resistor is the same.

【0028】請求項7の発明によれば、第1の抵抗の温
度係数及び第2の抵抗の温度係数が同一値であり、測温
抵抗の抵抗値が測温抵抗の静抵抗値と略同一値であり、
ヒータ抵抗の温度係数及び測温抵抗の温度係数が同一値
であり、ヒータ抵抗の静抵抗値と測温抵抗の静抵抗値と
の比が第1の抵抗の抵抗値と第2の抵抗の抵抗値との比
と同じ値であることにより、外部温度とヒータ温度との
温度差を一定にするヒータ駆動回路を実現することがで
きる。
According to the seventh aspect of the present invention, the temperature coefficient of the first resistor and the temperature coefficient of the second resistor have the same value, and the resistance value of the temperature measuring resistor is substantially the same as the static resistance value of the temperature measuring resistor. Value
The temperature coefficient of the heater resistance and the temperature coefficient of the temperature measurement resistance are the same value, and the ratio of the static resistance value of the heater resistance to the resistance value of the temperature measurement resistance is the resistance of the first resistance and the resistance of the second resistance. By having the same value as the ratio of the heater temperature, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0029】請求項8の発明の前記第1の抵抗と前記第
2の抵抗との一方の抵抗は、可変抵抗であり、この可変
抵抗により、前記ヒータ抵抗の静抵抗値と前記測温抵抗
の静抵抗値との比を前記第1の抵抗の抵抗値と前記第2
の抵抗の抵抗値との比と同じ値となるように調整するこ
とを特徴とする。
The one of the first resistor and the second resistor according to the invention of claim 8 is a variable resistor, and the variable resistor allows the static resistance value of the heater resistor and the resistance value of the temperature measuring resistor to be adjusted. The ratio between the static resistance value and the resistance value of the first resistor is compared with the second resistance value.
The resistance is adjusted so as to have the same value as the ratio of the resistance to the resistance value.

【0030】請求項8の発明によれば、可変抵抗によ
り、ヒータ抵抗の静抵抗値と測温抵抗の静抵抗値との比
を第1の抵抗の抵抗値と第2の抵抗の抵抗値との比と同
じ値となるように調整することにより、外部温度とヒー
タ温度との温度差を一定にするヒータ駆動回路を実現す
ることができる。
According to the eighth aspect of the present invention, the ratio between the static resistance value of the heater resistance and the static resistance value of the temperature measuring resistor is determined by the variable resistance by the resistance value of the first resistance and the resistance value of the second resistance. By adjusting the ratio so as to have the same value as the ratio, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0031】[0031]

【発明の実施の形態】以下、本発明のヒータ駆動回路の
実施の形態を図面を参照して詳細に説明する。図1は本
発明のヒータ駆動回路の実施の形態を示す回路構成図で
ある。図1に示すヒータ駆動回路は、例えば、フローセ
ンサに設けられたマイクロヒータを制御するものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the heater driving circuit according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a heater drive circuit according to the present invention. The heater drive circuit shown in FIG. 1 controls, for example, a micro heater provided in a flow sensor.

【0032】ヒータ駆動回路は、オペアンプOP2と、
PNP型のトランジスタQ2と、オペアンプOP2の反
転入力端子と大地との間に直列に接続された小さな抵抗
値を持つ固定抵抗RU及び周囲温度測定用の測温抵抗RR
と、オペアンプOP2の反転入力端子とトランジスタQ
2のコレクタとの間に接続される可変抵抗Rbと、オペ
アンプOP2の非反転入力端子と大地との間に接続され
るヒータ抵抗RHと、オペアンプOP2の非反転入力端
子とトランジスタQ2のコレクタとの間に接続される固
定抵抗Raと、オペアンプOP2の出力端子とトランジ
スタQ2のベースとの間に接続される固定抵抗R3とを
備えて構成される。
The heater driving circuit includes an operational amplifier OP2,
A PNP transistor Q2, a fixed resistance R U having a small resistance connected in series between the inverting input terminal of the operational amplifier OP2 and the ground, and a temperature measuring resistor R R for measuring the ambient temperature.
And the inverting input terminal of the operational amplifier OP2 and the transistor Q
, A variable resistance Rb connected between the collector of the transistor Q2, a heater resistor R H connected between the non-inverting input terminal of the operational amplifier OP2 and the ground, a non-inverting input terminal of the operational amplifier OP2 and the collector of the transistor Q2. configured with a fixed resistor Ra connected, and a fixed resistor R 3 connected between the base of the output terminal and the transistor Q2 of the operational amplifier OP2 during the.

【0033】ここで、固定抵抗Ra、固定抵抗Rb、固
定抵抗RU、測温抵抗RR、及びヒータ抵抗RHによりブ
リッジ回路を構成している。測温抵抗RRは、フローセ
ンサ上に配置された白金抵抗体であり、温度の変化によ
り抵抗値が変化する。ここで、ヒータ抵抗RHと測温抵
抗RRとは、同一の材質、例えば白金抵抗体からなり、
同一の温度係数を持つ。
Here, a bridge circuit is composed of the fixed resistors Ra, Rb, R U , temperature measurement resistor R R , and heater resistor R H. Resistance thermometer R R is a platinum resistor disposed on the flow sensor, the resistance value is changed by a change in temperature. Here, the heater resistance R H and the resistance thermometer R R, the same material, for example, a platinum resistor,
Have the same temperature coefficient.

【0034】また、オペアンプOP2は、差動増幅器を
構成し、ブリッジ回路における固定抵抗RUの端子電圧
とヒータ抵抗Rhの端子電圧との電位差を増幅する。ト
ランジスタQ2は、電流制御部を構成し、オペアンプO
P2で増幅された電位差を零とするように電源からブリ
ッジ回路への電流を制御するようになっている。
Further, the operational amplifier OP2 constitute a differential amplifier to amplify a potential difference between the fixed resistor R U terminal voltage and the terminal voltage of the heater resistance Rh of the bridge circuit. The transistor Q2 forms a current control unit, and includes an operational amplifier O
The current from the power supply to the bridge circuit is controlled so that the potential difference amplified by P2 becomes zero.

【0035】次にこのように構成された実施の形態のヒ
ータ駆動回路の動作を説明する。まず、ここでは、固定
抵抗RUを測温抵抗RRに接続しない状態で、各抵抗値を
以下の関係式となるように設定する。
Next, the operation of the heater driving circuit of the embodiment configured as described above will be described. First, here, without connecting the fixed resistance R U in the resistance thermometer R R, sets the resistance values such that the following relation.

【0036】RH・Rb=Ra・RR 上式を満たすときには、A−B間の電位差は、零とな
り、オペアンプOP2はトランジスタQ2をほとんど動
作させないため、ヒータ抵抗RHには電流が流れずに、
ヒータは加熱されない。以下、測温抵抗RRの測定した
外部温度をTrとし、ヒータ抵抗RHによるヒータ温度
をTHとする。
[0036] When satisfying R H · Rb = Ra · R R above equation, the potential difference between A-B is next to zero, the operational amplifier OP2 is so as not to almost operate transistors Q2, no current flows through the heater resistor R H To
The heater is not heated. Hereinafter, the measured external temperature of the resistance thermometer R R and Tr, the heater temperature by the heater resistance R H and T H.

【0037】次に、固定抵抗RUを測温抵抗RRに直列に
接続すると、固定抵抗RUを挿入した分だけ、点Aの電
位が点Bの電位よりも大きくなる。このため、オペアン
プOP2の出力は、マイナス方向に振れて、トランジス
タQ2のベース電流が大となり、これによってコレクタ
電流が大きくなる。すなわち、固定抵抗RUを挿入した
分だけ、電位差が大きくなるため、トランジスタQ2
が、ブリッジ回路のヒータ抵抗RHへの電流を増加させ
る。
Next, connecting fixed resistor R U in series with the resistance thermometer R R, by the amount insertion of the fixed resistor R U, the potential at the point A is greater than the potential at the point B. For this reason, the output of the operational amplifier OP2 swings in the negative direction, and the base current of the transistor Q2 increases, thereby increasing the collector current. That is, an amount corresponding to the insertion of the fixed resistor R U, the potential difference is large, the transistor Q2
Increases the current to the heater resistance RH of the bridge circuit.

【0038】その結果、ヒータ抵抗RHに流れる電流が
増加して、ヒータ抵抗RHがさらに大きくなるため、測
温抵抗RRによる外部温度Teに対して、ヒータ抵抗RH
によるヒータ温度は、TH=Tr+ΔTとなる。すなわ
ち、固定抵抗が挿入された分だけ、外部温度に対してヒ
ータ温度が上昇する。従って、外部温度とヒータ温度と
の温度差を一定にするヒータ駆動回路を実現することが
できる。この場合、固定抵抗RUの抵抗値の大きさに応
じて、温度差(ΔT)の大きさを任意に調整することが
できるため、所望の温度差に応じて、固定抵抗RUを設
定すればよい。
[0038] As a result, increases the current flowing through the heater resistor R H, for a heater resistor R H is further increased, the external temperature Te by resistance thermometer R R, the heater resistance R H
Heater temperature by becomes T H = Tr + ΔT. That is, the heater temperature rises with respect to the external temperature by an amount corresponding to the insertion of the fixed resistor. Therefore, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant. In this case, depending on the magnitude of the resistance value of the fixed resistor R U, it is possible to arbitrarily adjust the magnitude of the temperature difference ([Delta] T), depending on the desired temperature difference, by setting the fixed resistor R U I just need.

【0039】なお、ヒータ抵抗RHの温度変化に対する
ΔTの一定化制御については、図5に示すヒータ駆動回
路の動作と同様な動作を行うため、ここでは、その説明
は省略する。
Note that the control for making ΔT constant with respect to the temperature change of the heater resistance R H is similar to the operation of the heater drive circuit shown in FIG. 5, and therefore the description thereof is omitted here.

【0040】次に、外部温度とヒータ温度との温度差を
一定にするためのヒータ駆動回路の各抵抗値の定数の理
論計算を行う。まず、ブリッジ回路のA−B間電位差を
一定に保つ負帰還回路であることにより、 RH・Rb=(RR+RU)・Ra となる。上式から、RH=Ra・(RR+RU)/Rb=
κ・RR+κ・RU・・・(1)となる。
Next, a theoretical calculation of constants of respective resistance values of the heater driving circuit for making the temperature difference between the external temperature and the heater temperature constant is performed. First, since the negative feedback circuit keeps the potential difference between A and B of the bridge circuit constant, R H · Rb = (R R + R U ) · Ra. From the above equation, R H = Ra · (R R + R U ) / Rb =
κ · R R + κ · R U (1)

【0041】ここで、(1)式を変形して、 RHR=κ・RR・・・(2) RHU=κ・RU・・・(3) と分解する。κはRa/Rbである。Here, the equation (1) is modified to be decomposed as follows: R HR = κ · R R (2) R HU = κ · R U (3) κ is Ra / Rb.

【0042】(2)式のRHRがヒータの静抵抗分であれ
ば、RHR=RHRSとなる。RHRSはヒータの静抵抗値であ
る。これにより、(3)式分がヒータの加熱分の抵抗変
化を表すことになる。すなわち、(3)式分が外部温度
とヒータ温度との温度差を表すことになる。
If R HR in equation (2) is the static resistance of the heater, then R HR = R HRS . R HRS is the static resistance value of the heater. Thus, the equation (3) represents a change in resistance due to the heating of the heater. That is, the equation (3) represents the temperature difference between the external temperature and the heater temperature.

【0043】まず、κについて検証する。Raの温度係
数αaとRbの温度係数αbとを同一値(αa=αb、第1
の前提条件)に設計すれば、 κ=Ra/Rb =Ra0・{1+αa・(Tr−T0)}/Rb0・{1+αb・(Tr−T0)} =Ra0/Rb0 となる。Trは外部温度、T0は基準温度であり、
a0,Rb0は、基準温度時の抵抗値である。このため、
κは外部温度に関わらず一定となる。
First, κ will be verified. Same value and the temperature coefficient alpha b temperature coefficient alpha a and Rb of Ra (α a = α b, first
Be designed to precondition) of, κ = Ra / Rb = R a0 · {1 + α a · (Tr-T 0)} / R b0 · {1 + α b · (Tr-T 0)} = R a0 / R b0 Becomes Tr is the external temperature, T 0 is the reference temperature,
R a0 and R b0 are resistance values at the reference temperature. For this reason,
κ is constant regardless of the external temperature.

【0044】次に、ヒータ温度THと測温抵抗値TRとは
下式で表される。
Next, represented by the following formula and the heater temperature T H and the resistance temperature value T R.

【0045】 TH=T0+(1/α)・(RH/RHS0−1) ・・・(4) TR=T0+(1/α)・(RR/RR0−1) ・・・(5) ここで、RHS0は基準温度T0時の静抵抗値のRHであ
り、RR0は基準温度T0時のRRである。
T H = T 0 + (1 / α) · (R H / R HS0 −1) (4) T R = T 0 + (1 / α) · (R R / R R0 −1) ) (5) wherein, R HS0 is R H of the static resistance of at standard temperature T 0, R R0 is R R o'clock reference temperature T 0.

【0046】一般に測温抵抗は、自己発熱などにより、
実際の外部温度Trから換算される抵抗値Rrよりも抵
抗値が変化してしまうことがある。測温動作時に消費す
る電流を抑えるなどでこの抵抗値変化を対処するなど、
工夫されることが多い。本発明では測温動作で抵抗値が
変化しない(第2の前提条件)とみなせるとすると、 RR=Rr、TR=Tr となる。
Generally, the resistance of the temperature measuring resistor is determined by self-heating.
The resistance value may change more than the resistance value Rr converted from the actual external temperature Tr. To cope with this resistance value change by suppressing the current consumed during temperature measurement operation,
Often devised. In the present invention, assuming that the resistance value does not change in the temperature measurement operation (second precondition), R R = Rr and T R = Tr.

【0047】(4)式を(1)式を用いて展開すると、 TH=T0+(1/αH)・{(κRr+κRU)/RHS0
−1)} κ=RHS/Rr となるようにκを調整する(調整条件)と、上式は、 TH=T0+(1/αH)・{(κRr+κRU)/κRr0−1)} =T0+(1/αH)・(Rr/Rr0+RU/Rr0−1) ここで、ヒータ抵抗の温度係数αHと測温抵抗の温度係
数αRとが同一値であるとみなせると、ヒータ温度T
Hは、下式のようになる。
Expanding equation (4) using equation (1), T H = T 0 + (1 / α H ) {(κRr + κR U ) / R HS0
-1)} kappa = so that R HS / Rr adjusting the kappa and (adjustment condition), the above formula, T H = T 0 + ( 1 / α H) · {(κRr + κR U) / κRr 0 - 1)} = T 0 + (1 / α H ) · (Rr / Rr 0 + R U / Rr 0 −1) Here, the temperature coefficient α H of the heater resistance and the temperature coefficient α R of the temperature measurement resistance are the same value. , The heater temperature T
H is as follows.

【0048】 TH=Tr+(1/αH)・RU/Rr0 すなわち、ヒータの加熱分の温度ΔTは、(1/αH
・RU/Rr0となり、固定抵抗RUを温度特性がない
(第4の前提条件)ものとすると一定値になる。 第1の前提条件 αa=αb 第2の前提条件 RR=RRS(自己発熱しない条件) 第3の前提条件 αH=αR 第4の前提条件 αU=0またはRU=RU0 調整条件 κ=Ra/Rb=Ra0/Rb0=R
HS0/RRS0 このように実施の形態のヒータ駆動回路によれば、ヒー
タに加熱する熱量を制御することにより、ヒータ温度と
外部温度との温度差を一定に保つことができる。また、
恒温槽などの大きな装置を用いずに、ヒータ温度と外部
温度との温度差を一定になるように調整することがで
き、これによって、安価なヒータ駆動回路を構成するこ
とができる。
T H = Tr + (1 / α H ) · R U / Rr 0 In other words, the temperature ΔT of the heating portion of the heater is (1 / α H )
R U / Rr 0 , and becomes a constant value if the fixed resistor R U has no temperature characteristic (fourth precondition). First precondition α a = α b Second precondition R R = R RS (condition not causing self-heating) Third precondition α H = α R Fourth precondition α U = 0 or R U = R U0 adjustment condition κ = Ra / Rb = Ra 0 / Rb 0 = R
HS0 / R RS0 As described above, according to the heater driving circuit of the embodiment, the temperature difference between the heater temperature and the external temperature can be kept constant by controlling the amount of heat applied to the heater. Also,
The temperature difference between the heater temperature and the external temperature can be adjusted so as to be constant without using a large device such as a constant temperature bath, whereby an inexpensive heater drive circuit can be configured.

【0049】また、従来では、恒温槽で外部温度(ガス
温度)を一定にして、ヒータ温度を定温度回路(図5と
図6)で一定にすることで外部温度とヒータとの温度差
を一定にし、ヒータの消費電力によりガス等の気体の物
性値を計測したが、実施の形態のヒータ駆動回路を使用
したマイクロセンサによれば、ヒータ駆動回路が外部温
度に対してヒータ温度を所定温度だけ上昇して設定でき
るので、恒温槽などを用いずにセンサ単体で、例えば、
気体や液体の熱伝導率や比熱などの物性値を計測するこ
とができる。
Conventionally, the external temperature (gas temperature) is kept constant in a constant temperature bath, and the heater temperature is kept constant in a constant temperature circuit (FIGS. 5 and 6), so that the temperature difference between the external temperature and the heater is reduced. Although the physical property value of a gas or the like was measured by the power consumption of the heater while keeping it constant, according to the microsensor using the heater drive circuit of the embodiment, the heater drive circuit sets the heater temperature to a predetermined temperature with respect to the external temperature. Since it can be set by raising only, the sensor alone without using a thermostat, etc., for example,
Physical properties such as thermal conductivity and specific heat of gas and liquid can be measured.

【0050】さらに、マイクロフローセンサや熱線式流
速センサにおいて、温度補正を容易に行うことができ、
これによって、温度補正後の流速計測精度が良好となる
ため、流速計測範囲が広くなり、しかも消費電力を少な
くすることができる。
Further, in a micro flow sensor or a hot wire type flow rate sensor, temperature correction can be easily performed.
Thereby, the accuracy of the flow velocity measurement after the temperature correction is improved, so that the flow velocity measurement range is widened and the power consumption can be reduced.

【0051】<第1の変形例>図2は実施の形態のヒー
タ駆動回路の第1の変形例を示す回路構成図である。第
1の変形例のヒータ駆動回路は、オペアンプOP2と、
トランジスタQ2と、オペアンプOP2の反転入力端子
と大地との間に接続された固定抵抗Raと、オペアンプ
OP2の反転入力端子とトランジスタQ2のコレクタと
の間に接続される可変抵抗Rbと、オペアンプOP2の
非反転入力端子と大地との間に接続されるヒータ抵抗R
Hと、オペアンプOP2の非反転入力端子とトランジス
タQ2のコレクタとの間に接続される固定抵抗RU及び
測温抵抗RRと、オペアンプOP2の出力端子とトラン
ジスタQ2のベースとの間に接続される固定抵抗R3
を備えて構成される。
<First Modification> FIG. 2 is a circuit diagram showing a first modification of the heater drive circuit according to the embodiment. The heater driving circuit according to the first modification includes an operational amplifier OP2,
A transistor Q2, a fixed resistor Ra connected between the inverting input terminal of the operational amplifier OP2 and the ground, a variable resistor Rb connected between the inverting input terminal of the operational amplifier OP2 and the collector of the transistor Q2, and a Heater resistor R connected between non-inverting input terminal and ground
And H, are connected between the fixed resistor R U and resistance thermometer R R is connected between the collector of the non-inverting input terminal and the transistor Q2 of the operational amplifier OP2, the base of the output terminal and the transistor Q2 of the operational amplifier OP2 constructed and a fixed resistor R 3 that.

【0052】このような第1の変形例のヒータ駆動回路
によっても、外部温度に対してヒータ温度を所定温度分
だけ上昇させることができる。従って、外部温度とヒー
タ温度との温度差を一定にするヒータ駆動回路を実現す
ることができる。
With the heater driving circuit of the first modification, the heater temperature can be raised by a predetermined temperature with respect to the external temperature. Therefore, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0053】<第2の変形例>図3は実施の形態のヒー
タ駆動回路の第2の変形例を示す回路構成図である。第
2の変形例のヒータ駆動回路は、オペアンプOP2と、
トランジスタQ2と、オペアンプOP2の反転入力端子
と大地との間に接続された固定抵抗Raと、オペアンプ
OP2の反転入力端子とトランジスタQ2のコレクタと
の間に接続されるヒータ抵抗RHと、オペアンプOP2
の非反転入力端子と大地との間に接続される可変抵抗R
bと、オペアンプOP2の非反転入力端子とトランジス
タQ2のコレクタとの間に接続される固定抵抗RU及び
測温抵抗RRと、オペアンプOP2の出力端子とトラン
ジスタQ2のベースとの間に接続される固定抵抗R3
を備えて構成される。
<Second Modification> FIG. 3 is a circuit diagram showing a second modification of the heater drive circuit according to the embodiment. The heater driving circuit according to the second modification includes an operational amplifier OP2,
A transistor Q2, a fixed resistor Ra connected between the inverting input terminal of the operational amplifier OP2 and the ground, a heater resistor R H connected between the inverting input terminal of the operational amplifier OP2 and the collector of the transistor Q2, and an operational amplifier OP2.
Variable resistor R connected between the non-inverting input terminal of
and b, are connected between the fixed resistor R U and resistance thermometer R R is connected between the collector of the non-inverting input terminal and the transistor Q2 of the operational amplifier OP2, the base of the output terminal and the transistor Q2 of the operational amplifier OP2 constructed and a fixed resistor R 3 that.

【0054】このような第2の変形例のヒータ駆動回路
によっても、外部温度に対してヒータ温度を所定温度分
だけ上昇させることができる。従って、外部温度とヒー
タ温度との温度差を一定にするヒータ駆動回路を実現す
ることができる。
With the heater driving circuit of the second modification, the heater temperature can be raised by a predetermined temperature with respect to the external temperature. Therefore, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0055】<第3の変形例>図4は実施の形態のヒー
タ駆動回路の第3の変形例を示す回路構成図である。第
3の変形例のヒータ駆動回路は、オペアンプOP2と、
トランジスタQ2と、オペアンプOP2の反転入力端子
と大地との間に接続された固定抵抗RU及び測温抵抗RR
と、オペアンプOP2の反転入力端子とトランジスタQ
2のコレクタとの間に接続されるヒータ抵抗RHと、オ
ペアンプOP2の非反転入力端子と大地との間に接続さ
れる可変抵抗Rbと、オペアンプOP2の非反転入力端
子とトランジスタQ2のコレクタとの間に接続される固
定抵抗Raと、オペアンプOP2の出力端子とトランジ
スタQ2のベースとの間に接続される固定抵抗R3とを
備えて構成される。
<Third Modification> FIG. 4 is a circuit diagram showing a third modification of the heater drive circuit according to the embodiment. The heater driving circuit according to the third modification includes an operational amplifier OP2,
A transistor Q2, a fixed resistor connected between the inverting input terminal and ground of the operational amplifier OP2 R U and the resistance thermometer R R
And the inverting input terminal of the operational amplifier OP2 and the transistor Q
A heater resistance R H, which is connected between the second collector, and a variable resistor Rb is connected between the non-inverting input terminal and ground of the operational amplifier OP2, and the collector of the non-inverting input terminal and the transistor Q2 of the operational amplifier OP2 configured with a fixed resistor Ra connected, and a fixed resistor R 3 connected between the base of the output terminal and the transistor Q2 of the operational amplifier OP2 during the.

【0056】このような第3の変形例のヒータ駆動回路
によっても、外部温度に対してヒータ温度を所定温度分
だけ上昇させることができる。従って、外部温度とヒー
タ温度との温度差を一定にするヒータ駆動回路を実現す
ることができる。
With the heater driving circuit of the third modification, the heater temperature can be raised by a predetermined temperature with respect to the external temperature. Therefore, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0057】なお、本発明は、前述した実施の形態のヒ
ータ駆動回路に限定されるものではない。実施の形態の
ヒータ駆動回路及び第1の変形例乃至第3の変形例のヒ
ータ駆動回路では、可変抵抗Rbとしたが、ヒータ抵抗
Hと測温抵抗RRとの静抵抗値の比が常に一定に作製で
きれば、可変抵抗Rbを可変する必要はない。このほ
か、本発明の技術的思想を逸脱しない範囲で種々変形し
て実施可能であるのは勿論である。
It should be noted that the present invention is not limited to the heater drive circuit of the above-described embodiment. The heater driving circuit of the heater drive circuit and the first modification to the third modification of the embodiment, although the variable resistor Rb, the ratio of the static resistance of the heater resistor R H and the resistance thermometer R R It is not necessary to vary the variable resistor Rb if it can always be made constant. In addition, it goes without saying that various modifications can be made without departing from the technical idea of the present invention.

【0058】[0058]

【発明の効果】請求項1の発明によれば、固定抵抗がな
い場合には電位差は、零となり、ブリッジ回路のヒータ
抵抗に所定の電流が流れて、ヒータが加熱される。ま
た、固定抵抗が測温抵抗に直列に接続された場合には、
固定抵抗を挿入した分だけ、電位差が大きくなるため、
電位差が零となるように電流制御部がブリッジ回路のヒ
ータ抵抗への電流を増加させる。すなわち、固定抵抗が
挿入された分だけ、外部温度に対してヒータ温度が上昇
する。従って、外部温度とヒータ温度との温度差を一定
にするヒータ駆動回路を実現することができる。
According to the first aspect of the present invention, when there is no fixed resistance, the potential difference becomes zero, a predetermined current flows through the heater resistance of the bridge circuit, and the heater is heated. Also, if the fixed resistance is connected in series with the resistance temperature detector,
Since the potential difference increases by the amount of the fixed resistor inserted,
The current control unit increases the current to the heater resistor of the bridge circuit so that the potential difference becomes zero. That is, the heater temperature rises with respect to the external temperature by an amount corresponding to the insertion of the fixed resistor. Therefore, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0059】請求項2の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の反転入力端子と大地との間に接続
し、ヒータ抵抗を差動増幅器の非反転入力端子と大地と
の間に接続し、第1の抵抗を差動増幅器の非反転入力端
子とトランジスタとの間に接続し、第2の抵抗を差動増
幅器の反転入力端子とトランジスタとの間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the second aspect of the present invention, the fixed resistor and the temperature measuring resistor are connected between the inverting input terminal of the differential amplifier and the ground, and the heater resistor is connected between the non-inverting input terminal of the differential amplifier and the ground. A first resistor is connected between the non-inverting input terminal of the differential amplifier and the transistor, and a second resistor is connected between the inverting input terminal of the differential amplifier and the transistor. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0060】請求項3の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の非反転入力端子とトランジスタと
の間に接続し、ヒータ抵抗を差動増幅器の非反転入力端
子と大地との間に接続し、第1の抵抗を差動増幅器の反
転入力端子と大地との間に接続し、第2の抵抗を差動増
幅器の反転入力端子とトランジスタとの間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the third aspect of the present invention, the fixed resistor and the temperature measuring resistor are connected between the non-inverting input terminal of the differential amplifier and the transistor, and the heater resistor is connected to the non-inverting input terminal of the differential amplifier and the ground. And a first resistor is connected between the inverting input terminal of the differential amplifier and the ground, and a second resistor is connected between the inverting input terminal of the differential amplifier and the transistor. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0061】請求項4の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の非反転入力端子とトランジスタと
の間に接続し、ヒータ抵抗を差動増幅器の反転入力端子
とトランジスタとの間に接続し、第1の抵抗を差動増幅
器の反転入力端子と大地との間に接続し、第2の抵抗を
差動増幅器の非反転入力端子と大地との間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the fourth aspect of the present invention, the fixed resistor and the temperature measuring resistor are connected between the non-inverting input terminal of the differential amplifier and the transistor, and the heater resistor is connected between the inverting input terminal of the differential amplifier and the transistor. A first resistor is connected between the inverting input terminal of the differential amplifier and the ground, and a second resistor is connected between the non-inverting input terminal of the differential amplifier and the ground. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0062】請求項5の発明によれば、固定抵抗及び測
温抵抗を差動増幅器の反転入力端子と大地との間に接続
し、ヒータ抵抗を差動増幅器の反転入力端子とトランジ
スタとの間に接続し、第1の抵抗を差動増幅器の非反転
入力端子とトランジスタとの間に接続し、第2の抵抗を
差動増幅器の非反転入力端子と大地との間に接続するこ
とで、外部温度とヒータ温度との温度差を一定にするヒ
ータ駆動回路を実現することができる。
According to the fifth aspect of the present invention, the fixed resistor and the temperature measuring resistor are connected between the inverting input terminal of the differential amplifier and the ground, and the heater resistor is connected between the inverting input terminal of the differential amplifier and the transistor. And a first resistor is connected between the non-inverting input terminal of the differential amplifier and the transistor, and a second resistor is connected between the non-inverting input terminal of the differential amplifier and the ground. A heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant can be realized.

【0063】請求項6の発明によれば、固定抵抗は温度
特性を持たず、且つ第1の抵抗の温度係数及び第2の抵
抗の温度係数が同一値であることにより、固定抵抗によ
るヒータ温度の外部温度に対する変化がなくなる。
According to the sixth aspect of the present invention, the fixed resistor has no temperature characteristic, and the temperature coefficient of the first resistor and the temperature coefficient of the second resistor have the same value. Changes with respect to the external temperature.

【0064】請求項7の発明によれば、第1の抵抗の温
度係数及び第2の抵抗の温度係数が同一値であり、測温
抵抗の抵抗値が測温抵抗の静抵抗値と略同一値であり、
ヒータ抵抗の温度係数及び測温抵抗の温度係数が同一値
であり、ヒータ抵抗の静抵抗値と測温抵抗の静抵抗値と
の比が第1の抵抗の抵抗値と第2の抵抗の抵抗値との比
と同じ値であることにより、外部温度とヒータ温度との
温度差を一定にするヒータ駆動回路を実現することがで
きる。
According to the seventh aspect of the present invention, the temperature coefficient of the first resistor and the temperature coefficient of the second resistor have the same value, and the resistance value of the temperature measuring resistor is substantially the same as the static resistance value of the temperature measuring resistor. Value
The temperature coefficient of the heater resistance and the temperature coefficient of the temperature measurement resistance are the same value, and the ratio of the static resistance value of the heater resistance to the resistance value of the temperature measurement resistance is the resistance of the first resistance and the resistance of the second resistance. By having the same value as the ratio of the heater temperature, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【0065】請求項8の発明によれば、可変抵抗によ
り、ヒータ抵抗の静抵抗値と測温抵抗の静抵抗値との比
を第1の抵抗の抵抗値と第2の抵抗の抵抗値との比と同
じ値となるように調整することにより、外部温度とヒー
タ温度との温度差を一定にするヒータ駆動回路を実現す
ることができる。
According to the eighth aspect of the present invention, the ratio between the static resistance value of the heater resistance and the static resistance value of the temperature measuring resistance is determined by the variable resistance by the resistance value of the first resistance and the resistance value of the second resistance. By adjusting the ratio so as to have the same value as the ratio, it is possible to realize a heater drive circuit that makes the temperature difference between the external temperature and the heater temperature constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のヒータ駆動回路の実施の形態を示す回
路構成図である。
FIG. 1 is a circuit diagram showing an embodiment of a heater drive circuit according to the present invention.

【図2】実施の形態のヒータ駆動回路の第1の変形例を
示す回路構成図である。
FIG. 2 is a circuit diagram showing a first modification of the heater drive circuit according to the embodiment.

【図3】実施の形態のヒータ駆動回路の第2の変形例を
示す回路構成図である。
FIG. 3 is a circuit diagram showing a second modification of the heater drive circuit according to the embodiment.

【図4】実施の形態のヒータ駆動回路の第3の変形例を
示す回路構成図である。
FIG. 4 is a circuit diagram showing a third modification of the heater drive circuit according to the embodiment.

【図5】従来のヒータ駆動回路の一例を示す回路図であ
る。
FIG. 5 is a circuit diagram showing an example of a conventional heater drive circuit.

【図6】図5に示すヒータ駆動回路の変形例を示す図で
ある。
FIG. 6 is a diagram showing a modification of the heater drive circuit shown in FIG.

【図7】従来の流量計のヒータ制御装置の一例を示す図
である。
FIG. 7 is a diagram showing an example of a conventional heater control device for a flow meter.

【符号の説明】[Explanation of symbols]

Q1,Q2 トランジスタ OP1,OP2 オペアンプ RH ヒータ抵抗 RR 測温抵抗 Ra 固定抵抗 Rb 可変抵抗 RU 固定抵抗Q1, Q2 transistors OP1, OP2 operational amplifier R H heater resistance R R resistance thermometer Ra fixed resistor Rb variable resistor R U fixed resistance

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ヒータ抵抗と周囲温度測定用の測温抵抗
と第1の抵抗と第2の抵抗とが閉ループ状に接続されて
構成され、4つの接続端子の内の第1の接続端子に電源
が供給され第2の接続端子が接地されるブリッジ回路
と、 このブリッジ回路の第3の接続端子の電圧と第4の接続
端子の電圧との電位差を増幅する差動増幅器と、 この差動増幅器で増幅された電位差を零とするように前
記電源から前記ブリッジ回路への電流を制御する電流制
御部と、 前記測温抵抗に直列に接続された固定抵抗と、を備える
ことを特徴とするヒータ駆動回路。
1. A heater resistor, a temperature measuring resistor for measuring an ambient temperature, a first resistor, and a second resistor are connected in a closed loop shape, and are connected to a first connection terminal among four connection terminals. A bridge circuit to which power is supplied and a second connection terminal is grounded; a differential amplifier for amplifying a potential difference between a voltage of a third connection terminal and a voltage of a fourth connection terminal of the bridge circuit; A current control unit configured to control a current from the power supply to the bridge circuit so that a potential difference amplified by the amplifier becomes zero; and a fixed resistor connected in series to the temperature measuring resistor. Heater drive circuit.
【請求項2】 前記電流制御部は、トランジスタであ
り、前記固定抵抗及び前記測温抵抗は、前記差動増幅器
の反転入力端子と大地との間に接続され、前記ヒータ抵
抗は、前記差動増幅器の非反転入力端子と大地との間に
接続され、前記第1の抵抗は、前記差動増幅器の非反転
入力端子と前記トランジスタとの間に接続され、前記第
2の抵抗は、前記差動増幅器の反転入力端子と前記トラ
ンジスタとの間に接続されることを特徴とする請求項1
記載のヒータ駆動回路。
2. The current control section is a transistor, wherein the fixed resistor and the temperature measuring resistor are connected between an inverting input terminal of the differential amplifier and the ground, and the heater resistor is connected to the differential resistor. A first resistor connected between the non-inverting input terminal of the differential amplifier and the transistor, and a second resistor connected between the non-inverting input terminal of the differential amplifier and the transistor; 2. A transistor connected between an inverting input terminal of a dynamic amplifier and the transistor.
The heater drive circuit according to the above.
【請求項3】 前記電流制御部は、トランジスタであ
り、前記固定抵抗及び前記測温抵抗は、前記差動増幅器
の非反転入力端子と前記トランジスタとの間に接続さ
れ、前記ヒータ抵抗は、前記差動増幅器の非反転入力端
子と大地との間に接続され、前記第1の抵抗は、前記差
動増幅器の反転入力端子と前記大地との間に接続され、
前記第2の抵抗は、前記差動増幅器の反転入力端子と前
記トランジスタとの間に接続されることを特徴とする請
求項1記載のヒータ駆動回路。
3. The current control unit is a transistor, the fixed resistor and the temperature measuring resistor are connected between a non-inverting input terminal of the differential amplifier and the transistor, and the heater resistor is A first resistor connected between the non-inverting input terminal of the differential amplifier and the ground, the first resistor connected between the inverting input terminal of the differential amplifier and the ground,
2. The heater driving circuit according to claim 1, wherein the second resistor is connected between an inverting input terminal of the differential amplifier and the transistor.
【請求項4】 前記電流制御部は、トランジスタであ
り、前記固定抵抗及び前記測温抵抗は、前記差動増幅器
の非反転入力端子と前記トランジスタとの間に接続さ
れ、前記ヒータ抵抗は、前記差動増幅器の反転入力端子
と前記トランジスタとの間に接続され、前記第1の抵抗
は、前記差動増幅器の反転入力端子と大地との間に接続
され、前記第2の抵抗は、前記差動増幅器の非反転入力
端子と前記大地との間に接続されることを特徴とする請
求項1記載のヒータ駆動回路。
4. The current control section is a transistor, the fixed resistance and the temperature measuring resistance are connected between a non-inverting input terminal of the differential amplifier and the transistor, and the heater resistance is The first resistor is connected between an inverting input terminal of a differential amplifier and the transistor, the first resistor is connected between the inverting input terminal of the differential amplifier and ground, and the second resistor is connected to the differential amplifier. 2. The heater drive circuit according to claim 1, wherein the heater drive circuit is connected between a non-inverting input terminal of a dynamic amplifier and the ground.
【請求項5】 前記電流制御部は、トランジスタであ
り、前記固定抵抗及び前記測温抵抗は、前記差動増幅器
の反転入力端子と大地との間に接続され、前記ヒータ抵
抗は、前記差動増幅器の反転入力端子と前記トランジス
タとの間に接続され、前記第1の抵抗は、前記差動増幅
器の非反転入力端子と前記トランジスタとの間に接続さ
れ、前記第2の抵抗は、前記差動増幅器の非反転入力端
子と前記大地との間に接続されることを特徴とする請求
項1記載のヒータ駆動回路。
5. The current control unit is a transistor, the fixed resistor and the temperature measuring resistor are connected between an inverting input terminal of the differential amplifier and the ground, and the heater resistor is connected to the differential resistor. The first resistor is connected between an inverting input terminal of an amplifier and the transistor, the first resistor is connected between a non-inverting input terminal of the differential amplifier and the transistor, and the second resistor is connected to the differential amplifier. 2. The heater drive circuit according to claim 1, wherein the heater drive circuit is connected between a non-inverting input terminal of a dynamic amplifier and the ground.
【請求項6】 前記固定抵抗は温度特性を持たず、且つ
前記第1の抵抗の温度係数及び前記第2の抵抗の温度係
数が同一値であることを特徴とする請求項1乃至請求項
5のいずれか1項記載のヒータ駆動回路。
6. The fixed resistor has no temperature characteristic, and the temperature coefficient of the first resistor and the temperature coefficient of the second resistor have the same value. A heater drive circuit according to any one of the preceding claims.
【請求項7】 前記第1の抵抗の温度係数及び前記第2
の抵抗の温度係数が同一値であり、前記測温抵抗が測温
動作によらず外部温度による抵抗値を示し、前記ヒータ
抵抗の温度係数及び前記測温抵抗の温度係数が同一値で
あり、前記ヒータ抵抗の静抵抗値と前記測温抵抗の静抵
抗値との比が前記第1の抵抗の抵抗値と前記第2の抵抗
の抵抗値との比と同じ値であることを特徴とする請求項
1乃至請求項6のいずれか1項記載のヒータ駆動回路。
7. The temperature coefficient of said first resistor and said second resistor.
The temperature coefficient of the resistance is the same value, the temperature measuring resistor indicates a resistance value due to an external temperature regardless of the temperature measuring operation, the temperature coefficient of the heater resistance and the temperature coefficient of the temperature measuring resistance are the same value, The ratio between the static resistance value of the heater resistor and the static resistance value of the temperature measuring resistor is the same as the ratio of the resistance value of the first resistor to the resistance value of the second resistor. The heater drive circuit according to any one of claims 1 to 6.
【請求項8】 前記第1の抵抗と前記第2の抵抗との一
方の抵抗は、可変抵抗であり、この可変抵抗により、前
記ヒータ抵抗の静抵抗値と前記測温抵抗の静抵抗値との
比を前記第1の抵抗の抵抗値と前記第2の抵抗の抵抗値
との比と同じ値となるように調整することを特徴とする
請求項7記載のヒータ駆動回路。
8. One of the first resistor and the second resistor is a variable resistor, and the variable resistance allows the static resistance of the heater resistor and the static resistance of the temperature measuring resistor to be changed. 8. The heater drive circuit according to claim 7, wherein the ratio is adjusted to be the same as the ratio between the resistance value of the first resistor and the resistance value of the second resistor.
JP11124840A 1999-04-30 1999-04-30 Heater drive circuit Pending JP2000314645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11124840A JP2000314645A (en) 1999-04-30 1999-04-30 Heater drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11124840A JP2000314645A (en) 1999-04-30 1999-04-30 Heater drive circuit

Publications (1)

Publication Number Publication Date
JP2000314645A true JP2000314645A (en) 2000-11-14

Family

ID=14895402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11124840A Pending JP2000314645A (en) 1999-04-30 1999-04-30 Heater drive circuit

Country Status (1)

Country Link
JP (1) JP2000314645A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010971B2 (en) 2003-12-08 2006-03-14 Hitachi Ltd. Heating resistor type flow-measuring device having a heating resistor and a thermoresistance, whose resistance value varies in response to the ambient temperature
US7487674B2 (en) 2005-11-22 2009-02-10 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
EP2280251A2 (en) 2009-07-30 2011-02-02 Hitachi Automotive Systems, Ltd. Thermal flow meter
DE102012204393A1 (en) 2011-09-16 2013-03-21 Mitsubishi Electric Corp. Heat flow sensor for vehicles
JP2015219123A (en) * 2014-05-19 2015-12-07 アズビル株式会社 Sensor with two functions
CN111342786A (en) * 2020-04-21 2020-06-26 上海类比半导体技术有限公司 Differential amplifier common mode rejection ratio and gain trimming circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010971B2 (en) 2003-12-08 2006-03-14 Hitachi Ltd. Heating resistor type flow-measuring device having a heating resistor and a thermoresistance, whose resistance value varies in response to the ambient temperature
US7487674B2 (en) 2005-11-22 2009-02-10 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
US7562569B2 (en) 2005-11-22 2009-07-21 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
US7568388B2 (en) 2005-11-22 2009-08-04 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
US7568387B2 (en) 2005-11-22 2009-08-04 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
US7574909B2 (en) 2005-11-22 2009-08-18 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
DE102006026890B4 (en) * 2005-11-22 2010-01-07 Mitsubishi Denki K.K. Thermal flow sensor
US7658102B2 (en) 2005-11-22 2010-02-09 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
EP2280251A2 (en) 2009-07-30 2011-02-02 Hitachi Automotive Systems, Ltd. Thermal flow meter
US8336376B2 (en) 2009-07-30 2012-12-25 Hitachi Automotive Systems, Ltd. Thermal flow meter
DE102012204393A1 (en) 2011-09-16 2013-03-21 Mitsubishi Electric Corp. Heat flow sensor for vehicles
US8959995B2 (en) 2011-09-16 2015-02-24 Mitsubishi Electric Corporation Thermal flow sensor having a power source for driving a bridge circuit and an integrated circuit
JP2015219123A (en) * 2014-05-19 2015-12-07 アズビル株式会社 Sensor with two functions
CN111342786A (en) * 2020-04-21 2020-06-26 上海类比半导体技术有限公司 Differential amplifier common mode rejection ratio and gain trimming circuit
US11757417B2 (en) 2020-04-21 2023-09-12 Shanghai Analogy Semiconductor Technology Ltd. Differential amplifier common-mode rejection ratio and gain trimming circuit

Similar Documents

Publication Publication Date Title
EP1541974B1 (en) Heating resistor type flow-measuring device
JP2005534014A (en) Variable resistance sensor with a common reference leg
JP2009027495A (en) Control circuit for thermostatic oven in crystal oscillator with thermostatic oven
JPH06160142A (en) Flow-rate sensor
JP2599854B2 (en) How to set the thermal flow sensor
JPH11201793A (en) Flow rate sensor
US4566320A (en) Fluid flow sensing means with ambient temperature compensation
JPH0315722A (en) Hot wire type air flow meter
JP2000314645A (en) Heater drive circuit
JP2006201077A (en) Thermal air flowmeter
WO2003093838A1 (en) Flow velocity sensor
JP3706283B2 (en) Flow sensor circuit
KR100337622B1 (en) Heat sensitive flow meter
JP5178261B2 (en) Thermal flow meter
JP3577902B2 (en) Thermal flow sensor
JPH0682286A (en) Thermal type flowmeter
JPH02120620A (en) Heater temperature control circuit
JP3523105B2 (en) Flow sensor heater control device
JPH06109510A (en) Thermal flowmeter
JPH0443919A (en) Heater temperature control circuit
JP2003315129A (en) Thermal flow measuring instrument
JPH0434315A (en) Heater controller for flowmeter
JP2002228501A (en) Thermal air flow meter
JPH10325823A (en) Heater for heating sensor and heating control circuit
JPH03199917A (en) Sensor