JP2002228501A - Thermal air flow meter - Google Patents

Thermal air flow meter

Info

Publication number
JP2002228501A
JP2002228501A JP2001028406A JP2001028406A JP2002228501A JP 2002228501 A JP2002228501 A JP 2002228501A JP 2001028406 A JP2001028406 A JP 2001028406A JP 2001028406 A JP2001028406 A JP 2001028406A JP 2002228501 A JP2002228501 A JP 2002228501A
Authority
JP
Japan
Prior art keywords
temperature
resistor
air flow
bridge circuit
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001028406A
Other languages
Japanese (ja)
Other versions
JP3675721B2 (en
Inventor
Hiroshi Yoneda
浩志 米田
Keiichi Nakada
圭一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2001028406A priority Critical patent/JP3675721B2/en
Publication of JP2002228501A publication Critical patent/JP2002228501A/en
Application granted granted Critical
Publication of JP3675721B2 publication Critical patent/JP3675721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a thermal air flow meter with a simple structure capable of accurately measuring the rate of flow in two directions by providing a temperature compensation means at a portion for acquiring a temperature difference signal. SOLUTION: A node between temperature sensing resistors Ru1 and Rd1 is connected through a temperature sensing resistor Ra to a minus input terminal of an amplifier A while the node between the sensing resistors Ru1 and Rd1 is connected to a plus input terminal of the amplifier A. A node between temperature sensing resistors Rd2 and Ru2 is connected to a node between the sensing resistor Ra and the minus input terminal of the amplifier A. A temperature sensing resistor Rf is disposed at a position bound up with the temperature of air flow and not suffering thermal interference of a heating resistor Rh, and forms a bridge circuit together with resistors R1 to R3 and the heating resistor Rh. By connecting the sensing resistor Ra and setting the temperature coefficients of the resistors Ru and Rd at about a third part of that of the resistor Ra, a compensation can be made so that the air-flow temperature dependency of potential difference dV at a comparison point is decreased to one tenth or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、自動車の
内燃機関制御に必要とされるエンジンの吸入空気流量を
計測する装置に係り、特に、吸気脈動により生じる逆流
現象をも正確に計測する双方向の流量検出が可能な熱式
空気流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring an intake air flow rate of an engine required for controlling an internal combustion engine of an automobile, and more particularly, to an apparatus for accurately measuring a backflow phenomenon caused by intake pulsation. Field of the Invention The present invention relates to a thermal air flowmeter capable of detecting a flow rate in one direction.

【0002】[0002]

【従来の技術】従来技術の空気流量計測装置としては、
例えば、特開平9−318412号公報に開示されたも
のがある。この公報に開示された技術は、吸気温度と一
定の温度差に制御され、空気流中に設置された発熱抵抗
体の上下流に、感温抵抗体を設置し、この上下流に設置
された感温抵抗体の互いの温度差により、双方向の空気
流量を計測する方法である。
2. Description of the Related Art Conventional air flow measuring devices include:
For example, there is one disclosed in Japanese Patent Application Laid-Open No. 9-318412. The technology disclosed in this publication is controlled at a temperature difference between the intake air temperature and a certain temperature, and installs a temperature-sensitive resistor upstream and downstream of a heating resistor installed in an air flow, and installs the temperature-sensitive resistor upstream and downstream of this resistor. This is a method of measuring the bidirectional air flow rate based on the temperature difference between the temperature-sensitive resistors.

【0003】上記開示技術によれば、発熱抵抗体と下流
側感温抵抗体との間にスリットを設けたり、発熱抵抗体
の加熱電流と感温抵抗体の温度差信号を組み合わせたり
することで、流量測定範囲の拡大や流量測定感度の適正
化が行なえることとなっている。
According to the disclosed technology, a slit is provided between the heating resistor and the downstream temperature sensing resistor, or a heating current of the heating resistor and a temperature difference signal of the temperature sensing resistor are combined. Thus, the flow measurement range can be expanded and the flow measurement sensitivity can be optimized.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来技術においては感温抵抗体の温度差を流量計測信号と
して用いる場合、周囲温度による計測誤差が発生するた
め、例えば、感温抵抗体等に印加する基準電圧を周囲温
度に応じて変化させる手段等の、流量計測部とは独立し
た、複雑で大規模な温度補正手段が必要になる。
However, in the above-mentioned prior art, when the temperature difference of the temperature-sensitive resistor is used as a flow rate measurement signal, a measurement error due to the ambient temperature occurs. A complicated large-scale temperature correction means independent of the flow rate measurement unit, such as a means for changing the reference voltage to be performed according to the ambient temperature, is required.

【0005】また、発熱抵抗体の加熱電流と感温抵抗体
の温度差信号とを組み合わせた場合(発熱抵抗体と感温
抵抗体とによりブリッジ回路を構成し、発熱抵抗体から
の発熱ブリッジ信号と感温抵抗体による温度差ブリッジ
信号とを加算した場合)、周囲温度に対する温度補償効
果は期待できるが、温度差ブリッジ信号に比べ加熱電流
の応答性が極めて速く、発熱ブリッジ信号がノイズ成分
として温度差ブリッジに重畳するため、流量計測信号の
ノイズ成分が多くなり、流量計測精度の低下を招いてし
まう。
Further, when a heating current of the heating resistor and a temperature difference signal of the temperature sensing resistor are combined (a bridge circuit is constituted by the heating resistor and the temperature sensing resistor, a heating bridge signal from the heating resistor is generated). And the temperature difference bridge signal by the temperature sensitive resistor), the temperature compensation effect for the ambient temperature can be expected, but the response of the heating current is much faster than the temperature difference bridge signal, and the heat generation bridge signal is a noise component. Since the signal is superimposed on the temperature difference bridge, the noise component of the flow rate measurement signal is increased, and the flow rate measurement accuracy is reduced.

【0006】本発明の目的は、温度差信号を得る部位に
温度補償手段を設けることにより、簡単な構成で正確な
双方向の流量計測を行なうことが可能な熱式空気流量計
を実現することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a thermal air flow meter capable of performing accurate two-way flow measurement with a simple structure by providing a temperature compensating means at a portion where a temperature difference signal is obtained. It is.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は次のように構成される。 (1)熱式空気流量計において、空気流温度と一定の温
度差に制御される発熱抵抗体と、この発熱抵抗体の空気
流上流側及び下流側の熱干渉域に設置され、ブリッジ回
路を形成する1組以上の第1の感温抵抗体と、上記ブリ
ッジ回路の感温抵抗体間の電位を比較すべき2点に接続
され、空気流温度に依存する第2の感温抵抗体とを備
え、上記比較すべき2点の電位差により空気流量を計測
する。
In order to achieve the above object, the present invention is configured as follows. (1) In a thermal air flow meter, a heating resistor controlled at a constant temperature difference from the air flow temperature, and a heat generating resistor installed in a heat interference region on the upstream side and the downstream side of the air flow of the heating resistor to form a bridge circuit. One or more pairs of first temperature-sensitive resistors to be formed, and a second temperature-sensitive resistor connected to two points to be compared with the potential between the temperature-sensitive resistors of the bridge circuit and dependent on the airflow temperature. And the air flow rate is measured based on the potential difference between the two points to be compared.

【0008】(2)好ましくは、上記(1)において、
上記第2の感温抵抗体は、上記ブリッジ回路の辺を構成
する第1の感温抵抗体よりも大きな抵抗温度係数を有す
る。
(2) Preferably, in the above (1),
The second temperature-sensitive resistor has a larger temperature coefficient of resistance than the first temperature-sensitive resistor constituting the side of the bridge circuit.

【0009】(3)熱式空気流量計において、空気流温
度と一定の温度差に制御される発熱抵抗体と、この発熱
抵抗体の空気流上流側及び下流側の熱干渉域に設置さ
れ、ブリッジ回路を形成する1組以上の第1の感温抵抗
体と、上記ブリッジ回路の電圧供給点又は基準電位点に
接続され、空気流温度に依存し負の抵抗温度係数を持つ
第2の感温抵抗体とを備え、上記ブリッジ回路の感温抵
抗体間の電位を比較すべき2点を比較することにより、
空気流量を計測する。
(3) In the thermal air flow meter, a heating resistor controlled at a constant temperature difference from the airflow temperature is installed in a heat interference region on the upstream and downstream sides of the heating resistor in the airflow. One or more first temperature-sensitive resistors forming a bridge circuit, and a second temperature-sensitive resistor connected to a voltage supply point or a reference potential point of the bridge circuit and having a negative temperature coefficient of resistance depending on airflow temperature. By comparing two points to be compared with the potential between the temperature-sensitive resistors of the bridge circuit,
Measure the air flow.

【0010】(4)熱式空気流量計において、空気流温
度と一定の温度差に制御される発熱抵抗体と、この発熱
抵抗体の空気流上流側及び下流側の熱干渉域に設置さ
れ、ブリッジ回路を形成する1組以上の感温抵抗体と、
上記ブリッジ回路の電圧供給点又は基準電位点に接続さ
れ、空気流温度に依存し負の抵抗温度係数を持つ半導体
素子とを備え、上記ブリッジ回路の感温抵抗体間の電位
を比較すべき2点を比較することにより、空気流量を計
測する。
(4) In the thermal air flow meter, a heating resistor controlled at a constant temperature difference from the airflow temperature is installed in a heat interference region on the upstream and downstream sides of the heating resistor in the airflow. One or more pairs of temperature-sensitive resistors forming a bridge circuit;
A semiconductor element connected to a voltage supply point or a reference potential point of the bridge circuit and having a negative temperature coefficient of resistance depending on an air flow temperature; The air flow is measured by comparing the points.

【0011】(5)好ましくは、上記(1)、(2)、
(3)、(4)において、発熱抵抗体及び感温抵抗体は
同一基板上に形成されている。
(5) Preferably, (1), (2),
In (3) and (4), the heating resistor and the temperature-sensitive resistor are formed on the same substrate.

【0012】空気温度と一定の温度差に制御された発熱
抵抗体の上流及び下流に感温抵抗体を配置し、それぞれ
の感温抵抗体を一辺とするブリッジ回路により温度差信
号を得る。ブリッジ回路の比較電位差が吸気温度の上昇
とともに拡大するように、ブリッジ回路の比較電位点を
吸気温度に依存する抵抗で接続する、あるいはブリッジ
回路の電圧供給点又は基準電位点に吸気温度に依存し負
の温度係数を持つ素子を挿入することにより、温度差信
号の温度補償が可能となる。
A temperature-sensitive resistor is arranged upstream and downstream of a heating resistor controlled to a certain temperature difference from the air temperature, and a temperature difference signal is obtained by a bridge circuit having each of the temperature-sensitive resistors as one side. Connect the comparison potential point of the bridge circuit with a resistor that depends on the intake air temperature so that the comparison potential difference of the bridge circuit increases with the rise of the intake air temperature, or depend on the intake air temperature at the voltage supply point or the reference potential point of the bridge circuit. By inserting an element having a negative temperature coefficient, temperature compensation of the temperature difference signal becomes possible.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面を参照して詳細に説明する。図1は、本発明の第1
の実施形態である熱式空気流量計の回路図である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a circuit diagram of a thermal air flow meter according to the embodiment.

【0014】図1において、感温抵抗体Rfの一方端
は、抵抗R3及びR2を介して接地されている。また、
感温抵抗体Rfの他方端は、発熱抵抗体Rh及び抵抗R
1を介して接地されている。そして、抵抗R2とR3と
の接続点は、演算増幅器OPの反転入力端子に接続さ
れ、発熱抵抗体Rhと抵抗R1との接続点は、演算増幅
器OPの非反転入力端子に接続される。この演算増幅器
OPの出力端は、感温抵抗体Rfと発熱抵抗体Rhとの
接続点に接続される。
In FIG. 1, one end of a temperature-sensitive resistor Rf is grounded via resistors R3 and R2. Also,
The other end of the temperature-sensitive resistor Rf is connected to a heating resistor Rh and a resistor R.
1 is grounded. The connection point between the resistors R2 and R3 is connected to the inverting input terminal of the operational amplifier OP, and the connection point between the heating resistor Rh and the resistor R1 is connected to the non-inverting input terminal of the operational amplifier OP. The output terminal of the operational amplifier OP is connected to a connection point between the temperature-sensitive resistor Rf and the heating resistor Rh.

【0015】また、抵抗R4の一方端は、感温抵抗体R
u1、Rd1、抵抗R5を介して接地されている。ま
た、抵抗R4の他方端は、抵抗R6、感温抵抗体Rd
2、Ru2、抵抗R7を介して接地されている。また、
抵抗R4と抵抗R4との接続点には、基準電圧源から基
準電圧Vrefが印加される。
One end of the resistor R4 is connected to a temperature-sensitive resistor R
u1, Rd1, and a resistor R5. The other end of the resistor R4 is connected to a resistor R6 and a temperature-sensitive resistor Rd.
2, Ru2, and a resistor R7. Also,
A reference voltage Vref is applied to a connection point between the resistors R4 and R4 from a reference voltage source.

【0016】感温抵抗体Ru1とRd1との接続点は、
感温抵抗体Raを介して増幅器Aのマイナス入力端子に
接続される。また、感温抵抗体Ru1とRd1との接続
点は、増幅器Aのプラス入力端子に接続される。また、
感温抵抗体Rd2とRu2との接続点は、感温抵抗体R
aと増幅器Aのマイナス入力端子との間に接続される。
The connection point between the temperature-sensitive resistors Ru1 and Rd1 is:
It is connected to the minus input terminal of the amplifier A via the temperature sensitive resistor Ra. The connection point between the temperature-sensitive resistors Ru1 and Rd1 is connected to the positive input terminal of the amplifier A. Also,
The connection point between the temperature sensitive resistors Rd2 and Ru2 is the temperature sensitive resistor Rd.
a and the negative input terminal of the amplifier A.

【0017】感温抵抗体Rfは、空気流温度に依存し且
つ発熱抵抗体Rhの熱干渉を受けない位置に配置され、
抵抗R1〜R3及び発熱抵抗体Rhとともにブリッジ回
路を形成している。
The temperature-sensitive resistor Rf is disposed at a position that depends on the airflow temperature and does not receive thermal interference from the heating resistor Rh.
A bridge circuit is formed with the resistors R1 to R3 and the heating resistor Rh.

【0018】更に、上記ブリッジ回路の平衡を保つよう
に演算増幅器OPで帰還することにより発熱抵抗体Rh
は空気温度と一定の温度差を保持するように制御され
る。
Further, feedback is made by the operational amplifier OP so as to maintain the balance of the bridge circuit, so that the heating resistor Rh is obtained.
Is controlled to maintain a constant temperature difference from the air temperature.

【0019】以上はヒータ制御部として後述する他の実
施形態についても共通の項目であり、機能・構成等は同
一である。
The above items are common to other embodiments described later as the heater control unit, and the functions and configurations are the same.

【0020】感温抵抗体Ru1、Ru2は、発熱抵抗体
Rhの上流側熱干渉域に配置され、感温抵抗体Rd1、
Rd2は、発熱抵抗体Rhの下流側熱干渉域に配され
る。
The temperature-sensitive resistors Ru1 and Ru2 are disposed in a heat interference region on the upstream side of the heat-generating resistor Rh.
Rd2 is arranged in a heat interference region on the downstream side of the heating resistor Rh.

【0021】感温抵抗体Ru1、Ru2、Rd1、Rd
2は、それぞれ固定抵抗R4〜R7とブリッジ回路を形
成している。このブリッジ回路の対辺はそれぞれ上下流
に配された感温抵抗体で構成され、ブリッジ回路の対辺
同士でその構成は上下逆転している。
Temperature-sensitive resistors Ru1, Ru2, Rd1, Rd
2 forms a bridge circuit with the fixed resistors R4 to R7, respectively. The opposite sides of this bridge circuit are each constituted by a temperature-sensitive resistor arranged upstream and downstream, and the configuration is inverted upside down between the opposite sides of the bridge circuit.

【0022】この図1に示した回路構成によれば、空気
流が順方向から流れた場合は、発熱抵抗体Rhの上流側
に配置された感温抵抗体Ru1、Ru2が、空気流量に
応じて冷却されるために抵抗値は下がり、発熱抵抗体R
hの下流側に配置された感温抵抗体Rd1、Rd2は、
発熱抵抗体Rhの熱流と空気流との合流を受けるために
温度変化は少なく、よってその抵抗値の増減も少ない。
According to the circuit configuration shown in FIG. 1, when the airflow flows from the forward direction, the temperature-sensitive resistors Ru1 and Ru2 arranged on the upstream side of the heating resistor Rh correspond to the airflow. The resistance value is lowered due to cooling, and the heating resistor R
The temperature-sensitive resistors Rd1 and Rd2 arranged downstream of h
Since the heat flow and the air flow of the heating resistor Rh are combined, the temperature change is small, and the resistance value is not increased or decreased.

【0023】その結果、ブリッジ回路の比較点電位差
は、空気流量に応じて増減する。空気流が逆方向から流
れた場合は、上述と逆の現象が起こるためにブリッジ回
路の比較点電位差の大小関係が逆転する。
As a result, the potential difference at the comparison point of the bridge circuit increases or decreases in accordance with the air flow rate. If the airflow flows from the opposite direction, the opposite phenomenon occurs, so that the magnitude relation of the potential difference at the comparison point of the bridge circuit is reversed.

【0024】故に、ブリッジ回路の比較点電位差により
双方向の空気流量が計測できる。増幅器Aは、上記比較
点電位差を所定の出力特性に変換する調整部である。
Therefore, a bidirectional air flow rate can be measured from the potential difference at the comparison point of the bridge circuit. The amplifier A is an adjustment unit that converts the comparison point potential difference into a predetermined output characteristic.

【0025】本発明の第1の実施形態では、更に、ブリ
ッジ回路の比較電位点を空気流温度に依存するように配
置された感温抵抗体Raで接続している。感温抵抗体R
a、Ru1、Ru2、Rd1、Rd2は、同程度の抵抗
値及び抵抗温度係数であるが、ブリッジ回路の各辺を構
成する感温抵抗体Ru1、Ru2、Rd1、Rd2には
固定抵抗R4〜R7が直列接続されているために、ブリ
ッジ回路の各辺の温度係数は見掛け上、感温抵抗体Ra
よりも小さくなる。
In the first embodiment of the present invention, the comparison potential points of the bridge circuit are further connected by a temperature-sensitive resistor Ra arranged so as to depend on the airflow temperature. Temperature sensitive resistor R
a, Ru1, Ru2, Rd1, and Rd2 have substantially the same resistance value and resistance temperature coefficient. Are connected in series, the temperature coefficient of each side of the bridge circuit is apparently
Smaller than.

【0026】このとき、ブリッジ回路の比較点電位差d
vは次式(1)となる。dV = Vref・(Rd/Ru − 1)
/(2・Rd/Ra+Rd/Ru+1) −−−(1)ただし、R
d1+R5=Rd2+R6=Rd、Ru1+R4=Ru
2+R7=Ruとする。
At this time, the potential difference d at the comparison point of the bridge circuit
v is given by the following equation (1). dV = Vref · (Rd / Ru-1)
/ (2 · Rd / Ra + Rd / Ru + 1) --- (1) where R
d1 + R5 = Rd2 + R6 = Rd, Ru1 + R4 = Ru
Let 2 + R7 = Ru.

【0027】ヒータである発熱抵抗体Rhを空気流温度
と一定の温度差に保持することで発熱抵抗体Rhの熱干
渉域の熱伝達特性における空気流温度依存性を補償して
いるが、感温抵抗体Ru1、Ru2、Rd1、Rd2も
空気流温度に依存することにより感温抵抗体の基準抵抗
値、すなわち温度差が発生していない時の抵抗値が空気
流温度に依存する。
By maintaining the heating resistor Rh as a heater at a certain temperature difference from the airflow temperature, the airflow temperature dependency in the heat transfer characteristic of the heat interference region of the heating resistor Rh is compensated. Since the thermal resistors Ru1, Ru2, Rd1, and Rd2 also depend on the airflow temperature, the reference resistance value of the thermal resistor, that is, the resistance value when no temperature difference occurs, depends on the airflow temperature.

【0028】上記式(1)が示すように、感温抵抗体R
aが無限大すなわち接続されていない場合、Ru及びR
dが空気流温度の増加とともに増大し、空気流の変化に
伴うRd/Ruに狂いが生じ、比較点電位差dVは減少
方向の空気流温度依存性を持つ。
As shown by the above equation (1), the temperature-sensitive resistor R
If a is infinite or not connected, Ru and R
d increases as the airflow temperature increases, and Rd / Ru changes due to the change in the airflow, and the comparison point potential difference dV has a decreasing airflow temperature dependency.

【0029】つまり、感温抵抗体Raが無限大の場合、
上記(1)式は、次式(2)となる。 dV = Vref・(A − 1)/(A+1) −−−(2) ただし、A=Rd/Ru、詳しくは、A=(Rd(Q
0)+dRd)/(Ru(Q0)+dRu)=(R(Q
0)+dRd)/(R(Q0)+dRu)である。
That is, when the temperature-sensitive resistor Ra is infinite,
The above equation (1) becomes the following equation (2). dV = Vref. (A-1) / (A + 1) --- (2) where A = Rd / Ru, specifically, A = (Rd (Q
0) + dRd) / (Ru (Q0) + dRu) = (R (Q
0) + dRd) / (R (Q0) + dRu).

【0030】なお、Rd(Q0)=Ru(Q0)=R
(Q0)=流量Qが0における抵抗値であり、dRd及
びdRuは、流量Qに応じて発生する温度変化による抵
抗変化分である。
Note that Rd (Q0) = Ru (Q0) = R
(Q0) = resistance value when the flow rate Q is 0, and dRd and dRu are resistance changes due to a temperature change generated according to the flow rate Q.

【0031】ここで、抵抗値R(Q0)は、周囲温度に
大きく影響され、周囲温度の増加に伴って値が大きくな
る。一方、抵抗変化分dRd及びdRuは、周囲温度に
あまり、影響を受けない。
Here, the resistance value R (Q0) is greatly affected by the ambient temperature, and increases as the ambient temperature increases. On the other hand, the resistance changes dRd and dRu are not significantly affected by the ambient temperature.

【0032】従って、上記式において、例えば、室温2
0℃のときの上記Aの値A(20)と80℃のときのA
の値A(80)とを比較すると、A(20)>A(8
0)となり、比較点電位差dvも20℃の場合より80
℃の場合の方が小となる。
Therefore, in the above formula, for example, at room temperature 2
The value A (20) at 0 ° C. and the value A at 80 ° C.
A (20)> A (8)
0), and the comparison point potential difference dv is also 80
It is smaller in the case of ° C.

【0033】極端な場合を考えると、R(Q0)=∞に
なると、A→1に収束するため、上記式から比較点電位
差dv=0となる。
Considering an extreme case, when R (Q0) = ∞, A → 1 is converged, so that the comparison point potential difference dv = 0 from the above equation.

【0034】このように、感温抵抗体Raが接続されて
いない場合、比較点電位差dVは、温度上昇に対して、
その大きさは減少方向の空気流温度依存性を持つ。
As described above, when the temperature-sensitive resistor Ra is not connected, the comparison point potential difference dV is
Its magnitude has a decreasing airflow temperature dependence.

【0035】これに対して、感温抵抗体Raを接続し、
感温抵抗体Ru、Rdの温度係数がRaの1/3程度と
なるように抵抗Ru、Rdを設定することで比較点電位
差dVの空気流温度依存性を1/10以下に補償するこ
とができる。
On the other hand, a temperature sensitive resistor Ra is connected,
By setting the resistances Ru and Rd so that the temperature coefficients of the temperature-sensitive resistors Ru and Rd are about 1/3 of Ra, it is possible to compensate the air flow temperature dependence of the comparison point potential difference dV to 1/10 or less. it can.

【0036】つまり、感温抵抗体Raを接続した場合、
上記式(2)は次式(3)となる。 dV = Vref・(A − 1)/(2・B +A+1) −−−(3) ただし、B=Rd/Raである。この場合、抵抗体Ra
の温度係数は、抵抗体Rdの温度係数の3倍程度である
ので、上記Bは、温度上昇に従って、減少することとな
る。このため、上記Bは、比較点電位dvに対して、温
度上昇に従って増加させる方向に作用し、抵抗体Raが
無い場合の温度依存性を相殺するように働く。
That is, when the temperature-sensitive resistor Ra is connected,
The above equation (2) becomes the following equation (3). dV = Vref. (A-1) / (2.B + A + 1) (3) where B = Rd / Ra. In this case, the resistor Ra
Is about three times the temperature coefficient of the resistor Rd, the above B decreases as the temperature rises. For this reason, B acts on the comparison point potential dv in a direction to increase as the temperature rises, and acts to offset the temperature dependence in the absence of the resistor Ra.

【0037】本願発明者等の実験によれば、基準電圧V
refを5Vとして、他の抵抗体を適切な値に設定し、温
度20℃の場合と温度80℃の場合の比較点電位dvを
算出した結果、両者に共に131.8mVとなり、温度
依存性はほぼ0となった。
According to the experiments performed by the inventors of the present application, the reference voltage V
Assuming that ref is 5 V, other resistors are set to appropriate values, and the comparison point potential dv is calculated at a temperature of 20 ° C. and at a temperature of 80 ° C. As a result, both are 131.8 mV. It was almost 0.

【0038】したがって、感温抵抗体Raを接続し、感
温抵抗体Ru、Rdの温度係数がRaの1/3程度とな
るように抵抗Ru、Rdを設定することで比較点電位差
dVの空気流温度依存性を1/10以下に補償すること
ができる。
Therefore, by connecting the temperature-sensitive resistor Ra and setting the resistors Ru and Rd such that the temperature coefficient of the temperature-sensitive resistors Ru and Rd is about 1/3 of Ra, the air having the potential difference dV at the comparison point can be obtained. The flow temperature dependency can be compensated to 1/10 or less.

【0039】これは、感温抵抗体Raを付加するという
簡単な回路素子の追加により、空気流温度によって基準
電圧Vrefを変化させることと等価な効果を得ること
ができる。
By adding a simple circuit element such as adding a temperature-sensitive resistor Ra, an effect equivalent to changing the reference voltage Vref depending on the airflow temperature can be obtained.

【0040】つまり、本発明の第1の実施形態によれ
ば、温度差信号を得る部位に温度補償手段を設けること
により、簡単な構成で正確な双方向の流量計測を行なう
ことが可能な熱式空気流量計を実現することができる。
That is, according to the first embodiment of the present invention, by providing the temperature compensating means at the portion where the temperature difference signal is obtained, it is possible to perform accurate bidirectional flow measurement with a simple configuration. A type air flow meter can be realized.

【0041】また、発熱抵抗体Rhと全ての感温抵抗体
(Ra、Rf、Ru1、Ru2、Rd1、Rd2)が同
一プロセスで作成することが可能であるため、例えば、
同一の半導体基板に形成が可能であり、製造工程も簡略
化でき、回路規模も小さくすることができる。
Further, since the heating resistor Rh and all the temperature sensing resistors (Ra, Rf, Ru1, Ru2, Rd1, Rd2) can be formed by the same process, for example,
It can be formed on the same semiconductor substrate, the manufacturing process can be simplified, and the circuit scale can be reduced.

【0042】図2は、本発明の第2の実施形態である熱
式空気流量計の回路図である。この図2の例と図1の例
との相違点は、図2の例においては、図1の例の抵抗体
R4、R5、R6、R7、R8が省略され、抵抗体Ra
に代えて抵抗体Rbが接続されている点である。
FIG. 2 is a circuit diagram of a thermal air flow meter according to a second embodiment of the present invention. The difference between the example of FIG. 2 and the example of FIG. 1 is that, in the example of FIG. 2, the resistors R4, R5, R6, R7, and R8 of the example of FIG.
In that a resistor Rb is connected instead of the resistor Rb.

【0043】感温抵抗体Rbは空気流温度に依存するよ
うに配されており、ブリッジ回路の比較電位点に接続さ
れている。感温抵抗体Rbの温度係数は他の感温抵抗体
よりも3倍程度高いものを使用することで上記実施形態
と同様に温度補償される。
The temperature-sensitive resistor Rb is arranged so as to be dependent on the temperature of the airflow, and is connected to the comparison potential point of the bridge circuit. By using a temperature coefficient of the temperature sensitive resistor Rb which is about three times higher than that of the other temperature sensitive resistors, the temperature is compensated in the same manner as in the above embodiment.

【0044】例えば、感温抵抗体Rbは白金を材料とす
る温度センサを空気流中に設置し、他の感温抵抗体は半
導体基板上に形成したポリシリコン抵抗体を利用する、
又は感温抵抗体Rbも同一基板上に形成するが、不純物
拡散濃度を変えることにより温度係数を変えることが考
えられる。
For example, as the temperature-sensitive resistor Rb, a temperature sensor made of platinum is installed in an air stream, and the other temperature-sensitive resistor uses a polysilicon resistor formed on a semiconductor substrate.
Alternatively, the temperature sensitive resistor Rb is also formed on the same substrate, but it is conceivable to change the temperature coefficient by changing the impurity diffusion concentration.

【0045】特に、同一基板上に形成する場合、感温抵
抗体Rbと他の感温抵抗体との比を管理しやすく量産性
が良い。
In particular, when they are formed on the same substrate, the ratio between the temperature-sensitive resistor Rb and other temperature-sensitive resistors can be easily managed, and mass productivity is good.

【0046】更に、感温抵抗体Rbと直列に固定抵抗を
挿入することで、感温抵抗体Rbの見掛け上の温度係数
を操作でき、温度補償の度合いを調整することが容易で
ある。
Further, by inserting a fixed resistor in series with the temperature-sensitive resistor Rb, the apparent temperature coefficient of the temperature-sensitive resistor Rb can be manipulated, and the degree of temperature compensation can be easily adjusted.

【0047】上述した本発明の第2の実施形態において
も、第1の実施形態と同様な効果を得ることができる。
In the above-described second embodiment of the present invention, the same effects as in the first embodiment can be obtained.

【0048】図3は本発明の第3の実施形態である熱式
空気流量計の回路図である。この図3の例と図2の例と
の相違点は、図3の例においては、感温抵抗体Ru1と
Rd2との接続点は感温抵抗体抵抗体Rcを介して基準
電圧Vrefの電圧源に接続され、感温抵抗体Ru1とR
d1の接続点は、増幅器Aのプラス入力端子にのみ接続
され、感温抵抗体Rd2とRu2との接続点は、増幅器
Aのマイナス入力端子にのみ接続される点である。
FIG. 3 is a circuit diagram of a thermal air flow meter according to a third embodiment of the present invention. The difference between the example of FIG. 3 and the example of FIG. 2 is that, in the example of FIG. 3, the connection point between the temperature-sensitive resistors Ru1 and Rd2 is the voltage of the reference voltage Vref via the temperature-sensitive resistor Rc. And the temperature sensitive resistors Ru1 and R1
The connection point of d1 is connected only to the plus input terminal of the amplifier A, and the connection point between the temperature sensitive resistors Rd2 and Ru2 is a point connected only to the minus input terminal of the amplifier A.

【0049】感温抵抗体Rcは空気流温度に依存するよ
うに配置されており、ブリッジ回路の電圧供給点に接続
されている。感温抵抗体Rcは半導体材料等を用いて負
の温度係数を持つように作成されている。
The temperature-sensitive resistor Rc is arranged so as to be dependent on the temperature of the airflow, and is connected to the voltage supply point of the bridge circuit. The temperature sensitive resistor Rc is made of a semiconductor material or the like so as to have a negative temperature coefficient.

【0050】本発明の第3の実施形態によれば、空気流
温度の上昇とともに感温抵抗体Rcでの電圧降下が減少
するため、ブリッジ回路に供給される電圧が増加する。
結果として、ブリッジ回路の比較電位差の減少を補償す
るように作用する。
According to the third embodiment of the present invention, the voltage supplied to the bridge circuit increases because the voltage drop across the temperature sensitive resistor Rc decreases as the airflow temperature increases.
As a result, it acts to compensate for the decrease in the comparison potential difference of the bridge circuit.

【0051】この第3の実施形態においても、第1の実
施形態と同様な効果を得ることができる。
In the third embodiment, the same effects as in the first embodiment can be obtained.

【0052】この第3の実施形態の効果は、図4に示す
ように感温抵抗体RcをダイオードDに置き換えても同
様に得ることができる。特に、図4の例ではダイオード
Dを直列に数個接続したり、固定抵抗を直列に挿入する
ことで容易に温度係数の値を設定することができる。
The effect of the third embodiment can be similarly obtained by replacing the temperature-sensitive resistor Rc with a diode D as shown in FIG. In particular, in the example of FIG. 4, the value of the temperature coefficient can be easily set by connecting several diodes D in series or inserting fixed resistors in series.

【0053】図5は、図1に示した第1の実施形態にお
ける発熱抵抗体、感温抵抗体を同一の半導体基板B上に
形成した時の構成図である。
FIG. 5 is a configuration diagram when the heating resistor and the temperature-sensitive resistor in the first embodiment shown in FIG. 1 are formed on the same semiconductor substrate B.

【0054】上述の通り、発熱抵抗体Rhの近傍上下流
に感温抵抗体Ru1、Ru2、Rd1、Rd2を配置し
ている。特に、C部は半導体基板Bを薄肉化した部分で
あり、発熱抵抗体Rhからの熱伝導を抑え熱伝達による
熱干渉領域を形作っている。
As described above, the temperature-sensitive resistors Ru1, Ru2, Rd1, and Rd2 are arranged near and upstream of the heating resistor Rh. In particular, the portion C is a thinned portion of the semiconductor substrate B, which suppresses heat conduction from the heating resistor Rh and forms a heat interference region due to heat transfer.

【0055】感温抵抗体Rf、Raは発熱抵抗体Rhか
ら十分離れた位置の半導体基板Bの厚肉部分で且つ、熱
流の影響を受けない様に下流を避けて配置されている。
The temperature-sensitive resistors Rf and Ra are arranged at a thick portion of the semiconductor substrate B at a position sufficiently distant from the heat-generating resistor Rh and avoiding the downstream so as not to be affected by the heat flow.

【0056】これにより、感温抵抗体Rf,Raは空気
流温度の検出が可能となる。
Thus, the temperature sensing resistors Rf and Ra can detect the temperature of the air flow.

【0057】本発明の特徴は、いずれの実施形態におい
ても回路的に単純且つ簡単である。また、空気流量計測
の主たる温度差ブリッジ部に直接働きかけ、基準電圧源
Vrefを操作する必要が無く、例えば基準電圧源Vr
efに被測定対象である空気温度がモニタできない状況
でも温度補償が行なえる。
The features of the present invention are simple and simple in circuit in any of the embodiments. In addition, there is no need to operate the reference voltage source Vref directly by directly acting on the main temperature difference bridge portion of the air flow rate measurement.
Temperature compensation can be performed even in a situation where the air temperature to be measured cannot be monitored at ef.

【0058】更に、基準電圧源Vrefによる流量信号
(比較点電位差)dVのレシオメトリック性が維持され
るので、本発明による熱式空気流量計の信号をA/D変
換器で読み取る際に基準電圧を共通化することでインタ
ーフェースの誤差を低減することができる。
Further, since the ratiometric property of the flow signal (potential difference at the comparison point) dV by the reference voltage source Vref is maintained, the signal of the thermal air flow meter according to the present invention is read by the A / D converter. , The interface error can be reduced.

【0059】[0059]

【発明の効果】本発明によれば、温度差信号を得る部位
に温度補償手段を設けることにより、簡単な構成で正確
な双方向の流量計測を行なうことが可能な熱式空気流量
計を実現することができる。
According to the present invention, by providing a temperature compensating means at a portion for obtaining a temperature difference signal, a thermal air flow meter capable of performing accurate bidirectional flow measurement with a simple configuration is realized. can do.

【0060】また、自動車エンジン等に吸入され逆流を
伴うような脈動流下における、双方向の空気流量測定で
の温度補償が簡単に行なえるため、空気流量計の全体回
路構成を単純化・簡素化でき、コスト低減・誤差要因の
低減が図れる。
Further, since the temperature can be easily compensated for in a two-way air flow measurement under a pulsating flow that is sucked into an automobile engine and involves a backflow, the overall circuit configuration of the air flow meter is simplified and simplified. As a result, cost and error factors can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態である熱式空気流量計
の回路図である。
FIG. 1 is a circuit diagram of a thermal air flow meter according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態である熱式空気流量計
の回路図である。
FIG. 2 is a circuit diagram of a thermal air flow meter according to a second embodiment of the present invention.

【図3】本発明の第3の実施形態である熱式空気流量計
の回路図である。
FIG. 3 is a circuit diagram of a thermal air flow meter according to a third embodiment of the present invention.

【図4】本発明の第3の実施形態の変形例の回路図であ
る。
FIG. 4 is a circuit diagram of a modification of the third embodiment of the present invention.

【図5】第1の実施形態における発熱抵抗体、感温抵抗
体を同一の半導体基板B上に形成した時の構成図であ
る。
FIG. 5 is a configuration diagram when a heating resistor and a temperature-sensitive resistor according to the first embodiment are formed on the same semiconductor substrate B;

【符号の説明】[Explanation of symbols]

A 増幅器 B 半導体基板 C 薄肉部 OP 演算増幅器 R1、R2、R3 抵抗体 R4、R5 抵抗体 R6、R7 抵抗体 Ra、Rb、Rc 感温抵抗体 Rd1、Rd2 感温抵抗体 Rf、Rh 感温抵抗体 Ru1、Ru2 感温抵抗体 A Amplifier B Semiconductor substrate C Thin portion OP Operational amplifier R1, R2, R3 Resistor R4, R5 Resistor R6, R7 Resistor Ra, Rb, Rc Thermosensitive resistor Rd1, Rd2 Thermosensitive resistor Rf, Rh Thermosensitive resistor Body Ru1, Ru2 Temperature-sensitive resistor

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年4月20日(2001.4.2
0)
[Submission date] April 20, 2001 (2001.4.2
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】また、抵抗R4の一方端は、感温抵抗体R
u1、Rd1、抵抗R5を介して接地されている。ま
た、抵抗R4の他方端は、抵抗R6、感温抵抗体Rd
2、Ru2、抵抗R7を介して接地されている。また、
抵抗R4と抵抗Rとの接続点には、基準電圧源から基
準電圧Vrefが印加される。
One end of the resistor R4 is connected to a temperature-sensitive resistor R
u1, Rd1, and a resistor R5. The other end of the resistor R4 is connected to a resistor R6 and a temperature-sensitive resistor Rd.
2, Ru2, and a resistor R7. Also,
The connection point between the resistor R4 and the resistor R 6, the reference voltage Vref is applied from the reference voltage source.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0048】図3は本発明の第3の実施形態である熱式
空気流量計の回路図である。この図3の例と図2の例と
の相違点は、図3の例においては、感温抵抗体Ru1と
Rd2との接続点は感温抵抗体Rcを介して基準電圧V
refの電圧源に接続され、感温抵抗体Ru1とRd1の
接続点は、増幅器Aのプラス入力端子にのみ接続され、
感温抵抗体Rd2とRu2との接続点は、増幅器Aのマ
イナス入力端子にのみ接続される点である。
FIG. 3 is a circuit diagram of a thermal air flow meter according to a third embodiment of the present invention. Differs from the example of embodiment and 2 in FIG. 3, in the example of FIG. 3, the reference voltage connection point through a temperature-sensitive resistor R c of the temperature sensitive resistors Ru1 and Rd2 V
ref is connected to the voltage source, and the connection point between the temperature-sensitive resistors Ru1 and Rd1 is connected only to the positive input terminal of the amplifier A.
The connection point between the temperature sensitive resistors Rd2 and Ru2 is a point connected only to the minus input terminal of the amplifier A.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of sign

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【符号の説明】 A 増幅器 B 半導体基板 C 薄肉部 OP 演算増幅器 R1、R2、R3 抵抗体 R4、R5 抵抗体 R6、R7 抵抗体 Ra、Rb、Rc 感温抵抗体 Rd1、Rd2 感温抵抗体 R 感温抵抗体 Ru1、Ru2 感温抵抗体Rh 発熱抵抗体 [Explanation of Symbols] A Amplifier B Semiconductor substrate C Thin portion OP Operational amplifier R1, R2, R3 Resistor R4, R5 Resistor R6, R7 Resistor Ra, Rb, Rc Temperature-sensitive resistor Rd1, Rd2 Temperature-sensitive resistor R f Temperature-sensitive resistor Ru1, Ru2 Temperature-sensitive resistor Rh Heating resistor

フロントページの続き (72)発明者 中田 圭一 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器グループ内 Fターム(参考) 2F035 AA02 EA05 EA08 Continuing from the front page (72) Inventor Keiichi Nakata 2520 No. Odaiba, Hitachinaka-shi, Ibaraki F-term in the Automotive Equipment Group of Hitachi, Ltd. (Reference) 2F035 AA02 EA05 EA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】空気流温度と一定の温度差に制御される発
熱抵抗体と、 この発熱抵抗体の空気流上流側及び下流側の熱干渉域に
設置され、ブリッジ回路を形成する1組以上の第1の感
温抵抗体と、 上記ブリッジ回路の感温抵抗体間の電位を比較すべき2
点に接続され、空気流温度に依存する第2の感温抵抗体
と、 を備え、上記比較すべき2点の電位差により空気流量を
計測することを特徴とする熱式空気流量計。
1. A heating resistor controlled at a constant temperature difference from an airflow temperature, and at least one pair of heating resistors installed in a heat interference region on an upstream side and a downstream side of an airflow of the heating resistor to form a bridge circuit. The potential between the first temperature sensitive resistor of the above and the temperature sensitive resistor of the bridge circuit should be compared.
And a second temperature-sensitive resistor connected to the point and dependent on the airflow temperature, wherein the airflow rate is measured by the potential difference between the two points to be compared.
【請求項2】請求項1記載の熱式空気流量計において、
上記第2の感温抵抗体は、上記ブリッジ回路の辺を構成
する第1の感温抵抗体よりも大きな抵抗温度係数を有す
ることを特徴とする熱式空気流量計。
2. The thermal air flow meter according to claim 1, wherein
The thermal air flow meter according to claim 1, wherein the second temperature-sensitive resistor has a higher temperature coefficient of resistance than the first temperature-sensitive resistor constituting the side of the bridge circuit.
【請求項3】空気流温度と一定の温度差に制御される発
熱抵抗体と、 この発熱抵抗体の空気流上流側及び下流側の熱干渉域に
設置され、ブリッジ回路を形成する1組以上の第1の感
温抵抗体と、 上記ブリッジ回路の電圧供給点又は基準電位点に接続さ
れ、空気流温度に依存し負の抵抗温度係数を持つ第2の
感温抵抗体と、 を備え、上記ブリッジ回路の感温抵抗体間の電位を比較
すべき2点を比較することにより、空気流量を計測する
ことを特徴とする熱式空気流量計。
3. A heating resistor controlled at a constant temperature difference from an airflow temperature, and at least one set of heating resistors installed in a heat interference region on the upstream and downstream sides of the airflow of the heating resistor to form a bridge circuit. And a second temperature-sensitive resistor connected to a voltage supply point or a reference potential point of the bridge circuit, and having a negative temperature coefficient of resistance depending on the airflow temperature, A thermal air flow meter, wherein an air flow rate is measured by comparing two points at which potentials between temperature-sensitive resistors of the bridge circuit are to be compared.
【請求項4】空気流温度と一定の温度差に制御される発
熱抵抗体と、 この発熱抵抗体の空気流上流側及び下流側の熱干渉域に
設置され、ブリッジ回路を形成する1組以上の感温抵抗
体と、 上記ブリッジ回路の電圧供給点又は基準電位点に接続さ
れ、空気流温度に依存し負の抵抗温度係数を持つ半導体
素子と、 を備え、上記ブリッジ回路の感温抵抗体間の電位を比較
すべき2点を比較することにより、空気流量を計測する
ことを特徴とする熱式空気流量計。
4. A heating resistor controlled at a constant temperature difference from an airflow temperature, and at least one set of heating resistors installed in a heat interference region on the upstream and downstream sides of the airflow of the heating resistor to form a bridge circuit. And a semiconductor element connected to a voltage supply point or a reference potential point of the bridge circuit and having a negative temperature coefficient of resistance depending on an airflow temperature, wherein the temperature-sensitive resistor of the bridge circuit is provided. A thermal air flow meter, wherein an air flow rate is measured by comparing two points to be compared with each other.
【請求項5】請求項1、2、3、4のうちのいずれか一
項記載の熱式空気流量計において、発熱抵抗体及び感温
抵抗体は同一基板上に形成されていることを特徴とする
熱式空気流量計。
5. The thermal air flow meter according to claim 1, wherein the heating resistor and the temperature-sensitive resistor are formed on the same substrate. And thermal air flow meter.
JP2001028406A 2001-02-05 2001-02-05 Thermal air flow meter Expired - Fee Related JP3675721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028406A JP3675721B2 (en) 2001-02-05 2001-02-05 Thermal air flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028406A JP3675721B2 (en) 2001-02-05 2001-02-05 Thermal air flow meter

Publications (2)

Publication Number Publication Date
JP2002228501A true JP2002228501A (en) 2002-08-14
JP3675721B2 JP3675721B2 (en) 2005-07-27

Family

ID=18892915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028406A Expired - Fee Related JP3675721B2 (en) 2001-02-05 2001-02-05 Thermal air flow meter

Country Status (1)

Country Link
JP (1) JP3675721B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050143A1 (en) * 2003-11-20 2005-06-02 Hitachi, Ltd. Thermal flowmeter of fluid
JP2013024822A (en) * 2011-07-26 2013-02-04 Hitachi Automotive Systems Ltd Thermal type flowmeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152292B2 (en) * 2010-10-06 2013-02-27 株式会社デンソー Flow measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050143A1 (en) * 2003-11-20 2005-06-02 Hitachi, Ltd. Thermal flowmeter of fluid
JPWO2005050143A1 (en) * 2003-11-20 2007-06-14 株式会社日立製作所 Thermal fluid flow meter
US7631555B2 (en) 2003-11-20 2009-12-15 Hitachi, Ltd. Thermal flowmeter for measuring a flow rate of fluid
JP4558647B2 (en) * 2003-11-20 2010-10-06 日立オートモティブシステムズ株式会社 Thermal fluid flow meter
JP2013024822A (en) * 2011-07-26 2013-02-04 Hitachi Automotive Systems Ltd Thermal type flowmeter

Also Published As

Publication number Publication date
JP3675721B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
US5827960A (en) Bi-directional mass air flow sensor having mutually-heated sensor elements
JP4157034B2 (en) Thermal flow meter
US10712300B2 (en) Gas sensor device, and heating current control method for gas sensor device
KR20040019867A (en) Thermal type flow rate detector
US7168312B2 (en) Heating resistor type air flow meter
US6813570B2 (en) Optimized convection based mass airflow sensor circuit
JP2003106887A (en) Flow-rate measuring apparatus
JP2006201077A (en) Thermal air flowmeter
JP3609148B2 (en) Heat resistance air flow meter
JP2002228501A (en) Thermal air flow meter
JPH04249717A (en) Heat sensitive flow rate sensor
JP2002005717A (en) Thermal flow sensor
JP2003294559A (en) Sensor circuit
JP2002174541A (en) Thermal-type device for measuring quantity of flow
JP2003315129A (en) Thermal flow measuring instrument
JPH06109510A (en) Thermal flowmeter
JP2001141539A (en) Method of correcting temperature of flow sensor, and flow sensor circuit
JPH0886678A (en) Thermal air flow rate detector
JP4222202B2 (en) Thermal air flow detector
JPH05312616A (en) Air flow measuring unit
JP2002116074A (en) Air flowmeter of heating resistance type
JPH08105779A (en) Thermal-type air flow-rate detector
JPH01245119A (en) Hot-wire type flow rate measuring instrument
JP2001235355A (en) Thermal type flowmeter and its adjustment method
JPH08278178A (en) Thermal type air flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees