JP4222202B2 - Thermal air flow detector - Google Patents

Thermal air flow detector Download PDF

Info

Publication number
JP4222202B2
JP4222202B2 JP2003424839A JP2003424839A JP4222202B2 JP 4222202 B2 JP4222202 B2 JP 4222202B2 JP 2003424839 A JP2003424839 A JP 2003424839A JP 2003424839 A JP2003424839 A JP 2003424839A JP 4222202 B2 JP4222202 B2 JP 4222202B2
Authority
JP
Japan
Prior art keywords
resistor
temperature
heating
air flow
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003424839A
Other languages
Japanese (ja)
Other versions
JP2005181191A (en
Inventor
寛 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003424839A priority Critical patent/JP4222202B2/en
Publication of JP2005181191A publication Critical patent/JP2005181191A/en
Application granted granted Critical
Publication of JP4222202B2 publication Critical patent/JP4222202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、空気流路内を流れる空気の流量を検出してその空気流量に対応した空気流量信号を出力する熱式空気流量検出装置に関するもので、特に、発熱抵抗体として多結晶構造の半導体を用いた熱式空気流量検出装置に関するものである。   The present invention relates to a thermal air flow rate detection device that detects the flow rate of air flowing in an air flow path and outputs an air flow rate signal corresponding to the air flow rate, and in particular, a semiconductor having a polycrystalline structure as a heating resistor. The present invention relates to a thermal air flow rate detection device using the above.

近年、自動車用エンジンには、低公害化および低燃費化を図るため、電子制御式燃料噴射装置を備えたものが広く使用されている。例えば、吸入空気の空気流量を正確に検出することで吸入空気に噴射する燃料量の最適化を可能にする燃料噴射制御を当該電子制御式燃料噴射装置により行っている。このような空気流量を検出するため発熱抵抗体を用いる熱式空気流量検出装置は、質量空気流量を直接検出可能であることから自動車用エンジンには好適であるとされている。   In recent years, automobile engines equipped with electronically controlled fuel injection devices have been widely used in order to reduce pollution and fuel consumption. For example, fuel injection control that enables optimization of the amount of fuel injected into intake air by accurately detecting the air flow rate of intake air is performed by the electronically controlled fuel injection device. A thermal air flow rate detection device that uses a heating resistor to detect such an air flow rate is considered suitable for an automobile engine because it can directly detect the mass air flow rate.

例えば、発熱抵抗体を含む4個の抵抗からなる2組のブリッジ回路と、各ブリッジ回路における各発熱抵抗の端子電圧の差電圧を増幅する差動増幅回路とを備え、この差動増幅回路の出力電圧を空気流量に対応した空気流量信号とし、当該出力電圧の正負に基づいて空気流の正逆方向を検出し逆方向の空気流により吸入空気流量を誤検出するのを防止するようにした、従来の熱式空気流量検出装置の例として、特許文献1に開示される「熱式空気流量検出装置」がある。またこのようなブリッジ回路を構成する発熱抵抗体や感温抵抗は、温度変化に敏感に反応して抵抗値が変化する感温性の白金、タングステン等からなるため、多結晶シリコン等を用いることにより比較的安価に構成した例として、特許文献2に開示される「熱式空気流量センサ及び内燃機関制御装置」が提案されている。   For example, it comprises two sets of bridge circuits composed of four resistors including a heating resistor, and a differential amplifier circuit that amplifies the differential voltage between the terminal voltages of each heating resistor in each bridge circuit. The output voltage is an air flow signal corresponding to the air flow rate, and the forward / reverse direction of the air flow is detected based on the positive / negative of the output voltage, and erroneous detection of the intake air flow rate due to the reverse air flow is prevented. As an example of a conventional thermal air flow rate detection device, there is a “thermal air flow rate detection device” disclosed in Patent Document 1. In addition, the heating resistor and temperature sensitive resistor that make up such a bridge circuit are made of temperature sensitive platinum, tungsten, etc. whose resistance changes in response to temperature changes. As an example of a relatively inexpensive configuration, a “thermal air flow sensor and internal combustion engine control device” disclosed in Patent Document 2 has been proposed.

このような熱式空気流量検出装置は、例えば、図6に示す熱式空気流量検出装置100のように、略矩形の平箱形状に形成されるハウジング本体102と、このハウジング本体102の底部から突出したスリット付きの筒形状に形成されるセンサハウジング104と、このセンサハウジング104内に収容されるセンサ基板110等からなり、自動車用エンジンの吸気ダクトIMにより形成される空気流路の途中に当該センサハウジング104を取付可能に構成されている。そして、当該センサ基板110にセンサ回路を構成する。   Such a thermal air flow rate detection device includes, for example, a housing main body 102 formed in a substantially rectangular flat box shape, as in the thermal air flow rate detection device 100 shown in FIG. The sensor housing 104 is formed in a cylindrical shape with a protruding slit and the sensor board 110 accommodated in the sensor housing 104, and the air flow path formed by the intake duct IM of the automobile engine The sensor housing 104 can be attached. A sensor circuit is configured on the sensor substrate 110.

例えば、図7に示す当該2組のブリッジ回路を、発熱抵抗体Rha、感温抵抗Rka、第1固定抵抗R1a、第2固定抵抗R2aおよびオペアンプOPa からなる第1ブリッジ回路と、発熱抵抗体Rhb、感温抵抗Rkb、第1固定抵抗R1b、第2固定抵抗R2bおよびオペアンプOPb からなる第2ブリッジ回路と、により構成し、またこれらのブリッジ回路における発熱抵抗体Rha、Rhbの端子電圧の差電圧を増幅する差動増幅回路をオペアンプOPc 、抵抗R91、R92により構成する。なお、図7において発熱抵抗体Rha、Rhbを破線により囲んでいるのは、熱結合されていることにより空気流量で抵抗値が変動し得ることを示すためである。また、発熱抵抗体Rha、Rhbの記号に付された矢印は、当該発熱抵抗体Rha、Rhbの抵抗値が空気流量により変動することを示し、矢印の傾きはその影響度を示す。   For example, the two sets of bridge circuits shown in FIG. 7 are composed of a first bridge circuit comprising a heating resistor Rha, a temperature sensitive resistor Rka, a first fixed resistor R1a, a second fixed resistor R2a, and an operational amplifier OPa, and a heating resistor Rhb. And a second bridge circuit composed of a temperature sensitive resistor Rkb, a first fixed resistor R1b, a second fixed resistor R2b and an operational amplifier OPb, and the difference voltage between the terminal voltages of the heating resistors Rha and Rhb in these bridge circuits Is constituted by an operational amplifier OPc and resistors R91 and R92. In FIG. 7, the heating resistors Rha and Rhb are surrounded by broken lines to indicate that the resistance value can vary depending on the air flow rate due to thermal coupling. Moreover, the arrows attached to the symbols of the heating resistors Rha and Rhb indicate that the resistance values of the heating resistors Rha and Rhb vary depending on the air flow rate, and the inclination of the arrow indicates the degree of influence thereof.

このように構成することにより、センサハウジング104のスリットから流入する空気がセンサ基板110上の発熱抵抗体Rha、Rhbや感温抵抗Rka、Rkbに接触することから、当該空気の流量に応じた空気流量信号がオペアンプOPc の出力端子(Out)からハウジング本体102の端子106を介して出力される。   With this configuration, air flowing from the slit of the sensor housing 104 contacts the heating resistors Rha and Rhb and the temperature sensitive resistors Rka and Rkb on the sensor substrate 110, so that the air according to the flow rate of the air A flow rate signal is output from the output terminal (Out) of the operational amplifier OPc via the terminal 106 of the housing body 102.

なお、図7に示す各ブリッジ回路では、オペアンプOPa の出力が発熱抵抗体Rhaや感温抵抗Rkaに、またオペアンプOPb の出力が発熱抵抗体Rhbや感温抵抗Rkbに、それぞれ直接接続されているように図示されているが、実際にはこれらのオペアンプOPa 、OPb の出力電流によって制御される図略の電流ドライブ用のトランジスタを介してオペアンプと発熱抵抗体等は接続されている(特許文献1;図3参照)。そのため、発熱抵抗体Rha、Rhb等にはオペアンプOPa 、OPb により制御される直流電圧(制御電圧)が印加されている。また、オペアンプOPd により構成されるボルテージフォロア回路は、差動増幅回路側のインピーダンス変動の影響を第1ブリッジ回路に与えないように、第1ブリッジ回路からの出力を高インピーダンスで受けるものである。
特開平8−43162号公報(第2頁〜第8頁、図1〜5) 特開2002−048616号公報(第2頁〜第7頁、図1〜11)
In each bridge circuit shown in FIG. 7, the output of the operational amplifier OPa is directly connected to the heating resistor Rha and the temperature sensing resistor Rka, and the output of the operational amplifier OPb is directly connected to the heating resistor Rhb and the temperature sensing resistor Rkb. In practice, however, the operational amplifier and the heating resistor are connected via a current drive transistor (not shown) controlled by the output currents of these operational amplifiers OPa and OPb (Patent Document 1). See FIG. 3). Therefore, a direct current voltage (control voltage) controlled by the operational amplifiers OPa and OPb is applied to the heating resistors Rha and Rhb. The voltage follower circuit constituted by the operational amplifier OPd receives the output from the first bridge circuit with high impedance so as not to affect the first bridge circuit due to the impedance fluctuation on the differential amplifier circuit side.
JP-A-8-43162 (pages 2-8, FIGS. 1-5) JP 2002-048616 A (2nd to 7th pages, FIGS. 1 to 11)

しかしながら、図7に示すようなブリッジ回路や差動増幅回路により構成される従来の熱式空気流量検出装置100では、発熱抵抗体Rha、Rhbは、第1、第2ブリッジ回路を構成するオペアンプOPa 、OPb により、吸気ダクトIM内の空気温度に対して所定の発熱温度になるように制御されており、当該空気温度が高温になると発熱抵抗体Rha、Rhbはさらに高い温度で発熱するように制御される。そのため、発熱抵抗体Rha、Rhbを多結晶シリコンにより構成すると、単結晶構造に比べて原子構造が一定ではない多結晶構造の特性から高温発熱(例えば300℃)による構造変動を招き易く、発熱抵抗体としの電気的特性に変動が生じ得る。一方、低温においては、流路におかれている発熱抵抗体の表面が氷結を起こす状態にもなるため、なるべく発熱温度を上げたいといった要求もある。   However, in the conventional thermal air flow rate detection device 100 constituted by a bridge circuit and a differential amplifier circuit as shown in FIG. 7, the heating resistors Rha and Rhb are operational amplifiers OPa constituting the first and second bridge circuits. , OPb is controlled so as to have a predetermined heat generation temperature with respect to the air temperature in the intake duct IM, and when the air temperature becomes high, the heat generating resistors Rha and Rhb are controlled to generate heat at a higher temperature. Is done. Therefore, if the heating resistors Rha and Rhb are made of polycrystalline silicon, the structure of the polycrystalline structure whose atomic structure is not constant compared to the single crystal structure is likely to cause structural fluctuations due to high-temperature heat generation (for example, 300 ° C.). Variations in the electrical properties of the body can occur. On the other hand, at a low temperature, since the surface of the heat generating resistor placed in the flow path is also frozen, there is a demand for increasing the heat generating temperature as much as possible.

つまり、発熱抵抗体から発せられる熱を利用して空気流量を検出する熱式空気流量検出装置においては、発熱抵抗体として多結晶構造の半導体(例えば多結晶シリコン)を用いた場合、当該結晶構造の変動を来す程度の高温に達するような発熱制御が行われたときには、その後においても安定した発熱特性が得られ難くなる。そのため、このような発熱制御は、発熱抵抗体の電気的特性に影響を与えるばかりか、それにより得られた空気流量信号の信頼性をも低下させ得るという課題がある。   That is, in a thermal air flow rate detection device that detects the air flow rate using heat generated from a heating resistor, when a polycrystalline semiconductor (for example, polycrystalline silicon) is used as the heating resistor, the crystal structure When heat generation control is performed so as to reach a high temperature that causes such fluctuations, it is difficult to obtain stable heat generation characteristics even after that. For this reason, such heat generation control not only affects the electrical characteristics of the heating resistor, but also has a problem that the reliability of the air flow signal obtained thereby can be reduced.

本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、発熱抵抗体として多結晶構造の半導体を用いても空気流量信号の信頼性低下を抑制し得る熱式空気流量検出装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide heat that can suppress a decrease in the reliability of an air flow signal even when a polycrystalline semiconductor is used as a heating resistor. An object of the present invention is to provide an air flow rate detection device.

上記目的を達成するため、特許請求の範囲に記載の請求項1記載の手段を採用する。この手段によると、多結晶構造の半導体からなり空気流路内に設けられ得る発熱抵抗体と、この発熱抵抗体に流れる電流を制御し発熱抵抗体の発熱を制御する制御回路部と、発熱抵抗体の発熱に基づく電気信号を増幅して空気流量信号を出力する増幅回路部と、を備え、制御回路部は、発熱抵抗体の周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱抵抗体の発熱制御を行うため、前記発熱抵抗体Rh、前記周囲温度に基づき抵抗値が変動し前記発熱抵抗体Rhの一端側に一端側が接続される感温抵抗Rk、前記発熱抵抗体Rhの他端側に一端側が接続される第1固定抵抗R1、および、前記第1固定抵抗R1の他端側と前記感温抵抗Rkの他端側との間に接続される第2固定抵抗R2、からなるブリッジ回路と、前記発熱抵抗体Rhおよび前記感温抵抗Rkの接続端aと前記第1固定抵抗R1および前記第2固定抵抗R2の接続端bとの間に所定の制御電圧を印加するとともに、前記発熱抵抗体Rhおよび前記第1固定抵抗R1の接続端cと前記感温抵抗Rkおよび前記第2固定抵抗R2の接続端dとの間の電位差が零になるように前記所定の制御電圧を制御する制御回路と、を有し、前記発熱抵抗体Rhの温度係数をTCRh、前記感温抵抗Rkの温度係数をTCRk、前記第1固定抵抗R1の温度係数をTCR1、前記第2固定抵抗R2の温度係数をTCR2、前記発熱抵抗体Rhの常温時の抵抗値をRh0、前記感温抵抗Rkの常温時の抵抗値をRk0、前記第1固定抵抗R1の常温時の抵抗値をR10、前記第2固定抵抗R2の常温時の抵抗値をR20とし、「TCRh+TCR2−TCRk−TCR1」をΔTCR、「Rh0×R20/Rk0/R10」をγとしたとき、「TCTh≒TCRh−ΔTCR/(1−γ)」により表される前記発熱抵抗体Rhの発熱温度係数TCThが、負になるように前記発熱抵抗体Rhの発熱を制御し、
前記増幅回路部は、前記発熱抵抗体の周囲温度の変化に対し正の傾きとなる温度特性を持つように前記電気信号の増幅を行うため、前記接続端cまたは前記接続端dの電位として入力される前記電気信号を、抵抗Rgおよび抵抗Rrの比により決定される増幅度により増幅する増幅回路を有し、前記抵抗Rgの温度係数をTCRg、前記抵抗Rrの温度係数をTCRr、前記抵抗Rgの常温時の抵抗値をRg0、前記抵抗Rrの常温時の抵抗値をRr0としたとき、「TCR1−ΔTCR×γ/2/(1−γ)+Rg0/(Rg0+Rr0)×(TCRg−TCRr)=0」が成立するように、前記抵抗Rgの温度係数TCRgおよび前記抵抗Rrの温度係数TCRrを設定して前記電気信号を増幅する。なお、「常温」とは、加熱および冷却をしない場合における温度のことで、通常、25℃を想定している(以下同じ)。
In order to achieve the above object, the means described in claim 1 described in claims is adopted. According to this means, a heating resistor that can be provided in the air flow path made of a polycrystalline semiconductor, a control circuit unit that controls the current flowing through the heating resistor to control the heat generation of the heating resistor, and the heating resistor An amplifying circuit unit that amplifies an electrical signal based on heat generated by the body and outputs an air flow rate signal, and the control circuit unit has a temperature characteristic that has a negative slope with respect to a change in the ambient temperature of the heating resistor. line heat generation control of the heating resistor Utame, the heating resistor Rh, the temperature-sensitive resistor Rk that resistance value based on the ambient temperature is connected at one end to one end of the heating resistor Rh varies, the heating resistor A first fixed resistor R1 having one end connected to the other end of the body Rh, and a second fixed connected between the other end of the first fixed resistor R1 and the other end of the temperature sensitive resistor Rk. A bridge circuit comprising a resistor R2, and the heating resistor A predetermined control voltage is applied between a connection end a of Rh and the temperature sensitive resistor Rk and a connection end b of the first fixed resistor R1 and the second fixed resistor R2, and the heating resistor Rh and the first A control circuit for controlling the predetermined control voltage so that a potential difference between the connection end c of the first fixed resistor R1 and the connection end d of the temperature sensitive resistor Rk and the second fixed resistor R2 is zero. The temperature coefficient of the heating resistor Rh is TCRh, the temperature coefficient of the temperature sensing resistor Rk is TCRk, the temperature coefficient of the first fixed resistor R1 is TCR1, the temperature coefficient of the second fixed resistor R2 is TCR2, and the heat generation The resistance value of the resistor Rh at normal temperature is Rh0, the resistance value of the temperature sensitive resistor Rk is Rk0, the resistance value of the first fixed resistor R1 is R10, and the second fixed resistor R2 is normal temperature. Resistance value of R20 The heating temperature of the heating resistor Rh represented by “TCTh≈TCRh−ΔTCR / (1−γ)” where “TCRh + TCR2−TCRk−TCR1” is ΔTCR and “Rh0 × R20 / Rk0 / R10” is γ. Controlling the heat generation of the heating resistor Rh so that the coefficient TCTh is negative;
The amplifier circuit unit amplifies the electrical signal so as to have a temperature characteristic that has a positive slope with respect to a change in the ambient temperature of the heating resistor, and therefore inputs the potential of the connection end c or the connection end d. And an amplification circuit that amplifies the electrical signal with an amplification degree determined by a ratio of the resistance Rg and the resistance Rr, the temperature coefficient of the resistance Rg is TCRg, the temperature coefficient of the resistance Rr is TCRr, and the resistance Rg When the resistance value at room temperature of Rg0 is Rg0 and the resistance value of the resistor Rr at room temperature is Rr0, “TCR1-ΔTCR × γ / 2 / (1-γ) + Rg0 / (Rg0 + Rr0) × (TCRg−TCRr) = The electric signal is amplified by setting the temperature coefficient TCRg of the resistor Rg and the temperature coefficient TCRr of the resistor Rr so that “0” is established. The “normal temperature” is a temperature when heating and cooling are not performed, and normally 25 ° C. is assumed (the same applies hereinafter).

これにより、発熱抵抗体は、制御回路部によって発熱抵抗体の周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱制御が行われるので、例えば、当該発熱抵抗体の周囲温度が上昇してもそれに伴ってさらに高い温度で発熱するように制御されることを防止することができる。即ち、発熱抵抗体Rhは、その発熱温度係数TCThが負になるように制御回路により発熱を制御されるので、例えば、当該発熱抵抗体Rhの周囲温度が上昇してもそれに伴ってさらに高い温度で発熱するように制御されることを防止することができる。
また、発熱抵抗体の周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱抵抗体の発熱制御が行われても、増幅回路部によって発熱抵抗体の周囲温度の変化に対し正の傾きとなる温度特性を持つように電気信号の増幅が行われるので、当該電気信号に与えられた発熱抵抗体の周囲温度の変化に対する負の温度特性を当該増幅回路部による正の温度特性によって打ち消すことができる。即ち、発熱抵抗体Rhの発熱温度係数TCThが負になるように制御回路により発熱を制御されても、それにより出力される接続端cまたは接続端dの電位である電気信号に含まれる負の温度係数「TCR1−ΔTCR×γ/2/(1−γ)」を打ち消す温度係数「Rg0/(Rg0+Rr0)×(TCRg−TCRr)」を増幅回路の増幅度に含んでいるので、電気信号に含まれる負の温度特性を当該増幅度に含まれる正の温度特性によって打ち消すことができる。
As a result, the heating resistor is controlled by the control circuit unit so as to have a temperature characteristic that has a negative slope with respect to a change in the ambient temperature of the heating resistor. For example, the ambient temperature of the heating resistor is Even if the temperature rises, it is possible to prevent the heat generation from being controlled at a higher temperature. That is, since the heat generation resistor Rh is controlled by the control circuit so that the heat generation temperature coefficient TCTh is negative, for example, even if the ambient temperature of the heat generation resistor Rh increases, It is possible to prevent the heat from being controlled.
In addition, even if the heating resistor is controlled to have a temperature characteristic that has a negative slope with respect to changes in the ambient temperature of the heating resistor, the amplification circuit unit is positive for the ambient temperature change of the heating resistor. Since the electric signal is amplified so as to have a temperature characteristic that has a slope of, the negative temperature characteristic with respect to the change in the ambient temperature of the heating resistor given to the electric signal is changed by the positive temperature characteristic by the amplification circuit unit. Can be countered. That is, even when the heat generation is controlled by the control circuit so that the heat generation temperature coefficient TCTh of the heat generation resistor Rh becomes negative, the negative signal included in the electric signal which is the potential of the connection end c or the connection end d output thereby. The temperature coefficient “Rg0 / (Rg0 + Rr0) × (TCRg−TCRr)” that cancels the temperature coefficient “TCR1−ΔTCR × γ / 2 / (1−γ)” is included in the amplification degree of the amplifier circuit. The negative temperature characteristic can be canceled by the positive temperature characteristic included in the amplification degree.

特許請求の範囲に記載の請求項記載の手段を採用することによって、ブリッジ回路を構成する感温抵抗Rk、増幅回路を構成する抵抗Rg、抵抗Rrのうちの少なくとも一つは、当該抵抗の一部または全部が発熱抵抗体Rhをなす多結晶構造の半導体により構成されていることから、例えば、発熱抵抗体Rhをなす多結晶構造の半導体の製造プロセスにおいて、感温抵抗Rk、抵抗Rg、抵抗Rrを生成することができる。これにより、発熱抵抗体Rhの製造プロセスでこれらの抵抗を製造できるので、製造コストを低減できるとともに、製品の小型軽量化を図ることができる。 By adopting the means according to claim 2 , at least one of the temperature-sensitive resistor Rk constituting the bridge circuit, the resistor Rg constituting the amplifier circuit, and the resistor Rr is the resistance of the resistor. Since part or all of the semiconductor is composed of a polycrystalline semiconductor forming the heating resistor Rh, for example, in the manufacturing process of the polycrystalline semiconductor forming the heating resistor Rh, the temperature sensitive resistance Rk, the resistance Rg, A resistor Rr can be generated. Thereby, since these resistors can be manufactured by the manufacturing process of the heating resistor Rh, the manufacturing cost can be reduced and the product can be reduced in size and weight.

特許請求の範囲に記載の請求項記載の手段を採用することによって、発熱抵抗体は、多結晶シリコンであることから、上述した各特徴、作用、効果を備えた熱式空気流量検出装置の製造コストを低減できる。また発熱抵抗体Rhの製造プロセスにおいて、感温抵抗Rk、抵抗Rg、抵抗Rrを生成することで(請求項)、さらなる製造コストの低減と製品の小型軽量化を図ることができる。 By adopting the means described in claim 3 , the heating resistor is polycrystalline silicon, so that the thermal air flow rate detecting device having the above-described features, functions, and effects is provided. Manufacturing cost can be reduced. Further, in the manufacturing process of the heating resistor Rh, by generating the temperature sensitive resistance Rk, the resistance Rg, and the resistance Rr (Claim 2 ), the manufacturing cost can be further reduced and the product can be reduced in size and weight.

請求項1の発明では、発熱抵抗体は、制御回路部によって発熱抵抗体の周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱制御が行われるので、例えば、当該発熱抵抗体の周囲温度が上昇してもそれに伴ってさらに高い温度で発熱するように制御されることを防止できる。また、発熱抵抗体の周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱抵抗体の発熱制御が行われても、増幅回路部によって発熱抵抗体の周囲温度の変化に対し正の傾きとなる温度特性を持つように電気信号の増幅が行われるので、当該電気信号に与えられた発熱抵抗体の周囲温度の変化に対する負の温度特性を当該増幅回路部による正の温度特性によって打ち消すことができる。したがって、発熱抵抗体として多結晶構造の半導体を用いても空気流量信号の信頼性低下を抑制することができる。   In the first aspect of the invention, the heating resistor is controlled by the control circuit unit so as to have a temperature characteristic that has a negative slope with respect to a change in the ambient temperature of the heating resistor. Even if the ambient temperature rises, it is possible to prevent the heat from being controlled so as to generate heat at a higher temperature. In addition, even if the heating resistor is controlled to have a temperature characteristic that has a negative slope with respect to changes in the ambient temperature of the heating resistor, the amplification circuit unit is positive for the ambient temperature change of the heating resistor. Since the electric signal is amplified so as to have a temperature characteristic that has a slope of, the negative temperature characteristic with respect to the change in the ambient temperature of the heating resistor given to the electric signal is changed by the positive temperature characteristic by the amplification circuit unit. Can be countered. Therefore, even if a polycrystalline semiconductor is used as the heating resistor, a decrease in the reliability of the air flow signal can be suppressed.

請求項の発明では、発熱抵抗体Rhの製造プロセスで、感温抵抗Rk、抵抗Rg、抵抗Rrを製造できるので、製造コストを低減できるとともに、製品の小型軽量化を図ることができる。したがって、発熱抵抗体として多結晶構造の半導体を用いても空気流量信号の信頼性低下を抑制できることに加え、安価で小型軽量の当該熱式空気流量検出装置を実現することができる。 In the invention of claim 2 , since the temperature sensitive resistor Rk, resistor Rg, and resistor Rr can be manufactured by the manufacturing process of the heating resistor Rh, the manufacturing cost can be reduced and the product can be reduced in size and weight. Therefore, even if a polycrystalline semiconductor is used as the heating resistor, the reliability of the air flow rate signal can be suppressed, and the thermal air flow detection device can be realized at low cost and in small size and light weight.

請求項の発明では、発熱抵抗体は、多結晶シリコンであることから、上述した各特徴、作用、効果を備えた熱式空気流量検出装置の製造コストを低減できる。また発熱抵抗体Rhの製造プロセスにおいて、感温抵抗Rk、抵抗Rg、抵抗Rrを生成することで(請求項)、さらなる製造コストの低減と製品の小型軽量化を図ることができる。したがって、発熱抵抗体として多結晶シリコンを用いても空気流量信号の信頼性低下を抑制できることに加え、一層安価で小型軽量の当該熱式空気流量検出装置を実現することができる。 In the invention of claim 3 , since the heating resistor is polycrystalline silicon, it is possible to reduce the manufacturing cost of the thermal air flow rate detecting device having the above-described features, functions, and effects. Further, in the manufacturing process of the heating resistor Rh, by generating the temperature sensitive resistance Rk, the resistance Rg, and the resistance Rr (Claim 2 ), the manufacturing cost can be further reduced and the product can be reduced in size and weight. Therefore, even if polycrystalline silicon is used as the heating resistor, the reliability of the air flow rate signal can be suppressed, and the thermal air flow detection device can be realized at a lower cost and with a smaller size and weight.

以下、本発明の熱式空気流量検出装置の実施形態について図を参照して説明する。まず本実施形態に係る熱式空気流量検出装置20の概略構成を図6に基づいて説明する。   Hereinafter, an embodiment of a thermal air flow detection device of the present invention will be described with reference to the drawings. First, a schematic configuration of the thermal air flow detection device 20 according to the present embodiment will be described with reference to FIG.

図6に示すように、熱式空気流量検出装置20は、前述した従来技術の熱式空気流量検出装置100と同様、ハウジング本体22、センサハウジング24、端子26、センサ基板30等からなり、自動車用エンジンの吸気管IMの途中に取付可能に構成されている。なお、後述するように、センサ基板30上に構成されるセンサ回路以外は、前述の熱式空気流量検出装置100と同様であるので、ここではこれらの詳細説明は省略する。   As shown in FIG. 6, the thermal air flow rate detection device 20 includes a housing body 22, a sensor housing 24, a terminal 26, a sensor substrate 30, and the like, similar to the conventional thermal air flow rate detection device 100 described above, It can be attached in the middle of the intake pipe IM of the engine. As will be described later, since the sensor circuit other than the sensor circuit configured on the sensor substrate 30 is the same as that of the thermal air flow rate detection device 100 described above, detailed description thereof will be omitted here.

図1に示すように、センサ基板30に構成されるセンサ回路は、例えば、発熱抵抗体Rha、感温抵抗R11、第1固定抵抗R1a、第2固定抵抗R2aおよびオペアンプOPa からなる第1ブリッジ回路と、発熱抵抗体Rhb、感温抵抗R12、第1固定抵抗R1b、第2固定抵抗R2bおよびオペアンプOPb からなる第2ブリッジ回路と、オペアンプOPc 、抵抗R21、R22からなりこれらの各ブリッジ回路における発熱抵抗体Rha、Rhbの端子電圧の差電圧を増幅する差動増幅回路と、オペアンプOPd によるボルテージフォロア回路と、から構成されている。なお、図1においては、前述の熱式空気流量検出装置100と実質的に同様の構成部分には同一符号を付してある。   As shown in FIG. 1, the sensor circuit configured on the sensor substrate 30 includes, for example, a first bridge circuit including a heating resistor Rha, a temperature sensitive resistor R11, a first fixed resistor R1a, a second fixed resistor R2a, and an operational amplifier OPa. And a second bridge circuit comprising a heating resistor Rhb, a temperature sensitive resistor R12, a first fixed resistor R1b, a second fixed resistor R2b and an operational amplifier OPb, and an operational amplifier OPc and resistors R21 and R22. It comprises a differential amplifier circuit that amplifies the differential voltage between the terminal voltages of the resistors Rha and Rhb, and a voltage follower circuit using an operational amplifier OPd. In FIG. 1, components that are substantially the same as those of the thermal air flow rate detection device 100 described above are denoted by the same reference numerals.

なお、第1ブリッジ回路および第2ブリッジ回路は、特許請求の範囲に記載の「制御回路部」に相当し得るもので、オペアンプOPa 、OPb は、特許請求の範囲に記載の「制御回路」に相当し得るものである。また、差動増幅回路は、特許請求の範囲に記載の「増幅回路部」および「増幅回路」に相当し得るもので、抵抗R22は、特許請求の範囲に記載の「抵抗Rg」に、また抵抗R21は、特許請求の範囲に記載の「抵抗Rr」に、それぞれ相当し得るものである。   The first bridge circuit and the second bridge circuit may correspond to the “control circuit unit” recited in the claims, and the operational amplifiers OPa and OPb are included in the “control circuit” recited in the claims. It can be equivalent. The differential amplifier circuit may correspond to the “amplifier circuit unit” and the “amplifier circuit” recited in the claims, and the resistor R22 is the “resistor Rg” recited in the claims. The resistor R21 can respectively correspond to “resistor Rr” recited in the claims.

ここで、図1に示す発熱抵抗体Rha、Rhbの制御回路、つまり発熱抵抗体制御回路の基本原理を図2および図3に基づいて説明する。例えば、発熱抵抗体制御回路の最も簡単なものとして図2に示すようなものが挙げられる。この図2に示す回路では、次の式(1) が成立する。なお、以下、図2、3を参照して説明するときには、図1に示す発熱抵抗体Rha、Rhbの総括概念として発熱抵抗体Rh、また感温抵抗R11、R12の総括概念として感温抵抗Rk、第1固定抵抗R1a、R1bの総括概念として第1固定抵抗R1、第2固定抵抗R2a、R2bの総括概念として第2固定抵抗R2、オペアンプOPa 、OPb の総括概念としてオペアンプOPxを、それぞれ用いることとする。また、図2および図3に示される「a」は特許請求の範囲に記載の「接続端a」に相当し得るものである。同様に、図2および図3に示される「b」、「c」および「d」は、それぞれ特許請求の範囲に記載の「接続端b」、「接続端c」および「接続端d」に相当し得るものである。   Here, the basic principle of the heating resistor Rha, Rhb control circuit shown in FIG. 1, that is, the heating resistor control circuit, will be described with reference to FIGS. For example, the simplest heating resistor control circuit is shown in FIG. In the circuit shown in FIG. 2, the following equation (1) is established. In the following description with reference to FIGS. 2 and 3, the heating resistor Rh as a general concept of the heating resistors Rha and Rhb shown in FIG. 1, and the temperature sensitive resistor Rk as a general concept of the temperature sensitive resistors R11 and R12. As a general concept of the first fixed resistors R1a and R1b, the first fixed resistor R1, as a general concept of the second fixed resistors R2a and R2b, and as a general concept of the operational amplifiers OPa and OPb, the operational amplifier OPx is used, respectively. And Further, “a” shown in FIGS. 2 and 3 can correspond to “connection end a” recited in the claims. Similarly, “b”, “c”, and “d” shown in FIG. 2 and FIG. 3 respectively correspond to “connecting end b”, “connecting end c”, and “connecting end d” described in the claims. It can be equivalent.

Ih2 ・Rh = (α+β√G)・Th …(1)
Rh・R2 = R1・Rk …(2) 。
Ih 2 · Rh = (α + β√G) · Th (1)
Rh · R2 = R1 · Rk (2)

式(1) は、発熱抵抗体Rhを流れる発熱抵抗体電流である空気流量信号電流Ihと発熱抵抗体Rhの抵抗値Rhとにより求められる発熱抵抗体Rhの発熱電力(Ih2 ・Rh)が、当該発熱抵抗体Rhを形成するセンサ基板30等の構造物へ逃げる放熱(α・Th)と当該発熱抵抗体Rhに接触する空気流による放熱(β√G・Th)とにより分けられることを示す。なお、当該式(1) において、α、βは発熱抵抗体周辺の構造物の形状による定数、Gは空気流量、Thは発熱抵抗体Rhの発熱温度をそれぞれ示す。 Equation (1) is obtained by calculating the heating power (Ih 2 · Rh) of the heating resistor Rh obtained from the air flow rate signal current Ih that is the heating resistor current flowing through the heating resistor Rh and the resistance value Rh of the heating resistor Rh. The heat radiation (α · Th) escaping to the structure such as the sensor substrate 30 forming the heating resistor Rh and the heat radiation (β√G · Th) due to the air flow contacting the heating resistor Rh Show. In the formula (1), α and β are constants depending on the shape of the structure around the heating resistor, G is the air flow rate, and Th is the heating temperature of the heating resistor Rh.

また、式(2) は、オペアンプOPxの制御関係式で、任意の温度で当該式(2) の関係が成立するようにオペアンプOPxが制御している。そして、式(2) から次式(3) が導かれる。   Expression (2) is a control relational expression of the operational amplifier OPx, and the operational amplifier OPx controls so that the relation of the expression (2) is established at an arbitrary temperature. Then, the following equation (3) is derived from the equation (2).

Rh0・(1+TCRh・ΔT+TCRh・Th)・R20・(1+TCR2・ΔT) = R10・(1+TCR1・ΔT)・Rk0・(1+TCRk・ΔT) …(3) 。   Rh0 · (1 + TCRh · ΔT + TCRh · Th) · R20 · (1 + TCR2 · ΔT) = R10 · (1 + TCR1 · ΔT) · Rk0 · (1 + TCRk · ΔT) (3)

当該式(3) において、R*0(*は、「h」,「k」,「1」,「2」、以下同じ。)は、各添字抵抗の常温値を示し、またTCR*は、各添字抵抗の温度係数を示す。さらにΔTは当該センサ回路の周囲温度と常温(25℃)との温度差を示す。これらの式から発熱抵抗体Rhの発熱温度Thと空気流量信号電流Ihは、次式(4) 、(5) により表される。   In the formula (3), R * 0 (* is “h”, “k”, “1”, “2”, the same shall apply hereinafter) indicates the room temperature value of each subscript resistor, and TCR * is The temperature coefficient of each index resistor is shown. Further, ΔT represents a temperature difference between the ambient temperature of the sensor circuit and normal temperature (25 ° C.). From these equations, the heating temperature Th of the heating resistor Rh and the air flow rate signal current Ih are expressed by the following equations (4) and (5).

Th = {R10・(1+TCR1・ΔT)・Rk0・(1+TCRk・ΔT)/R20/(1+TCR2・ΔT)−Rh0・(1+TCRh・ΔT)}/Rh0/TCRh …(4)
Ih = √(α+β√G)/√(Rh0・TCRh)・√{1−R20・(1+TCR2・ΔT)・Rh0・(1+TCRh・ΔT)/R10/(1+TCR1・ΔT)/Rk0/(1+TCRk・ΔT)} …(5) 。
Th = {R10 · (1 + TCR1 · ΔT) · Rk0 · (1 + TCRk · ΔT) / R20 / (1 + TCR2 · ΔT) −Rh0 · (1 + TCRh · ΔT)} / Rh0 / TCRh (4)
Ih = √ (α + β√G) / √ (Rh0 · TCRh) · √ {1-R20 · (1 + TCR2 · ΔT) · Rh0 · (1 + TCRh · ΔT) / R10 / (1 + TCR1 · ΔT) / Rk0 / (1 + TCRk · ΔT )} …(Five) .

ここで、各抵抗の温度変化量(R*0・TCR*・ΔT)は、各抵抗の常温値(R*0)に対して小さいことから、式(4) 、(5) を簡略化すると、次式(4)'、(5)'になる。   Here, since the temperature change amount (R * 0 · TCR * · ΔT) of each resistor is smaller than the normal temperature value (R * 0) of each resistor, the equations (4) and (5) can be simplified. The following equations (4) ′ and (5) ′ are obtained.

Th ≒ (1+TCRh・ΔT)/TCRh・[1/γ・{1+(TCR1+TCRk−TCR2−TCRh)・ΔT}−1] ≒ (1−γ)/γ/TCRh・[1+{TCRh−ΔTCR/(1−γ)}・ΔT] …(4)'
Ih ≒ √(α+β√G)・√(1−γ)/√Rh0/√TCRh・{1−γ・ΔTCR/2/(1−γ)・ΔT} …(5)'。
Th≈ (1 + TCRh · ΔT) / TCRh · [1 / γ · {1+ (TCR1 + TCRk−TCR2−TCRh) · ΔT} −1] ≈ (1-γ) / γ / TCRh · [1+ {TCRh−ΔTCR / (1 −γ)} · ΔT] (4) ′
Ih≈√ (α + β√G) · √ (1-γ) / √Rh0 / √TCRh · {1-γ · ΔTCR / 2 / (1-γ) · ΔT} (5) ′.

なお、式(4)'、(5)'において、γはRh0・R20/Rk0/R10を示し、またΔTCRはTCRh+TCR2−TCRk−TCR1を示す。   In the formulas (4) ′ and (5) ′, γ represents Rh0 · R20 / Rk0 / R10, and ΔTCR represents TCRh + TCR2−TCRk−TCR1.

したがって、発熱抵抗体Rhの発熱温度Thの温度係数(発熱温度係数)TCThと空気流量信号電圧Vs(=R1・Ih)の温度係数TCVsは次式(6) 、(7) により表される。なお、式(6) は、特許請求の範囲に記載の「TCTh≒TCRh−ΔTCR/(1−γ)」に相当し得るものである。   Therefore, the temperature coefficient (heat generation temperature coefficient) TCTh of the heat generation temperature Th of the heat generation resistor Rh and the temperature coefficient TCVs of the air flow rate signal voltage Vs (= R1 · Ih) are expressed by the following equations (6) and (7). Equation (6) may correspond to “TCTh≈TCRh−ΔTCR / (1−γ)” described in the claims.

TCTh ≒ TCRh−ΔTCR/(1−γ) …(6)
TCVs ≒ TCR1−ΔTCR・γ/2/(1−γ) …(7) 。
TCTh≈TCRh−ΔTCR / (1−γ) (6)
TCVs≈TCR1-ΔTCR · γ / 2 / (1-γ) (7)

ここで、図2に示す発熱抵抗体制御回路を構成する各抵抗の温度係数は、通常、第1固定抵抗R1、第2固定抵抗R2については0(ゼロ)、また発熱抵抗体Rhの温度係数と感温抵抗Rkの温度係数は等しくなるように、つまり次式(8) のように設定されている。   Here, the temperature coefficient of each resistor constituting the heating resistor control circuit shown in FIG. 2 is normally 0 (zero) for the first fixed resistor R1 and the second fixed resistor R2, and the temperature coefficient of the heating resistor Rh. And the temperature coefficient of the temperature sensitive resistance Rk are set to be equal to each other, that is, as shown in the following equation (8).

TCR1=TCR2=0、TCRk=TCRh (8) 。   TCR1 = TCR2 = 0, TCRk = TCRh (8)

この場合、ΔTCR=TCRh+TCR2−TCRk−TCR1からΔTCR=0(ゼロ)になるため、上式(6) 、(7) は次式(9) のようになる。   In this case, since ΔTCR = TCRh + TCR2−TCRk−TCR1 becomes ΔTCR = 0 (zero), the above equations (6) and (7) are expressed by the following equation (9).

TCTh ≒ TCRh、TCVs ≒ 0 …(9) 。   TCTh≈TCRh, TCVs≈0 (9)

この式(9) から、空気流量信号電圧Vsは温度特性を持たない代わりに、発熱抵抗体電流Ihは+TCRhの温度特性を持つことがわかる。即ち、図2に示す発熱抵抗体制御回路において式(8) の関係を満たすように各抵抗の温度係数を設定すると、図4に示すように、周囲温度と等しく発熱抵抗体温度を設定した場合(図4に示す破線および一点鎖線による特性)の傾きに対して、正の傾き(正の温度係数)を持つことになる(図4に示す細実線による特性)。これは、式(9) に示すように、空気流量信号電圧Vsに対しては温度依存性がない(温度特性を持たない)ように設定したことによるものである。   From this equation (9), it can be seen that instead of the air flow rate signal voltage Vs having no temperature characteristic, the heating resistor current Ih has a temperature characteristic of + TCRh. That is, when the temperature coefficient of each resistor is set so as to satisfy the relationship of equation (8) in the heating resistor control circuit shown in FIG. 2, the heating resistor temperature is set equal to the ambient temperature as shown in FIG. It has a positive slope (positive temperature coefficient) with respect to the slope (characteristic by the broken line and the alternate long and short dash line shown in FIG. 4) (characteristic by the thin solid line shown in FIG. 4). This is because, as shown in the equation (9), the air flow rate signal voltage Vs is set so as not to have temperature dependency (no temperature characteristic).

以上から、発熱抵抗体制御回路を構成する各抵抗の温度係数について、式(6) 、(7) に基づく式(8) による設定を行うと、図4の細実線で示すように発熱抵抗体Rhの温度特性として、周囲温度に対して上昇傾向の温度特性(正の温度特性)が得られる。そのため、周囲温度の上昇に従って発熱抵抗体Rhは常温での発熱温度もより一層上昇することから、例えば、周囲温度が+100℃に達した場合には、周囲温度+200℃を超える発熱温度となるように発熱抵抗体制御が行われるので、発熱抵抗体Rhの発熱温度が300℃を超えてしまう。その結果、[発明が解決しようとする課題]の欄で説明したように、多結晶構造からなる半導体(例えば多結晶シリコン)により発熱抵抗体Rhを構成した場合には、多結晶構造の特性からその構造変動を招き易く、発熱抵抗体Rh(発熱抵抗体)としの電気的特性に変動が生じ得る。   From the above, when the temperature coefficient of each resistor constituting the heating resistor control circuit is set according to the equation (8) based on the equations (6) and (7), as shown by the thin solid line in FIG. As a temperature characteristic of Rh, a temperature characteristic (positive temperature characteristic) that tends to increase with respect to the ambient temperature is obtained. For this reason, the heating resistor Rh further increases the heating temperature at normal temperature as the ambient temperature rises. For example, when the ambient temperature reaches + 100 ° C., the heating resistor Rh has a heating temperature exceeding the ambient temperature + 200 ° C. Since the heating resistor control is performed, the heating temperature of the heating resistor Rh exceeds 300 ° C. As a result, as described in the section “Problems to be Solved by the Invention”, when the heating resistor Rh is composed of a semiconductor having a polycrystalline structure (for example, polycrystalline silicon), the characteristics of the polycrystalline structure are used. The structure is likely to change, and the electrical characteristics of the heating resistor Rh (heating resistor) may change.

そこで、本実施形態では、「発熱抵抗体制御回路(制御回路部、制御回路)は、発熱抵抗体Rh(発熱抵抗体)の周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱抵抗体Rhの発熱制御を行い、検出信号増幅回路(増幅回路部、増幅回路)は、発熱抵抗体Rhの周囲温度の変化に対し正の傾きとなる温度特性を持つように空気流量信号電圧Vs(電気信号)の増幅を行う」ように構成した。基本的な構成例は図3に示されている。なお図3において、発熱抵抗体Rhの発熱を制御する発熱抵抗体制御回路(制御回路部、制御回路)は、発熱抵抗体Rh、合成感温抵抗Rs、第1固定抵抗R1、第2固定抵抗R2により構成され、また検出信号増幅回路(増幅回路部、増幅回路)は、オペアンプOPy、抵抗Rg、Rrにより構成される。   Therefore, in the present embodiment, “the heating resistor control circuit (control circuit unit, control circuit) has a temperature characteristic that has a negative slope with respect to a change in the ambient temperature of the heating resistor Rh (heating resistor). Heat generation resistance of the heating resistor Rh is controlled, and the detection signal amplification circuit (amplification circuit unit, amplification circuit) has an air flow rate signal voltage so as to have a temperature characteristic that has a positive slope with respect to a change in ambient temperature of the heating resistor Rh. “Vs (electric signal) amplification is performed”. A basic configuration example is shown in FIG. In FIG. 3, the heating resistor control circuit (control circuit unit, control circuit) for controlling the heat generation of the heating resistor Rh includes a heating resistor Rh, a combined temperature sensing resistor Rs, a first fixed resistor R1, and a second fixed resistor. The detection signal amplification circuit (amplification circuit unit, amplification circuit) is composed of an operational amplifier OPy and resistors Rg and Rr.

具体的には、例えば、図3に示すように、合成感温抵抗Rsの温度係数を図2に示す感温抵抗Rkよりも小さく設定することにより発熱抵抗体Rhの発熱温度係数TCThを負にする(図4に示す太実線による特性)。例えば、温度係数TCRhの抵抗と温度係数TCR=0の抵抗とを1:1の抵抗値比で組み合わせて合成感温抵抗Rsを構成する。これにより、TCRkは(TCRh/2)になり、また第1固定抵抗R1の温度係数TCR1も第2固定抵抗R2の温度係数TCR2も共に0(ゼロ)とした場合、前掲の式(6) 、(7) は次式(10)、(11)のようになる。   Specifically, for example, as shown in FIG. 3, the temperature coefficient TCTh of the heating resistor Rh is made negative by setting the temperature coefficient of the combined temperature sensing resistor Rs smaller than the temperature sensing resistor Rk shown in FIG. (Characteristic by thick solid line shown in FIG. 4). For example, the combined temperature-sensitive resistor Rs is configured by combining a resistor having a temperature coefficient TCRh and a resistor having a temperature coefficient TCR = 0 at a resistance value ratio of 1: 1. As a result, TCRk becomes (TCRh / 2), and when both the temperature coefficient TCR1 of the first fixed resistor R1 and the temperature coefficient TCR2 of the second fixed resistor R2 are set to 0 (zero), (7) becomes the following formulas (10) and (11).

TCTh ≒ (1−2・γ)/2/(1−γ)・TCRh …(10)
TCVs ≒ γ/4/(1−γ)・TCRh …(11)。
TCTh≈ (1-2 · γ) / 2 / (1-γ) · TCRh (10)
TCVs≈γ / 4 / (1-γ) · TCRh (11).

また、前掲の式(3) を用いてγを常温時(25℃)の発熱抵抗体発熱温度Th0に変換すると、次式(12)が得られるので、前式(10)、(11)はさらに次式(13)、(14)のようになる。   Further, when γ is converted into the heating resistor heating temperature Th0 at room temperature (25 ° C.) using the above formula (3), the following formula (12) is obtained, so the above formulas (10) and (11) are Furthermore, the following equations (13) and (14) are obtained.

γ = 1/(1+TCRh・Th0) …(12)
TCTh ≒ (TCRh−1/Th0)/2 …(13)
TCVs ≒ −1/4/Th0 …(14)。
γ = 1 / (1 + TCRh · Th0) (12)
TCTh ≒ (TCRh-1 / Th0) / 2 (13)
TCVs≈−1 / 4 / Th0 (14).

例えば、TCRhを2000ppm/℃、Th0を200℃に設定した場合には、式(13)、(14)から、TCTh≒−1500ppm/℃、TCVs≒−1250ppm/℃となる。また発熱抵抗体発熱温度は、周囲温度−40℃〜+100℃に対して+220℃〜+178℃となる。   For example, when TCRh is set to 2000 ppm / ° C. and Th 0 is set to 200 ° C., from formulas (13) and (14), TCTh≈−1500 ppm / ° C. and TCVs≈−1250 ppm / ° C. The heating temperature of the heating resistor is + 220 ° C. to + 178 ° C. with respect to the ambient temperature −40 ° C. to + 100 ° C.

このように発熱抵抗体Rhの発熱温度係数TCThを発熱抵抗体Rhの周囲温度の変化に対して負に設定すると(図4に示す太実線による特性)、空気流量信号電圧Vsに負の温度特性が発生する。即ち、前述したように、前掲の式(8) によるTCRk=TCRhの関係を満たすように温度係数を設定することなく、例えば、温度係数TCRhの感温抵抗と温度係数TCR=0の固定抵抗とを1:1で組み合わせたTCRk<TCRhの関係で温度係数を設定したため、空気流量信号電圧Vsが温度依存性(温度特性)を持つ。このため、本実施形態ではオペアンプOPyによる増幅回路の増幅度Aに、空気流量信号電圧Vsの負の温度特性を打ち消す正の温度係数を持たせることが可能となる。   Thus, when the heat generation temperature coefficient TCTh of the heat generating resistor Rh is set to be negative with respect to the change in the ambient temperature of the heat generating resistor Rh (characteristic by the bold solid line shown in FIG. 4), the temperature characteristic negative to the air flow signal voltage Vs. Will occur. That is, as described above, without setting the temperature coefficient so as to satisfy the relationship of TCRk = TCRh according to the above equation (8), for example, the temperature sensitive resistance of the temperature coefficient TCRh and the fixed resistance of the temperature coefficient TCR = 0 Since the temperature coefficient is set in a relationship of TCRk <TCRh in which 1: 1 is combined, the air flow signal voltage Vs has temperature dependence (temperature characteristics). For this reason, in the present embodiment, the amplification factor A of the amplifier circuit by the operational amplifier OPy can have a positive temperature coefficient that cancels the negative temperature characteristic of the air flow rate signal voltage Vs.

例えば、オペアンプOPyによる増幅度Aを設定し得る、抵抗Rg/抵抗Rr(抵抗Rgおよび抵抗Rrの比)に感温抵抗を組み合わせることにより、当該増幅度Aに正の温度特性を持たせられる。図3に示すオペアンプOPyを中心とした増幅回路では、その増幅度Aは次式(15)によって与えられるので、増幅度Aの温度特性TCAは次式(16)となる。   For example, by combining the resistance Rg / resistor Rr (ratio of the resistance Rg and the resistance Rr) that can set the amplification degree A by the operational amplifier OPy, the amplification degree A can have a positive temperature characteristic. In the amplifier circuit centered on the operational amplifier OPy shown in FIG. 3, the amplification factor A is given by the following equation (15), and the temperature characteristic TCA of the amplification factor A is given by the following equation (16).

A = Rg0・(1+TCRg・ΔT)/Rr0/(1+TCRr・ΔT)+1 …(15)
TCA = Rg0/(Rg0+Rr0)・(TCRg−TCRr) …(16)。
A = Rg0 · (1 + TCRg · ΔT) / Rr0 / (1 + TCRr · ΔT) +1 (15)
TCA = Rg0 / (Rg0 + Rr0) · (TCRg−TCRr) (16).

したがって、例えば、抵抗Rrはその温度係数TCRrを0(ゼロ)に、また抵抗Rgはその温度係数をTCR=0とTCRh(=2000ppm/℃)との組合せにより1250ppm/℃に設定する。この場合、温度係数TCR=0の抵抗と温度係数TCRh(2000ppm/℃)の抵抗とを3.75:6.25の抵抗値比で組み合わせて合成感温抵抗Rgを構成する。ここでは当該組合せに必要な抵抗の材料として、発熱抵抗体Rhと同じ材料(例えば多結晶シリコン)を用いているが、これは、発熱抵抗体Rhを形成する工程で当該温度係数の抵抗も形成できるという製造プロセス上の利点を考慮したためである。なお、抵抗Rrの温度係数TCRrを負に設定しても良い。   Therefore, for example, the resistance Rr sets its temperature coefficient TCRr to 0 (zero), and the resistance Rg sets its temperature coefficient to 1250 ppm / ° C. by a combination of TCR = 0 and TCRh (= 2000 ppm / ° C.). In this case, a combined temperature-sensitive resistor Rg is configured by combining a resistor having a temperature coefficient TCR = 0 and a resistor having a temperature coefficient TCRh (2000 ppm / ° C.) at a resistance value ratio of 3.75: 6.25. Here, the same material (for example, polycrystalline silicon) as that of the heating resistor Rh is used as a material of the resistance necessary for the combination, but this also forms a resistor having the temperature coefficient in the process of forming the heating resistor Rh. This is because the advantage of the manufacturing process that it can be taken into consideration. Note that the temperature coefficient TCRr of the resistor Rr may be set to be negative.

以上から、前掲の式(6) による発熱抵抗体Rhの発熱温度係数TCThを負に設定することによって、ブリッジ回路から出力される空気流量信号電圧Vsには、式(7) による負の温度係数TCVs(<0)が発生する。そのため、この空気流量信号電圧Vsに含まれる負の温度係数TCVsによる温度特性を打ち消すため、TCVs+TCA=0が成立するように、TCRgやTCRrを組み合わせる。即ち、次式(17)が成立するようなTCRgおよびTCRrを選択する。なお、式(17)は、特許請求の範囲に記載の「TCR1−ΔTCR×γ/2/(1−γ)+Rg0/(Rg0+Rr0)×(TCRg−TCRr)=0」に相当し得るものである。   From the above, by setting the heating temperature coefficient TCTh of the heating resistor Rh according to the above equation (6) to be negative, the air flow rate signal voltage Vs output from the bridge circuit has a negative temperature coefficient according to the equation (7). TCVs (<0) are generated. Therefore, in order to cancel the temperature characteristic due to the negative temperature coefficient TCVs included in the air flow signal voltage Vs, TCRg and TCRr are combined so that TCVs + TCA = 0 holds. That is, TCRg and TCRr that satisfy the following expression (17) are selected. The equation (17) may correspond to “TCR1−ΔTCR × γ / 2 / (1−γ) + Rg0 / (Rg0 + Rr0) × (TCRg−TCRr) = 0” described in the claims. .

TCR1−ΔTCR・γ/2/(1−γ)+Rg0/(Rg0+Rr0)・(TCRg−TCRr) =0 …(17)。   TCR1−ΔTCR · γ / 2 / (1−γ) + Rg0 / (Rg0 + Rr0) · (TCRg−TCRr) = 0 (17).

これにより、発熱抵抗体Rhは、その発熱温度係数TCThが負になるように発熱抵抗体制御回路により発熱を制御されるので、例えば、当該発熱抵抗体Rhの周囲温度が上昇してもそれに伴ってさらに高い温度で発熱するように制御されることを防止することができる。また、発熱抵抗体Rhの発熱温度係数TCThが負になるように発熱抵抗体制御回路により発熱抵抗体Rhの発熱を制御されても、それにより出力される接続端cまたは接続端dの電位である空気流量信号電圧Vs(電気信号)に含まれる負の温度係数「TCR1−ΔTCR×γ/2/(1−γ)」を打ち消す温度係数「Rg0/(Rg0+Rr0)×(TCRg−TCRr)」を検出信号増幅回路の増幅度Aに含んでいるので、空気流量信号電圧Vsに含まれる負の温度特性を当該増幅度Aに含まれる正の温度特性によって打ち消すことができる。したがって、発熱抵抗体Rhに例えば多結晶シリコンを用いても空気流量信号の信頼性低下を抑制することができる。なお、前掲の式(6) 、(7) 、(16)、(17)が成立する範囲で、様々な温度係数の抵抗の組合せが可能である。   Thus, the heat generation resistor Rh is controlled in heat generation by the heat generation resistor control circuit so that the heat generation temperature coefficient TCTh is negative. For example, even if the ambient temperature of the heat generation resistor Rh rises, Therefore, it can be controlled to generate heat at a higher temperature. Even if the heat generation resistor control circuit controls the heat generation of the heat generation resistor Rh so that the heat generation temperature coefficient TCTh of the heat generation resistor Rh becomes negative, the potential of the connection end c or the connection end d output thereby A temperature coefficient “Rg0 / (Rg0 + Rr0) × (TCRg−TCRr)” that cancels a negative temperature coefficient “TCR1-ΔTCR × γ / 2 / (1-γ)” included in a certain air flow signal voltage Vs (electrical signal) Since it is included in the amplification degree A of the detection signal amplification circuit, the negative temperature characteristic included in the air flow rate signal voltage Vs can be canceled by the positive temperature characteristic included in the amplification degree A. Therefore, even if, for example, polycrystalline silicon is used for the heating resistor Rh, a decrease in the reliability of the air flow rate signal can be suppressed. It should be noted that various combinations of resistances with temperature coefficients are possible as long as the above-described equations (6), (7), (16), and (17) are satisfied.

ここで、図1に戻ると、本実施形態に係る熱式空気流量検出装置20のセンサ基板30には(図6参照)、制御回路部として、発熱抵抗体Rha、感温抵抗R11、第1固定抵抗R1aおよび第2固定抵抗R2aからなる第1ブリッジ回路と、発熱抵抗体Rhb、感温抵抗R12、第1固定抵抗R1bおよび第2固定抵抗R2bからなる第2ブリッジ回路と、第1ブリッジ回路に所定の制御電圧を印加するオペアンプOPa (制御回路)と、第2ブリッジ回路に所定の制御電圧を印加するオペアンプOPb (制御回路)と、を有する。そして、これら第1、第2ブリッジ回路に対して、それぞれ前述したように、前掲の式(6) により表される発熱抵抗体Rha、Rhb(Rh)の発熱温度係数TCThが、負になるように発熱抵抗体Rha、Rhb(Rh)の発熱を制御する。第1、第2ブリッジ回路のようにブリッジ回路を2つ設けているのは、空気流路としての吸気ダクトIMを流れる空気の流量を正逆の両方向で検出可能にするためである。   Here, returning to FIG. 1, the sensor substrate 30 of the thermal air flow rate detection device 20 according to the present embodiment (see FIG. 6) has a heating resistor Rha, a temperature sensitive resistor R11, a first resistor as a control circuit unit. A first bridge circuit comprising a fixed resistor R1a and a second fixed resistor R2a, a second bridge circuit comprising a heating resistor Rhb, a temperature sensitive resistor R12, a first fixed resistor R1b and a second fixed resistor R2b, and a first bridge circuit An operational amplifier OPa (control circuit) that applies a predetermined control voltage to the second bridge circuit, and an operational amplifier OPb (control circuit) that applies a predetermined control voltage to the second bridge circuit. As described above, the heating temperature coefficient TCTh of the heating resistors Rha and Rhb (Rh) represented by the above formula (6) is negative with respect to the first and second bridge circuits. The heat generation of the heating resistors Rha and Rhb (Rh) is controlled. The reason for providing two bridge circuits like the first and second bridge circuits is to make it possible to detect the flow rate of air flowing through the intake duct IM as an air flow path in both forward and reverse directions.

また、増幅回路部として、第1ブリッジ回路からオペアンプOPdによるボルテージフォロアを介して入力される空気流量信号電圧Vsaと、第2ブリッジ回路から入力される空気流量信号電圧Vsbと、の差電圧による空気流量信号を抵抗R22/抵抗R21(抵抗R22と抵抗R21との比)により決定される増幅度により増幅するオペアンプOPc (増幅回路)を有する。そして、抵抗R22の温度係数をTCRg、抵抗R21の温度係数をTCRr、抵抗R22の常温時の抵抗値をRg0、抵抗R21の常温時の抵抗値をRr0としたとき、前掲の式(17)が成立するように、抵抗R22の温度係数TCRgおよび抵抗R21の温度係数TCRrを設定して空気流量信号を増幅している。   In addition, as an amplifier circuit section, the air by the difference voltage between the air flow rate signal voltage Vsa input from the first bridge circuit via the voltage follower by the operational amplifier OPd and the air flow rate signal voltage Vsb input from the second bridge circuit. It has an operational amplifier OPc (amplifier circuit) that amplifies the flow rate signal by the amplification degree determined by the resistor R22 / resistor R21 (ratio of the resistor R22 and the resistor R21). When the temperature coefficient of the resistor R22 is TCRg, the temperature coefficient of the resistor R21 is TCRr, the resistance value of the resistor R22 at room temperature is Rg0, and the resistance value of the resistor R21 at room temperature is Rr0, the above equation (17) is obtained. The air flow rate signal is amplified by setting the temperature coefficient TCRg of the resistor R22 and the temperature coefficient TCRr of the resistor R21 so as to be established.

これにより、発熱抵抗体Rha、Rhb(Rh)は、その発熱温度係数TCThが負になるように、オペアンプOPa 、OPb によりそれぞれ発熱を制御されるので、例えば、当該発熱抵抗体Rha、Rhb(Rh)の周囲温度が上昇してもそれに伴ってさらに高い温度で発熱するように制御されることを防止することができる。また、発熱抵抗体Rha、Rhb(Rh)の発熱温度係数TCThが負になるようにオペアンプOPa 、OPb により発熱を制御されても、それにより出力される空気流量信号電圧Vsa、Vsbに含まれる負の温度係数「TCR1−ΔTCR×γ/2/(1−γ)」を打ち消す温度係数「Rg0/(Rg0+Rr0)×(TCRg−TCRr)」をオペアンプOPc の増幅度に含んでいるので、空気流量信号電圧Vsa、Vsbに含まれる負の温度特性を当該増幅度に含まれる正の温度特性によって打ち消すことができる。したがって、発熱抵抗体Rha、Rhbに例えば多結晶シリコンを用いてもオペアンプOPc から出力される空気流量信号の信頼性低下を抑制することができる。また、低温での発熱温度は、従来のものよりも高くなるので、氷結除去能力も向上させることができる。   Thus, the heating resistors Rha and Rhb (Rh) are controlled in heat generation by the operational amplifiers OPa and OPb so that the heating temperature coefficient TCTh is negative. For example, the heating resistors Rha and Rhb (Rh) ) Can be prevented from being controlled to generate heat at a higher temperature even if the ambient temperature increases. Further, even if the heat generation is controlled by the operational amplifiers OPa and OPb so that the heat generation temperature coefficient TCTh of the heat generation resistors Rha and Rhb (Rh) becomes negative, the negative values included in the air flow rate signal voltages Vsa and Vsb output thereby. The temperature coefficient “Rg0 / (Rg0 + Rr0) × (TCRg−TCRr)” that cancels the temperature coefficient “TCR1-ΔTCR × γ / 2 / (1-γ)” is included in the amplification factor of the operational amplifier OPc. The negative temperature characteristic included in the voltages Vsa and Vsb can be canceled by the positive temperature characteristic included in the amplification degree. Therefore, even if, for example, polycrystalline silicon is used for the heating resistors Rha and Rhb, a decrease in the reliability of the air flow rate signal output from the operational amplifier OPc can be suppressed. Further, since the heat generation temperature at a low temperature is higher than that of the conventional one, it is possible to improve the freezing removal ability.

同様に、図5(A) に示すように、発熱抵抗体制御用のブリッジ回路の他に、別途、空気流量検出用のブリッジ回路を備えたものについても、本発明を適用することができる。即ち、従来のものでは、図5(B) に示すように、固定抵抗R101 、感温抵抗R102 、固定抵抗R103 および感温抵抗R104 からなり電源電圧が印加される発熱抵抗体制御用のブリッジ回路と、感温抵抗R102 の両端電位と感温抵抗R104 の両端電位との差が0(ゼロ)となるように、当該感温抵抗R102 に熱結合した発熱抵抗体R105 に発熱制御電流を流すオペアンプOPeおよび発熱抵抗体R105 からなる発熱抵抗体制御回路と、を有する。そして、これらの感温抵抗R102 および発熱抵抗体R105 に熱結合可能に構成された空気流量検出用のブリッジ回路を空気流量による温度変動の影響度合いが異なる感温抵抗R111 (影響小)、R112 (影響大)、R113 (影響小)、R114 (影響大)を互い違いに配置することによって、当該ブリッジ回路の抵抗値の非平衡状態から出力される電位差により空気流量を検出可能に構成している。そのため、感温抵抗R112 の両端電位と感温抵抗R114 の両端電位との差をオペアンプOPgによる検出信号増幅回路に入力可能に構成している。なお、当該オペアンプOPgによる検出信号増幅回路の増幅度は抵抗R121 /抵抗R122 により設定される。また、感温抵抗R112 の両端電位は、ボルテージフォロア回路をなすオペアンプOPfを介して当該検出信号増幅回路に入力されている。   Similarly, as shown in FIG. 5 (A), the present invention can also be applied to a circuit provided with a bridge circuit for air flow rate detection in addition to the bridge circuit for heating resistor control. That is, in the prior art, as shown in FIG. 5 (B), a bridge circuit for controlling a heating resistor composed of a fixed resistor R101, a temperature sensitive resistor R102, a fixed resistor R103, and a temperature sensitive resistor R104, to which a power supply voltage is applied, The operational amplifier OPe that causes a heat generation control current to flow through the heat generating resistor R105 that is thermally coupled to the temperature sensitive resistor R102 so that the difference between the potentials at both ends of the temperature sensitive resistor R102 and the temperature sensitive resistor R104 is 0 (zero). And a heating resistor control circuit comprising a heating resistor R105. A bridge circuit for air flow detection configured to be thermally coupled to the temperature sensitive resistor R102 and the heat generating resistor R105 is provided with temperature sensitive resistors R111 (small influence), R112 ( By arranging alternately the large influence), R113 (small influence), and R114 (large influence), the air flow rate can be detected by the potential difference output from the non-equilibrium state of the resistance value of the bridge circuit. For this reason, the difference between the both-end potential of the temperature-sensing resistor R112 and the both-end potential of the temperature-sensing resistor R114 is configured to be input to the detection signal amplification circuit by the operational amplifier OPg. The amplification factor of the detection signal amplification circuit by the operational amplifier OPg is set by the resistor R121 / resistor R122. The potential at both ends of the temperature sensitive resistor R112 is input to the detection signal amplifier circuit through an operational amplifier OPf that forms a voltage follower circuit.

このような図5(B) に示される従来の構成に対し、本発明を適用したものでは図5(A) に示すように、発熱抵抗体制御用のブリッジ回路を構成する感温抵抗R104 と直列に温度特性を持たない、つまり温度係数が0(ゼロ)の固定抵抗R51を入れている。これにより、感温抵抗R104 と固定抵抗R51とによって、図3を参照した説明した合成感温抵抗Rsを構成している。一方、検出信号増幅回路においては、抵抗R121 との比により増幅度を設定する抵抗R122 と直列に、温度係数が0(ゼロ)の固定抵抗R52を入れている。これにより、図3を参照した説明した合成感温抵抗Rgを構成している。   When the present invention is applied to the conventional configuration shown in FIG. 5 (B), as shown in FIG. 5 (A), it is connected in series with a temperature sensitive resistor R104 constituting a bridge circuit for controlling a heating resistor. Is provided with a fixed resistor R51 having no temperature characteristic, that is, having a temperature coefficient of 0 (zero). Thereby, the temperature sensing resistor R104 and the fixed resistor R51 constitute the synthesized temperature sensing resistor Rs described with reference to FIG. On the other hand, in the detection signal amplifying circuit, a fixed resistor R52 having a temperature coefficient of 0 (zero) is inserted in series with a resistor R122 that sets the degree of amplification by the ratio with the resistor R121. Thereby, the synthetic | combination temperature sensitive resistance Rg demonstrated with reference to FIG. 3 is comprised.

発熱抵抗体制御用のブリッジ回路の他に、別途、空気流量検出用のブリッジ回路を備えたものについても、図5(A) に示すように構成することにより、図1を参照して説明したものと同様の作用および効果を得ることが可能となる。   In addition to the heating resistor control bridge circuit, an air flow rate detection bridge circuit that has been separately described with reference to FIG. 1 is configured as shown in FIG. 5 (A). It becomes possible to obtain the same operation and effect as the above.

以上説明したように、本実施形態に係る熱式空気流量検出装置によると、多結晶シリコンからなり吸気ダクトIM内に設けられ得る発熱抵抗体Rhと、この発熱抵抗体Rhに流れる電流Ihを制御し発熱抵抗体Rhの発熱を制御するオペアンプOPx等(発熱抵抗体Rh、合成感温抵抗Rs、第1固定抵抗R1、第2固定抵抗R2、オペアンプOPx)と、発熱抵抗体Rhの発熱に基づく空気流量信号電圧Vsを増幅して空気流量信号を出力するオペアンプOPy等(合成感温抵抗Rg、抵抗Rr、オペアンプOPy)と、を備え、オペアンプOPx等は、発熱抵抗体Rhの周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱抵抗体Rhの発熱制御を行い、オペアンプOPy等は、発熱抵抗体Rhの周囲温度の変化に対し正の傾きとなる温度特性を持つように空気流量信号電圧Vsの増幅を行う。   As described above, according to the thermal air flow detection device of the present embodiment, the heating resistor Rh that is made of polycrystalline silicon and can be provided in the intake duct IM, and the current Ih that flows through the heating resistor Rh is controlled. An operational amplifier OPx that controls the heat generation of the heat generating resistor Rh (heat generating resistor Rh, synthetic temperature sensitive resistor Rs, first fixed resistor R1, second fixed resistor R2, operational amplifier OPx) and the heat generation of the heat generating resistor Rh And an operational amplifier OPy that amplifies the air flow signal voltage Vs and outputs an air flow signal (synthetic temperature sensitive resistor Rg, resistor Rr, operational amplifier OPy). The operational amplifier OPx and the like change the ambient temperature of the heating resistor Rh. The heat generation resistor Rh is controlled to have a negative temperature characteristic, and the operational amplifier OPy or the like has a positive temperature characteristic with respect to a change in the ambient temperature of the heat generation resistor Rh. To amplify the air flow rate signal voltage Vs to have.

これにより、発熱抵抗体Rhは、オペアンプOPx等によって発熱抵抗体Rhの周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱制御が行われるので、例えば、当該発熱抵抗体Rhの周囲温度が上昇してもそれに伴ってさらに高い温度で発熱するように制御されることを防止することができる。また、発熱抵抗体Rhの周囲温度の変化に対し負の傾きとなる温度特性を持つように発熱抵抗体Rhの発熱制御が行われても、オペアンプOPy等によって発熱抵抗体Rhの周囲温度の変化に対し正の傾きとなる温度特性を持つように空気流量信号電圧Vsの増幅が行われるので、当該空気流量信号電圧Vsに与えられた発熱抵抗体Rhの周囲温度の変化に対する負の温度特性を当該オペアンプOPy等による正の温度特性によって打ち消すことができる。したがって、発熱抵抗体Rhとして多結晶シリコンを用いても空気流量信号の信頼性低下を抑制することができる。   As a result, the heating resistor Rh is controlled by the operational amplifier OPx or the like so as to have a temperature characteristic that has a negative slope with respect to a change in the ambient temperature of the heating resistor Rh. Even if the ambient temperature rises, it is possible to prevent the heat from being controlled so as to generate heat at a higher temperature. Further, even if the heat generation control of the heating resistor Rh is performed so as to have a negative temperature characteristic with respect to the change in the ambient temperature of the heating resistor Rh, the change in the ambient temperature of the heating resistor Rh by the operational amplifier OPy or the like. Since the air flow rate signal voltage Vs is amplified so as to have a positive temperature characteristic, the negative temperature characteristic with respect to the change in the ambient temperature of the heating resistor Rh given to the air flow rate signal voltage Vs. It can be canceled by the positive temperature characteristic by the operational amplifier OPy or the like. Therefore, even if polycrystalline silicon is used as the heating resistor Rh, a decrease in the reliability of the air flow rate signal can be suppressed.

なお、上述した実施形態では、特許請求の範囲に記載の「感温抵抗Rk」として、温度係数が0(ゼロ)の固定抵抗と温度係数が0(ゼロ)ではない感温抵抗を直列接続して合成感温抵抗Rsを構成したものを例示したが、本発明はこれに限られることはなく、所要の温度係数を持つ感温抵抗を1つで構成しても良い。また上述した実施形態では、特許請求の範囲に記載の「抵抗Rg」として、温度係数が0(ゼロ)の固定抵抗と温度係数が0(ゼロ)ではない感温抵抗を直列接続して合成感温抵抗Rgを構成したものを例示したが、本発明はこれに限られることはなく、所要の温度係数を持つ感温抵抗を1つで構成しても良い。さらに上述した実施形態では、特許請求の範囲に記載の「抵抗Rr」として、温度係数が0(ゼロ)の固定抵抗Rrを用いたものを例示したが、本発明はこれに限られることはなく、抵抗Rgとともに所要の温度係数を持つ感温抵抗を用いたり、温度係数が0(ゼロ)の固定抵抗を抵抗Rgに用いる一方で所要の温度係数を持つ感温抵抗を抵抗Rrに用いるように構成しても良い。さらにまた、上述した実施形態では、特許請求の範囲に記載の「多結晶構造の半導体からなる発熱抵抗体」として、多結晶シリコンを用いたものを例示したが、本発明はこれに限られることはなく、例えば、サーミスタや拡散抵抗等であっても良い。これらのいずれの構成であっても、上述した実施形態と同様の作用および効果を得ることが可能となる。   In the above-described embodiment, a fixed resistance having a temperature coefficient of 0 (zero) and a temperature sensitive resistor having a temperature coefficient other than 0 (zero) are connected in series as the “temperature resistance Rk” described in the claims. However, the present invention is not limited to this, and one temperature sensitive resistor having a required temperature coefficient may be configured. Further, in the above-described embodiment, the “resistance Rg” described in the claims includes a fixed resistance having a temperature coefficient of 0 (zero) and a temperature-sensitive resistance having a temperature coefficient of not 0 (zero) connected in series. The temperature resistance Rg is illustrated as an example, but the present invention is not limited to this, and one temperature-sensitive resistance having a required temperature coefficient may be configured. Further, in the above-described embodiment, the “resistance Rr” described in the claims is exemplified by using the fixed resistance Rr having a temperature coefficient of 0 (zero), but the present invention is not limited to this. A temperature sensitive resistor having a required temperature coefficient is used together with the resistor Rg, or a fixed resistor having a temperature coefficient of 0 (zero) is used for the resistor Rg, while a temperature sensitive resistor having the required temperature coefficient is used for the resistor Rr. It may be configured. Furthermore, in the above-described embodiment, the “heat generating resistor made of a semiconductor having a polycrystalline structure” described in the claims is exemplified by using polycrystalline silicon. However, the present invention is not limited to this. For example, a thermistor or a diffused resistor may be used. In any of these configurations, it is possible to obtain the same operation and effect as the above-described embodiment.

本発明の一実施形態を示す熱式空気流量検出装置の電気的構成を示す回路図である。It is a circuit diagram which shows the electrical constitution of the thermal type air flow rate detector which shows one Embodiment of this invention. 熱式空気流量検出装置を構成する発熱抵抗体制御回路の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the heating resistor control circuit which comprises a thermal type air flow rate detection apparatus. 本実施形態に係る発熱抵抗体制御回路および検出信号増幅回路の基本構成を示す回路図である。It is a circuit diagram which shows the basic composition of the heating resistor control circuit and detection signal amplifier circuit which concern on this embodiment. 発熱抵抗体の周囲温度に対する発熱抵抗体温度の変動特性を示す特性図である。It is a characteristic view which shows the fluctuation characteristic of the heating resistor temperature with respect to the ambient temperature of the heating resistor. 発熱抵抗体制御用のブリッジ回路の他に、別途、空気流量検出用のブリッジ回路を備えた熱式空気流量検出装置の電気的構成を示す回路図で、図5(A) は本実施形態に係るものの回路図、図5(B) は従来例の回路図である。FIG. 5 (A) is a circuit diagram showing the electrical configuration of a thermal air flow rate detector provided with a bridge circuit for air flow rate detection in addition to the bridge circuit for heating resistor control. FIG. FIG. 5B is a circuit diagram of a conventional example. 熱式空気流量検出装置の概略構成例を示す説明図である。It is explanatory drawing which shows the schematic structural example of a thermal-type air flow rate detection apparatus. 従来の熱式空気流量検出装置の電気的構成例を示す回路図である。It is a circuit diagram which shows the electrical structural example of the conventional thermal type air flow rate detection apparatus.

符号の説明Explanation of symbols

20…熱式空気流量検出装置
30…センサ基板
IM…吸気ダクト(空気流路)
OPa 、OPb …オペアンプ(制御回路)
Rh、Rha、Rhb…発熱抵抗体
Rk、R11、R12…感温抵抗
R1、R1a、R1b…第1固定抵抗
R2、R2a、R2b…第2固定抵抗
Rg、R21…抵抗
Rr、R22…抵抗
DESCRIPTION OF SYMBOLS 20 ... Thermal air flow detection apparatus 30 ... Sensor board IM ... Intake duct (air flow path)
OPa, OPb ... operational amplifier (control circuit)
Rh, Rha, Rhb ... exothermic resistors Rk, R11, R12 ... temperature sensitive resistors R1, R1a, R1b ... first fixed resistors R2, R2a, R2b ... second fixed resistors Rg, R21 ... resistors Rr, R22 ... resistors

Claims (3)

空気流路内を流れる空気の流量を検出し、その空気流量に対応した空気流量信号を出力する熱式空気流量検出装置であって、
多結晶構造の半導体からなり前記空気流路内に設けられ得る発熱抵抗体と、
前記発熱抵抗体に流れる電流を制御し前記発熱抵抗体の発熱を制御する制御回路部と、
前記発熱抵抗体の発熱に基づく電気信号を増幅して前記空気流量信号を出力する増幅回路部と、を備え、
前記制御回路部は、前記発熱抵抗体の周囲温度の変化に対し負の傾きとなる温度特性を持つように前記発熱抵抗体の発熱制御を行うため、
前記発熱抵抗体Rh、前記周囲温度に基づき抵抗値が変動し前記発熱抵抗体Rhの一端側に一端側が接続される感温抵抗Rk、前記発熱抵抗体Rhの他端側に一端側が接続される第1固定抵抗R1、および、前記第1固定抵抗R1の他端側と前記感温抵抗Rkの他端側との間に接続される第2固定抵抗R2、からなるブリッジ回路と、
前記発熱抵抗体Rhおよび前記感温抵抗Rkの接続端aと前記第1固定抵抗R1および前記第2固定抵抗R2の接続端bとの間に所定の制御電圧を印加するとともに、前記発熱抵抗体Rhおよび前記第1固定抵抗R1の接続端cと前記感温抵抗Rkおよび前記第2固定抵抗R2の接続端dとの間の電位差が零になるように前記所定の制御電圧を制御する制御回路と、を有し、
前記発熱抵抗体Rhの温度係数をTCRh、前記感温抵抗Rkの温度係数をTCRk、前記第1固定抵抗R1の温度係数をTCR1、前記第2固定抵抗R2の温度係数をTCR2、前記発熱抵抗体Rhの常温時の抵抗値をRh0、前記感温抵抗Rkの常温時の抵抗値をRk0、前記第1固定抵抗R1の常温時の抵抗値をR10、前記第2固定抵抗R2の常温時の抵抗値をR20とし、「TCRh+TCR2−TCRk−TCR1」をΔTCR、「Rh0×R20/Rk0/R10」をγとしたとき、「TCTh≒TCRh−ΔTCR/(1−γ)」により表される前記発熱抵抗体Rhの発熱温度係数TCThが、負になるように前記発熱抵抗体Rhの発熱を制御し、
前記増幅回路部は、前記発熱抵抗体の周囲温度の変化に対し正の傾きとなる温度特性を持つように前記電気信号の増幅を行うため、
前記接続端cまたは前記接続端dの電位として入力される前記電気信号を、抵抗Rgおよび抵抗Rrの比により決定される増幅度により増幅する増幅回路を有し、
前記抵抗Rgの温度係数をTCRg、前記抵抗Rrの温度係数をTCRr、前記抵抗Rgの常温時の抵抗値をRg0、前記抵抗Rrの常温時の抵抗値をRr0としたとき、「TCR1−ΔTCR×γ/2/(1−γ)+Rg0/(Rg0+Rr0)×(TCRg−TCRr)=0」が成立するように、前記抵抗Rgの温度係数TCRgおよび前記抵抗Rrの温度係数TCRrを設定して前記電気信号を増幅することを特徴とする熱式空気流量検出装置。
A thermal air flow rate detection device that detects the flow rate of air flowing in an air flow path and outputs an air flow rate signal corresponding to the air flow rate,
A heating resistor that can be provided in the air flow path, made of a polycrystalline semiconductor,
A control circuit unit for controlling the current flowing through the heating resistor to control the heat generation of the heating resistor;
An amplification circuit unit that amplifies an electrical signal based on the heat generated by the heating resistor and outputs the air flow rate signal;
Wherein said control circuit unit, the heating line of the heating control of the heating resistor so as to have the temperature characteristics as a negative slope with respect to changes in the ambient temperature of the resistor Utame,
A resistance value fluctuates based on the heating resistor Rh and the ambient temperature, one end side is connected to one end side of the heating resistor Rh, and one end side is connected to the other end side of the heating resistor Rh. A bridge circuit comprising a first fixed resistor R1 and a second fixed resistor R2 connected between the other end side of the first fixed resistor R1 and the other end side of the temperature sensitive resistor Rk;
A predetermined control voltage is applied between the connection end a of the heating resistor Rh and the temperature sensitive resistor Rk and the connection end b of the first fixed resistor R1 and the second fixed resistor R2, and the heating resistor A control circuit for controlling the predetermined control voltage so that a potential difference between the connection end c of Rh and the first fixed resistor R1 and the connection end d of the temperature sensitive resistor Rk and the second fixed resistor R2 becomes zero. And having
The temperature coefficient of the heating resistor Rh is TCRh, the temperature coefficient of the temperature sensitive resistor Rk is TCRk, the temperature coefficient of the first fixed resistor R1 is TCR1, the temperature coefficient of the second fixed resistor R2 is TCR2, and the heating resistor The resistance value of Rh at room temperature is Rh0, the resistance value of the temperature sensing resistor Rk at room temperature is Rk0, the resistance value of the first fixed resistor R1 at room temperature is R10, and the resistance of the second fixed resistor R2 is room temperature. When the value is R20, “TCRh + TCR2−TCRk−TCR1” is ΔTCR, and “Rh0 × R20 / Rk0 / R10” is γ, the heating resistance expressed by “TCTh≈TCRh−ΔTCR / (1−γ)” Controlling the heat generation of the heating resistor Rh so that the heat generation temperature coefficient TCTh of the body Rh becomes negative,
The amplification circuit unit amplifies the electrical signal so as to have a temperature characteristic having a positive slope with respect to a change in the ambient temperature of the heating resistor .
An amplification circuit that amplifies the electric signal input as a potential of the connection end c or the connection end d with an amplification degree determined by a ratio of a resistor Rg and a resistor Rr;
When the temperature coefficient of the resistor Rg is TCRg, the temperature coefficient of the resistor Rr is TCRr, the resistance value of the resistor Rg at room temperature is Rg0, and the resistance value of the resistor Rr at room temperature is Rr0, “TCR1−ΔTCR × The temperature coefficient TCRg of the resistor Rg and the temperature coefficient TCRr of the resistor Rr are set so that “γ / 2 / (1−γ) + Rg0 / (Rg0 + Rr0) × (TCRg−TCRr) = 0” holds. A thermal air flow rate detector for amplifying a signal .
前記ブリッジ回路を構成する感温抵抗Rk、前記増幅回路を構成する抵抗Rg、抵抗Rrのうちの少なくとも一つは、当該抵抗の一部または全部が前記発熱抵抗体Rhをなす多結晶構造の半導体により構成されていることを特徴とする請求項記載の熱式空気流量検出装置。 At least one of the temperature-sensitive resistor Rk constituting the bridge circuit, the resistor Rg constituting the amplifier circuit, and the resistor Rr is a semiconductor having a polycrystalline structure in which a part or all of the resistor forms the heating resistor Rh. The thermal air flow rate detection device according to claim 1, comprising: 前記発熱抵抗体は、多結晶シリコンであることを特徴とする請求項1または2に記載の熱式空気流量検出装置。 The heating resistor, thermal air flow detecting device according to claim 1 or 2, characterized in that a polycrystalline silicon.
JP2003424839A 2003-12-22 2003-12-22 Thermal air flow detector Expired - Fee Related JP4222202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424839A JP4222202B2 (en) 2003-12-22 2003-12-22 Thermal air flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424839A JP4222202B2 (en) 2003-12-22 2003-12-22 Thermal air flow detector

Publications (2)

Publication Number Publication Date
JP2005181191A JP2005181191A (en) 2005-07-07
JP4222202B2 true JP4222202B2 (en) 2009-02-12

Family

ID=34784914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424839A Expired - Fee Related JP4222202B2 (en) 2003-12-22 2003-12-22 Thermal air flow detector

Country Status (1)

Country Link
JP (1) JP4222202B2 (en)

Also Published As

Publication number Publication date
JP2005181191A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP2006258676A (en) Thermal flowmeter
JP4157034B2 (en) Thermal flow meter
JP2011137679A (en) Thermal gas sensor
KR970059713A (en) Heating resistor type air flow rate measuring device
US10712300B2 (en) Gas sensor device, and heating current control method for gas sensor device
JP4470743B2 (en) Flow sensor
JP2006201077A (en) Thermal air flowmeter
JPS6140924B2 (en)
JP4222202B2 (en) Thermal air flow detector
JP2005345219A (en) Heating resistive element type air meter
JP2006064710A (en) Thermal flow measuring device
JP5178261B2 (en) Thermal flow meter
JP5640418B2 (en) Temperature control circuit and constant temperature type piezoelectric oscillator
JP2010002329A (en) Flow rate sensor
JP3706283B2 (en) Flow sensor circuit
JPH0618540A (en) Wind velocity sensor
JPH05312616A (en) Air flow measuring unit
JP2002228501A (en) Thermal air flow meter
JP3095322B2 (en) Thermal air flow detector
JP7163132B2 (en) Thermal sensor device
JP3577902B2 (en) Thermal flow sensor
JP5397264B2 (en) Heater drive circuit for heat dissipation type flow sensor
JPH0674802A (en) Heat sensing flow rate sensor
JPS5814616Y2 (en) Cooling temperature control circuit for small cooler
JPH06160139A (en) Mass flow meter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Ref document number: 4222202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees