JP2000313627A - Method for molding optical element - Google Patents
Method for molding optical elementInfo
- Publication number
- JP2000313627A JP2000313627A JP11320209A JP32020999A JP2000313627A JP 2000313627 A JP2000313627 A JP 2000313627A JP 11320209 A JP11320209 A JP 11320209A JP 32020999 A JP32020999 A JP 32020999A JP 2000313627 A JP2000313627 A JP 2000313627A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- molding
- outer diameter
- diameter
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/46—Lenses, e.g. bi-convex
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/72—Barrel presses or equivalent, e.g. of the ring mould type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、光学素子材料を加
熱軟化させプレスすることにより光学素子を成形する光
学素子の成形方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an optical element by heating and softening an optical element material and pressing the material.
【0002】[0002]
【従来の技術】レンズなどの光学素子を成形する方法と
して、後工程での芯取り作業を不要とする成形方法が多
くなってきている。例えば、レンズの外径を胴型や外径
型で規制しながら、上下一対の成形型で光学素子材料
(プリフォーム)をプレス成形する光学素子の成形方法
や成形装置が種々提案されている。2. Description of the Related Art As a method of molding an optical element such as a lens, there has been increasing a molding method which does not require a centering operation in a later step. For example, there have been proposed various molding methods and molding devices for optical elements in which an optical element material (preform) is press-molded by a pair of upper and lower molding dies while regulating the outer diameter of the lens by a body mold or an outer diameter mold.
【0003】このような成形方法では、成形型の成形部
が閉空間を形成するため、供給する光学素子材料の容量
を高精度で安定させないと、レンズ厚さあるいは光学機
能面の形状について所望の精度が得られず良好な光学性
能が得られない。したがって、光学素子材料の供給量を
精密に制御する手段等を必要とし、製造工程が煩雑とな
りコスト高になるという問題があった。In such a molding method, since the molding portion of the mold forms a closed space, unless the capacity of the optical element material to be supplied is stabilized with high precision, the desired thickness of the lens or the shape of the optical function surface is required. Accuracy cannot be obtained and good optical performance cannot be obtained. Therefore, means for precisely controlling the supply amount of the optical element material is required, and there is a problem that the manufacturing process is complicated and the cost is increased.
【0004】そこで、後工程での芯取り作業や供給され
る光学素子材料の厳密な容量精度を不要とするために、
上記成形部の一部に余剰の光学素子材料(余肉)を収容
可能な空間が設けられた成形型で光学素子をプレス成形
する方法が提案されている。[0004] In order to eliminate the need for a centering operation in a post-process and a strict capacitance accuracy of the supplied optical element material,
A method has been proposed in which an optical element is press-molded with a molding die provided with a space capable of accommodating excess optical element material (excess wall) in a part of the molding section.
【0005】しかし、このような方法で作製された光学
素子を鏡筒に組み込む際、かかる鏡筒に余肉を収容する
スペースを設ける等の必要があり、鏡筒構造を複雑に
し、また光学素子の組み込み作業を煩雑にするおそれが
あった。また、余剰の光学素子材料が金型間に入り込
み、成形された光学素子を離型する際にカケを生じる場
合等があった。However, when an optical element manufactured by such a method is incorporated in a lens barrel, it is necessary to provide a space for accommodating excess thickness in the lens barrel, which complicates the lens barrel structure and increases the optical element. There was a risk that the work of assembling the components would be complicated. Further, there is a case where surplus optical element material enters between the molds and causes chipping when the molded optical element is released from the mold.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、供給
される光学素子材料の体積のバラツキを許容でき、簡略
化された工程で鏡筒への組み込みを良好に行ない得る光
学素子を作製する光学素子の成形方法を提供することに
ある。SUMMARY OF THE INVENTION An object of the present invention is to produce an optical element which can tolerate variations in the volume of the supplied optical element material and which can be favorably incorporated into a lens barrel by a simplified process. An object of the present invention is to provide a method for molding an optical element.
【0007】[0007]
【課題を解決するための手段】このような目的は、下記
(1)〜(7)の本発明により達成される。This and other objects are achieved by the present invention which is defined below as (1) to (7).
【0008】(1) 加熱軟化した光学素子材料を加圧
成形し光学素子の光学機能面を成形し同時に外径を規制
する光学素子の成形方法において、前記光学素子材料の
外周面の少なくとも一部に径方向に突出する突出部が形
成されていることを特徴とする光学素子の成形方法。(1) In a method for molding an optical element, wherein an optical element material which has been heated and softened is molded under pressure to mold an optical functional surface of the optical element and simultaneously regulate an outer diameter, at least a part of an outer peripheral surface of the optical element material A method for molding an optical element, characterized in that a protruding portion that protrudes in the radial direction is formed on the optical element.
【0009】(2) 前記突出部により前記外径が規制
されたコバ部が成形される上記(1)に記載の光学素子
の成形方法。(2) The method for molding an optical element according to the above (1), wherein the edge portion whose outer diameter is regulated by the projecting portion is molded.
【0010】(3) 前記突出部は前記光学素子の光軸
を中心に合計で中心角270°相当以上の範囲で前記外
径を規制する上記(1)または(2)に記載の光学素子
の成形方法。(3) The optical element according to the above (1) or (2), wherein the projecting portion regulates the outer diameter within a range corresponding to a central angle of 270 ° or more around the optical axis of the optical element. Molding method.
【0011】(4) 前記光学素子の前記コバ部の厚さ
dと最大外径Wとの間に下記式(I)の関係が成立する
上記(1)ないし(3)のいずれかに記載の光学素子の
成形方法。 d≧W/50・・・(I)(4) A method according to any one of the above (1) to (3), wherein the relationship of the following formula (I) is established between the thickness d of the edge portion of the optical element and the maximum outer diameter W. Optical element molding method. d ≧ W / 50 (I)
【0012】(5) 前記突出部における径Xと前記外
径を規制する型の内径Yとの間に下記式(II)の関係が
成立する上記(1)ないし(4)のいずれかに記載の光
学素子の成形方法。 {Y(1+Tα2)/(1+Tα1)}−0.3≦X<Y・・・(II) (α1:光学素子材料の熱膨張係数、α2:成形型の型材
料の熱膨張係数、T:光学素子の成形温度)(5) The method according to any one of the above (1) to (4), wherein a relationship represented by the following formula (II) is established between the diameter X at the projecting portion and the inner diameter Y of the mold for regulating the outer diameter. Optical element molding method. {Y (1 + Tα 2 ) / (1 + Tα 1 )} − 0.3 ≦ X <Y (II) (α 1 : coefficient of thermal expansion of optical element material, α 2 : coefficient of thermal expansion of mold material of mold) , T: molding temperature of optical element)
【0013】(6) 前記突出部は研削加工により形成
される上記(1)ないし(5)のいずれかに記載の光学
素子の成形方法。(6) The method for forming an optical element according to any one of (1) to (5), wherein the protruding portion is formed by grinding.
【0014】(7) 前記光学素子材料は前記突出部に
向かって径が拡大するテーパ部を有する上記(1)ない
し(6)のいずれかに記載の光学素子の成形方法。(7) The method for forming an optical element according to any one of (1) to (6), wherein the optical element material has a tapered portion whose diameter increases toward the projecting portion.
【0015】[0015]
【発明の実施の形態】以下、本発明の光学素子の成形方
法を添付図面に示す好適実施形態に基づいて詳細に説明
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for molding an optical element according to the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
【0016】図1は、本発明の光学素子の成形方法に用
いられる光学素子材料の一実施形態を示す断面図、図2
および図3は、本発明の光学素子の成形方法に用いられ
る成形装置の一例を示す縦断面図である。FIG. 1 is a cross-sectional view showing one embodiment of an optical element material used in the optical element molding method of the present invention.
FIG. 3 and FIG. 3 are longitudinal sectional views showing one example of a molding apparatus used in the optical element molding method of the present invention.
【0017】これらの図に示すように本発明の光学素子
の成形方法は、加熱軟化した光学素子材料を加圧成形し
光学素子の光学機能面を成形し同時に外径を規制するも
のであって、用いられる光学素子材料は外周面の少なく
とも一部に径方向に突出する突出部が形成されているこ
とを特徴とする。このように、プレス成形に適した形状
の光学素子材料を用いることにより、光学素子材料の厳
密な容量精度を必要とせず、また、鏡筒への組込み作業
等を簡易に行うことができる光学素子を簡易な工程で作
製することができる。As shown in these figures, the method of molding an optical element according to the present invention comprises press-molding a heat-softened optical element material to form an optical functional surface of the optical element, and at the same time restricting the outer diameter. The optical element material used is characterized in that at least a part of the outer peripheral surface is formed with a protruding portion that protrudes in the radial direction. As described above, by using an optical element material having a shape suitable for press molding, an optical element that does not require strict capacitance accuracy of the optical element material and that can easily perform an assembling operation into a lens barrel and the like. Can be manufactured by a simple process.
【0018】以下、本発明の光学素子の成形方法につい
て詳細に説明する。まず、光学素子成形装置1に図示し
ない光学素子材料搬送手段により光学素子材料5が搬送
され、下型3の成形面31上に供給される。供給される
光学素子材料5の体積は、光学素子の少なくとも一部に
おいて外径を形成しかつ必要有効面を最低限形成可能な
体積以上、完全形状の光学素子と同体積以下であること
が好ましい。光学素子材料5の体積は、該光学素子材料
5の外径寸法、曲率半径、中心厚等の寸法の設定により
調節することができる。Hereinafter, the method for molding an optical element of the present invention will be described in detail. First, the optical element material 5 is transported by the optical element material transporting means (not shown) to the optical element molding apparatus 1 and supplied onto the molding surface 31 of the lower mold 3. The volume of the supplied optical element material 5 is preferably not less than the volume that forms the outer diameter and forms the required effective surface at least in at least a part of the optical element, and is equal to or less than the volume of the perfectly shaped optical element. . The volume of the optical element material 5 can be adjusted by setting dimensions such as an outer diameter dimension, a radius of curvature, and a center thickness of the optical element material 5.
【0019】光学素子材料5は、その上面および底面に
有効径成形部50を有し、外周面52は径の相異なる突
出部51と小径部54とを有している。有効径成形部5
0における径、すなわち本実施形態では小径部54の径
は、光学素子の有効径よりも大きいことが好ましい。こ
のような形状とすることにより、光学素子材料5の容量
に多少のバラツキがあったり、光学素子材料5が成形面
31に対し偏心した位置に供給されても、光学機能面を
精度よく成形することができる。とくに式(II)の関係
を満足する場合、光学素子材料5が偏心した位置にあっ
てもその偏心の度合いを小さくすることができる。な
お、詳細は後述する。The optical element material 5 has an effective diameter forming portion 50 on the upper surface and the bottom surface, and the outer peripheral surface 52 has a projecting portion 51 having a different diameter and a small diameter portion 54. Effective diameter forming part 5
It is preferable that the diameter at 0, that is, the diameter of the small diameter portion 54 in this embodiment is larger than the effective diameter of the optical element. With such a shape, the optical functional surface can be molded with high precision even if the capacity of the optical element material 5 is slightly varied or the optical element material 5 is supplied at a position eccentric with respect to the molding surface 31. be able to. In particular, when the relationship of the formula (II) is satisfied, the degree of the eccentricity can be reduced even if the optical element material 5 is at an eccentric position. The details will be described later.
【0020】光学素子材料5が供給されたら、可動上型
支持部材8が下方へ移動し、上型2が光学素子材料5に
接触しない程度に接近する。可動上型支持部材8の付近
には、昇降可能な石英管10が配設されており、この石
英管10は、押圧成形時には図3に示すように下降して
成形面21、31の周囲を取り囲み閉空間を形成する。
この状態で、石英管10の周囲に配設されたヒータ11
に通電し、上型2および下型3全体を加熱する。このと
き、石英管10の閉空間内に不活性ガスを導入すること
が好ましい。これにより、光学素子材料5および型材料
の酸化反応等を抑制することができる。導入される不活
性ガスとは、例えば希ガスや窒素ガスおよびこれらの混
合ガス等が挙げられる。When the optical element material 5 is supplied, the movable upper die supporting member 8 moves downward, and approaches so that the upper die 2 does not come into contact with the optical element material 5. An ascending and descending quartz tube 10 is disposed near the movable upper die supporting member 8, and this quartz tube 10 descends as shown in FIG. A surrounding closed space is formed.
In this state, the heater 11 disposed around the quartz tube 10
To heat the entire upper mold 2 and lower mold 3. At this time, it is preferable to introduce an inert gas into the closed space of the quartz tube 10. Thereby, an oxidation reaction or the like of the optical element material 5 and the mold material can be suppressed. Examples of the inert gas to be introduced include a rare gas, a nitrogen gas, and a mixed gas thereof.
【0021】光学素子材料5は、転移点以上に加熱され
ると軟化し、熱膨張により径が拡張する。通常、高硬度
材料からなる成形型および外径型よりも光学素子材料の
方が熱膨張係数が大きいため、光学素子材料の外周面5
2の各径と外径型4の内径との差が加熱前の状態よりも
小さくなる。したがって、例えば光学素子材料が成形面
31に対し偏心した位置に供給された場合であっても、
閉じられたキャビティー内で光学素子材料5が熱膨張す
ることにより、成形面31上の中心位置からの偏差を縮
小することができる。The optical element material 5 softens when heated to a temperature higher than the transition point, and expands in diameter due to thermal expansion. Usually, since the optical element material has a larger thermal expansion coefficient than the molding die and the outer diameter mold made of a high hardness material, the outer peripheral surface 5
The difference between each diameter of 2 and the inner diameter of the outer diameter mold 4 is smaller than that before heating. Therefore, for example, even when the optical element material is supplied at a position eccentric to the molding surface 31,
Due to the thermal expansion of the optical element material 5 in the closed cavity, the deviation from the center position on the molding surface 31 can be reduced.
【0022】光学素子材料5の熱膨張が完了したら、可
動上型支持部材8がさらに下降し、成形量に応じて予め
設定された型間間隔が保たれるように調整しながら、成
形面21と31との間で光学素子材料5をプレス成形す
る。光学素子材料5の加熱温度(成形温度)は所定の成
形条件に適した温度に設定され、400〜800℃程度
とすることが好ましい。また、プレス圧は成形する光学
素子の大きさや個数等により適宜設定されるが、50〜
2000kgf/cm2程度とすることが好ましい。When the thermal expansion of the optical element material 5 is completed, the movable upper die supporting member 8 is further lowered, and the molding surface 21 is adjusted while maintaining a predetermined interval between the dies according to the molding amount. The optical element material 5 is press-formed between and. The heating temperature (molding temperature) of the optical element material 5 is set to a temperature suitable for predetermined molding conditions, and is preferably about 400 to 800 ° C. The pressing pressure is appropriately set depending on the size and number of the optical elements to be molded.
It is preferable to be about 2000 kgf / cm 2 .
【0023】このような条件で光学素子材料5のプレス
成形が行われると、光学素子材料5は、次第に流動しな
がら押しつぶされて、最終的には図3に示したような状
態となる。この状態においては、光学素子材料5の上下
の有効径成形部50には成形面21および成形面31の
形状が転写され、成形品の光学機能面が形成される。ま
た、外周面52は径方向に圧延され、突出部51から外
径型4の内周面に当接し外径が規制されたコバ部103
が成形される。When the press forming of the optical element material 5 is performed under such conditions, the optical element material 5 is gradually crushed while flowing, and finally reaches the state shown in FIG. In this state, the shapes of the molding surfaces 21 and 31 are transferred to the upper and lower effective diameter molding portions 50 of the optical element material 5, and the optical functional surface of the molded product is formed. The outer peripheral surface 52 is rolled in the radial direction, and comes into contact with the inner peripheral surface of the outer diameter die 4 from the protruding portion 51 to control the outer diameter 103 of the outer diameter die 4.
Is molded.
【0024】また、突出部51が形成された光学素子材
料5を用いることにより、光学素子材料5の容量にバラ
ツキがあっても、鏡筒に組み込む際に必要な外径が規制
されたコバ部を備える光学素子を成形することができ
る。例えば、図9に示すように外周面59が単一の径を
有する光学素子材料を用いてプレス成形した場合、外周
面59は一様に圧延されるため、供給された光学素子材
料が完全な形状の光学素子となるために必要な容量に満
たない場合には、最低限必要なコバ部をも確保すること
ができず、鏡筒への組み込みが不可能な光学素子となる
場合がある。一方、光学素子材料の容量が過剰である場
合、ほぼ全周にわたって余肉を生じ、鏡筒に組み込むこ
とが困難な光学素子が成形されるか、あるいは余肉が成
形型の隙間に入り込んで離型の際にカケを生じる場合が
ある。Further, by using the optical element material 5 having the projections 51 formed thereon, even if the capacity of the optical element material 5 varies, the outer diameter required for assembling into the lens barrel is regulated. Can be molded. For example, when the outer peripheral surface 59 is press-formed using an optical element material having a single diameter as shown in FIG. 9, the supplied optical element material is completely rolled because the outer peripheral surface 59 is uniformly rolled. If the capacity required for forming the optical element is less than the required value, the minimum necessary edge portion cannot be secured, and the optical element may not be able to be incorporated into a lens barrel. On the other hand, when the capacity of the optical element material is excessive, a surplus is generated over almost the entire circumference, and an optical element that is difficult to incorporate into the lens barrel is formed, or the surplus enters the gap of the mold and separates. In some cases, chipping may occur during molding.
【0025】したがって、本発明のように径方向に突出
する突出部51が形成された光学素子材料5を用いるこ
とにより、光学素子材料5が完全形状の光学素子を成形
するために必要な容量に満たない場合であっても突出部
51から外径が形成されるため、鏡筒に組み込むために
必要最小限のコバ部103を確保することができる。ま
た、光学素子材料5が必要最小限のコバ部103を確保
できる以上に供給される場合、コバ部103が形成され
た後、過剰分は小径部54に補填されるため、光学素子
の外周に余肉を生じることなく光学素子の成形を完了さ
せることができる。よって、突出部のない光学素子材料
を用いた場合よりも広い範囲で光学素子材料の容量のバ
ラツキを許容でき、生産性を大幅に向上させることがで
きる。Therefore, by using the optical element material 5 having the projections 51 protruding in the radial direction as in the present invention, the optical element material 5 has a capacity necessary for molding a completely shaped optical element. Since the outer diameter is formed from the protruding portion 51 even when the diameter is less than the required value, it is possible to secure the minimum necessary edge portion 103 to be incorporated in the lens barrel. Further, when the optical element material 5 is supplied more than the necessary minimum edge portion 103 can be secured, after the edge portion 103 is formed, the excess is compensated for by the small-diameter portion 54, so that the outer periphery of the optical element is The molding of the optical element can be completed without any excess wall. Therefore, variations in the capacity of the optical element material can be tolerated in a wider range than when the optical element material having no protrusion is used, and the productivity can be greatly improved.
【0026】さらに、突出部51は、光学素子の光軸を
中心に中心角270°相当以上の範囲で外径を規制する
ものであることが好ましい。成形された光学素子におい
て、外径が規制された範囲が光軸を中心に合計で中心角
270°相当未満である場合、光学素子を鏡筒に挿着し
た場合、光学素子の外径部(コバ部)と鏡筒の内径との
クリアランスにより生じる最大軸ずれ量が大きくなり光
学的精度が低下する場合がある。これについて図7を用
いて詳細に説明する。Further, it is preferable that the protrusion 51 regulates the outer diameter within a range corresponding to a central angle of 270 ° or more around the optical axis of the optical element. In the molded optical element, when the range in which the outer diameter is restricted is less than the central angle of about 270 ° in total about the optical axis, when the optical element is inserted into the lens barrel, the outer diameter of the optical element ( In some cases, the maximum amount of axial deviation caused by the clearance between the edge portion and the inner diameter of the lens barrel increases, and the optical accuracy decreases. This will be described in detail with reference to FIG.
【0027】図7は、光学素子の外径が規制される範囲
と最大軸ずれ量との関係を示す図である。光学素子10
0および鏡筒103の断面形状が円形の場合を例にとっ
て説明する。光学素子100は、その中心点O’から中
心角90°(<PO’Q)に相当する外周部は直線PQ
で構成され、外径が規制されていない。その他の外周
部、すなわち中心角270°相当部分は外径が規制され
ている。なお、点線は鏡筒103の中心点と光学素子1
00との中心点が一致する場合の光学素子103の位置
を示す。FIG. 7 is a diagram showing the relationship between the range in which the outer diameter of the optical element is restricted and the maximum amount of axial deviation. Optical element 10
The case where the cross-sectional shape of 0 and the lens barrel 103 is circular will be described as an example. The outer periphery corresponding to the central angle 90 ° (<PO′Q) from the center point O ′ of the optical element 100 has a straight line PQ.
And the outer diameter is not regulated. The outer diameter of the other outer peripheral portion, that is, the portion corresponding to the central angle of 270 ° is regulated. The dotted line indicates the center point of the lens barrel 103 and the optical element 1
The position of the optical element 103 when the center point coincides with 00 is shown.
【0028】この場合、光学素子100の鏡筒103内
での最大軸ずれ量Sは、鏡筒103の中心点Oと、実線
で示された光学素子100の中心点O’との距離で表さ
れる。したがって、外径が規制される範囲、すなわち光
軸O’を中心とする中心角による光学素子100の最大
軸ずれ量Sは、△PO’Oについて余弦定理から下記式
(III)で計算される。In this case, the maximum axial deviation amount S of the optical element 100 in the lens barrel 103 is represented by the distance between the center point O of the lens barrel 103 and the center point O ′ of the optical element 100 shown by a solid line. Is done. Therefore, the maximum axis deviation amount S of the optical element 100 due to the range in which the outer diameter is restricted, that is, the center angle about the optical axis O 'is calculated from the cosine theorem for △ PO'O by the following equation (III). .
【0029】 S=1/2×(φ1cosθ+(φ1 2cos2θ−φ1 2+φ2 2)1/2)・・・(III) (φ1は光学素子100の外径、φ2は鏡筒103の内
径、θは<PO’Oの角度を表す。なお、φ1=2r1、
φ2=2r2であり、r1は光学素子100の半径、r2は
鏡筒103の半径を表す。) 光学素子100の外径が規制された部分が中心角270
°相当の範囲である場合、<PO’Q=90°であるか
ら、θ=1/2×(360°−90°)=135°とな
る。[0029] S = 1/2 × (φ 1 cosθ + (φ 1 2 cos 2 θ-φ 1 2 + φ 2 2) 1/2) ··· (III) (φ 1 is the outer diameter of the optical element 100, phi 2 is the inner diameter of the lens barrel 103, and θ is the angle of <PO'O. Note that φ 1 = 2r 1 ,
φ 2 = 2r 2 , r 1 represents the radius of the optical element 100, and r 2 represents the radius of the lens barrel 103. The central angle 270 of the portion where the outer diameter of the optical element 100 is restricted is 270.
In the case of the range corresponding to °, since <PO′Q = 90 °, θ = 1 / × (360 ° −90 °) = 135 °.
【0030】例えば、φ1=12.00mm、φ2=12.
01mmとした場合、上記式(III)から、最大軸ずれ量
Sは0.007mmとなり、鏡筒に組み込んだ場合にも十
分な光軸精度を維持可能なものである。このことから、
成形された光学素子の外径がその光学素子の光軸を中心
に合計で中心角270°相当以上の範囲で規制されてい
れば、鏡筒に取付けた状態でも十分な光軸精度を維持し
得るものであり、さらに中心角が大きくなるほど最大軸
ずれ量Sは小さくなる。また、外径が規制された部分は
光学素子の外周において分割して形成されていてもよ
く、各々の中心角の合計が270°以上であればよい。For example, φ 1 = 12.00 mm, φ 2 = 12.
When the distance is 01 mm, from the above equation (III), the maximum axis deviation amount S is 0.007 mm, and sufficient optical axis accuracy can be maintained even when incorporated in a lens barrel. From this,
If the outer diameter of the molded optical element is regulated within a range of a central angle of 270 ° or more with respect to the optical axis of the optical element as a center, sufficient optical axis accuracy can be maintained even when the optical element is mounted on the lens barrel. The maximum axial deviation S decreases as the center angle increases. In addition, the portion whose outer diameter is restricted may be divided and formed on the outer periphery of the optical element, and the total of the respective central angles may be 270 ° or more.
【0031】また、成形される光学素子100は、コバ
部103の厚さdと最大外径Wとの間に下記式(I)の
関係が成立することが好ましい。In the optical element 100 to be molded, it is preferable that the relationship represented by the following formula (I) is established between the thickness d of the edge portion 103 and the maximum outer diameter W.
【0032】d≧W/50・・・(I) d<W/50である場合、光学素子を鏡筒に取り付けた
場合、ガタツキ等を生じ光軸精度を維持できないおそれ
がある。D ≧ W / 50 (I) When d <W / 50, when the optical element is mounted on the lens barrel, rattling or the like may occur and the optical axis accuracy may not be maintained.
【0033】さらに、光学素子材料5の突出部51にお
ける径Xと光学素子の外径を規制する型の内径Yとの間
には下記式(II)の関係が成立することが好ましい。Further, it is preferable that the following formula (II) is established between the diameter X of the protrusion 51 of the optical element material 5 and the inner diameter Y of the mold for regulating the outer diameter of the optical element.
【0034】 {Y(1+Tα2)/(1+Tα1)}−0.3≦X<Y・・・(II) (α1:光学素子材料の熱膨張係数、α2:成形型の型材
料の熱膨張係数、T:光学素子の成形温度) XとYとの間に式(II)の関係が成立することにより、
例えば図8のように光学素子材料5が光学素子の成形面
31に対し偏心した位置におかれた場合であっても、上
述したように、閉じられたキャビティー内で光学素子材
料5が熱膨張することにより、少なくとも突出部51に
おいては成形面31上の中心位置からの偏差を縮小する
ことができ、コバ部の成形が容易となる。{Y (1 + Tα 2 ) / (1 + Tα 1 )} − 0.3 ≦ X <Y (II) (α 1 : coefficient of thermal expansion of optical element material, α 2 : mold material of mold) Thermal expansion coefficient, T: molding temperature of optical element) By establishing the relationship of equation (II) between X and Y,
For example, even when the optical element material 5 is placed at an eccentric position with respect to the molding surface 31 of the optical element as shown in FIG. 8, as described above, the optical element material 5 is heated in the closed cavity. By the expansion, at least in the protruding portion 51, the deviation from the center position on the molding surface 31 can be reduced, and the edge portion can be easily molded.
【0035】さらに、式(II)の関係が成立することに
より、加熱による膨張およびプレス成形によって、光軸
Oを中心に中心角270°相当以上の範囲で外径を規制
することがより確実に達成される。したがって、成形面
31に対する光学素子材料5の精密な位置決めを必要と
することなく高精度で光学素子の成形が可能となり、製
造コストの低減を図ることができる。Further, by satisfying the relationship of the formula (II), it is possible to more reliably regulate the outer diameter within a range corresponding to a central angle of 270 ° or more around the optical axis O by expansion and press molding by heating. Achieved. Therefore, the optical element can be molded with high accuracy without requiring precise positioning of the optical element material 5 with respect to the molding surface 31, and the manufacturing cost can be reduced.
【0036】このような突出部51はいかなる方法によ
り設けられていてもよく、例えば研削加工、研磨加工、
あるいは溶融ガラスから直接形成する方法等が挙げられ
るが研削加工によることが好ましい。研削加工によれば
外周面52において突出部51の形成位置、突出量等を
容易に調整することができる。したがって、成形される
光学素子100のコバ部103を所望の位置に設けるこ
とが容易となる。The protrusion 51 may be provided by any method, for example, grinding, polishing, or the like.
Alternatively, a method of directly forming from molten glass may be mentioned, but grinding is preferred. According to the grinding process, the formation position, the protrusion amount, and the like of the protrusion 51 on the outer peripheral surface 52 can be easily adjusted. Therefore, it is easy to provide the edge portion 103 of the optical element 100 to be formed at a desired position.
【0037】なお、光学素子材料5は、ガラス材料、樹
脂材料のいずれであってもよいが、ガラスを主成分とす
るものがより好ましい。これにより、より高精度かつ耐
熱性に優れた光学素子を成形することができる。The optical element material 5 may be a glass material or a resin material, but more preferably a material containing glass as a main component. Thereby, an optical element having higher accuracy and excellent heat resistance can be molded.
【0038】上記のような光学素子材料5を用いたプレ
ス成形終了後から冷却過程において、光学素子材料の熱
収縮により生じるヒケを防止し、光学素子の光学機能面
の面精度を保持するために、加圧状態を維持しておくこ
とが好ましい。成形終了後、石英管10を上昇させ閉空
間を開放し、成形された光学素子100を取出す。この
ようにして成形された光学素子100は、その外周部の
少なくとも一部に、例えば図1に示すような外径が規制
されたコバ部103を有する。In order to prevent sink marks caused by thermal shrinkage of the optical element material in the cooling process after completion of press molding using the optical element material 5 as described above, and to maintain the surface accuracy of the optical functional surface of the optical element. It is preferable to maintain the pressurized state. After the molding, the quartz tube 10 is raised to open the closed space, and the molded optical element 100 is taken out. The optical element 100 molded in this manner has, on at least a part of the outer peripheral portion thereof, an edge portion 103 whose outer diameter is regulated as shown in FIG. 1, for example.
【0039】本発明に用いられる成形装置は、外径を規
制可能なものであればいかなるものであってもよい。例
えば、図2、図3に示される光学素子成形装置1は、上
下1対の成形型(上型2、下型3)と外径型4とを有
し、加熱軟化した光学素子材料5をプレス成形し光学素
子の光学機能面および外径を同時に規制することができ
るよう構成されている。The molding device used in the present invention may be any device as long as its outer diameter can be regulated. For example, the optical element molding apparatus 1 shown in FIG. 2 and FIG. 3 has a pair of upper and lower molding dies (upper die 2 and lower die 3) and an outer diameter die 4, and heats and softens the optical element material 5. It is configured so that the optical function surface and outer diameter of the optical element can be simultaneously regulated by press molding.
【0040】上型2および下型3は、光学素子の光学機
能面を成形するための成形面21、31を各々備えてい
る。成形面21および31は、最終成形レンズ面に対応
した形状で、最大表面粗さ(Rmax)が0.02μm以
下となるよう鏡面加工されている。また、成形面21お
よび31の外径寸法は、光学素子100の有効径よりも
所定量だけ大きく設定されている。The upper mold 2 and the lower mold 3 have molding surfaces 21 and 31 for molding the optically functional surface of the optical element, respectively. The molding surfaces 21 and 31 have a shape corresponding to the final molding lens surface, and are mirror-finished so that the maximum surface roughness (Rmax) is 0.02 μm or less. The outer diameter of the molding surfaces 21 and 31 is set to be larger than the effective diameter of the optical element 100 by a predetermined amount.
【0041】上型2および下型3の構成材料としては、
高硬度材料からなるものが好ましく、例えば炭化珪素、
窒化珪素、炭化チタン、窒化チタン、炭化タングステン
等の炭化物、タングステンカーバイド系の超硬合金、モ
リブデン、タングステン、タンタル等の金属等やアルミ
ナ、ジルコニア等の酸化物系セラミックス、窒化物セラ
ミックス等を用いることができる。これにより、光学素
子成形装置1の耐久性、耐熱性、耐食性等を大幅に向上
させることができる。また、光学素子の成形時に成形型
の摺動部において生じる、かじり、片当り、噛みつき等
を防止することができる。The constituent materials of the upper mold 2 and the lower mold 3 include:
Those made of a high-hardness material are preferable, for example, silicon carbide,
Use of carbides such as silicon nitride, titanium carbide, titanium nitride, and tungsten carbide, tungsten carbide cemented carbide, metals such as molybdenum, tungsten, and tantalum; oxide ceramics such as alumina and zirconia; and nitride ceramics. Can be. Thereby, durability, heat resistance, corrosion resistance, and the like of the optical element molding apparatus 1 can be significantly improved. In addition, galling, one-sided contact, biting, and the like that occur in the sliding portion of the molding die during molding of the optical element can be prevented.
【0042】さらに、成形面21および31には、P
t、Au、Rh等の貴金属材料、セラミックス材料、貴
金属材料とセラミックス材料とを含む混合材料からなる
保護膜が設けられれていることが好ましい。保護膜を設
けた場合、成形面31の耐熱性、耐酸化性、耐濡れ性等
の向上を図ることができる。保護膜は、例えばスパッタ
リング法、イオンプレーティング法、化学的気相成長法
(CVD)等の方法で設けることができ、その膜厚は
0.1〜5μm程度とすることが好ましい。Further, the molding surfaces 21 and 31 have P
It is preferable to provide a protective film made of a noble metal material such as t, Au, and Rh, a ceramic material, or a mixed material containing a noble metal material and a ceramic material. When the protective film is provided, the heat resistance, oxidation resistance, wet resistance, and the like of the molding surface 31 can be improved. The protective film can be provided by, for example, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), and the like, and its thickness is preferably about 0.1 to 5 μm.
【0043】下型3の成形面31近傍には、光学素子の
外径を規制するための環状の外径型4が装着されてい
る。これにより、光学素子の外径が規制され成形後に芯
取り工程を省略することができ、製造コストの低減を図
ることができる。外径型4の構成材料としては、上型2
および下型3の構成材料と同様のものが挙げられる。In the vicinity of the molding surface 31 of the lower mold 3, an annular outer diameter mold 4 for regulating the outer diameter of the optical element is mounted. Thereby, the outer diameter of the optical element is regulated, so that the centering step after molding can be omitted, and the manufacturing cost can be reduced. As the constituent material of the outer diameter mold 4, the upper mold 2
And the same material as the constituent material of the lower mold 3.
【0044】さらに、上部胴型62および下部胴型63
は、各々の中心軸が一致するよう配置されている。これ
により成形面21と成形面31の中心軸とを一致させる
ことができ、成形される光学素子の光学機能面相互の軸
ずれや傾きが抑制される。Further, the upper body mold 62 and the lower body mold 63
Are arranged so that their central axes coincide. Thereby, the center axes of the molding surface 21 and the molding surface 31 can be made coincident, and the axial deviation and inclination between the optical function surfaces of the optical element to be molded are suppressed.
【0045】上部胴型62および下部胴型63は、図示
しないボルト等の固定手段により、各々可動上型支持部
材8、固定下型支持部材7に脱着可能に固定されてい
る。可動上型支持部材8は、駆動機構(図示せず)によ
り中心軸に沿って上下方向に駆動される。なお、1つの
成形装置で複数の光学素子を成形する場合には、例えば
下型3と固定下型支持部材7との間に光学素子の肉厚を
調整するためのスペーサ9を介在させることがより好ま
しい。The upper body die 62 and the lower body die 63 are detachably fixed to the movable upper die supporting member 8 and the fixed lower die supporting member 7 by fixing means such as bolts (not shown). The movable upper die supporting member 8 is driven up and down along a central axis by a driving mechanism (not shown). When a plurality of optical elements are molded by one molding apparatus, for example, a spacer 9 for adjusting the thickness of the optical element may be interposed between the lower mold 3 and the fixed lower mold support member 7. More preferred.
【0046】図4は、本発明の光学素子の成形方法に用
いられる光学素子材料の第2実施形態を示す断面図であ
る。以下、図中において上述した図1の光学素子材料と
同一事項については同一符号を付し、その詳細な説明は
省略する。FIG. 4 is a cross-sectional view showing a second embodiment of the optical element material used in the optical element molding method of the present invention. In the drawings, the same items as those of the optical element material in FIG. 1 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0047】図4に示す光学素子材料5は、外周面52
の中央付近に例えば研削加工により形成された突出部5
1を有し、該突出部51に向かって径が拡大するテーパ
部53および55を有する。このようにテーパ部を設け
ることにより、突出部51および突出部51の周辺部が
圧延されてコバ部を形成する際、変形量が過大となって
プレス成形による応力の作用により成形後に光学素子が
割れたりすることを回避できる。さらに、成形型と外径
型との間等にガラスプリフォームが入り込むことがな
く、光学素子を成形型から取り出す際にカケが生じるこ
とを防止できる。また、突出部51における径Xと外径
を規制する型の内径Yとの間には、第1実施形態の場合
と同様、上記式(II)の関係が成立することが好まし
い。The optical element material 5 shown in FIG.
Protruding portion 5 formed by, for example, grinding near the center of
1 and tapered portions 53 and 55 whose diameter increases toward the protruding portion 51. By providing the tapered portion in this way, when the protrusion 51 and the peripheral portion of the protrusion 51 are rolled to form the edge portion, the amount of deformation becomes excessive, and the optical element is formed after molding by the action of stress due to press molding. Cracking can be avoided. Further, the glass preform does not enter between the molding die and the outer diameter die, and it is possible to prevent the occurrence of chip when the optical element is taken out from the molding die. Further, it is preferable that the relationship of the above formula (II) is established between the diameter X of the protrusion 51 and the inner diameter Y of the mold that regulates the outer diameter, as in the first embodiment.
【0048】この光学素子材料5をプレス成形した場
合、図に示すように光学素子の外周のほぼ中央部に外径
が規制されたコバ部103が形成される。さらに、第1
実施形態の場合と同様に、突出部51は光学素子100
の光軸を中心に合計で中心角270°相当以上の範囲で
外径を規制することが好ましく、光学素子100のコバ
部103の厚さdと最大外径Wとの間に上記したように
式(I)の関係が成立することが好ましい。When the optical element material 5 is press-molded, an edge portion 103 having a restricted outer diameter is formed substantially at the center of the outer periphery of the optical element as shown in FIG. Furthermore, the first
As in the case of the embodiment, the protrusion 51 is
It is preferable to regulate the outer diameter in a range corresponding to a central angle of 270 ° or more with respect to the optical axis of the optical element 100 in total, as described above between the thickness d of the edge portion 103 of the optical element 100 and the maximum outer diameter W. It is preferable that the relationship of the formula (I) is satisfied.
【0049】図5は、本発明の光学素子の成形方法に用
いられる光学素子材料の第3実施形態を示す断面図であ
る。図5に示す光学素子材料5は、一方の有効径成形部
50近傍の外周面52に例えば研削加工により形成され
た突出部51を有し、他方の有効径成形部50から突出
部51に向かって径が拡大するテーパ部57が形成され
ている。また、突出部51における径Xと外径を規制す
る型の内径Yとの間には、第1実施形態の場合と同様、
上記式(II)の関係が成立することが好ましい。FIG. 5 is a sectional view showing a third embodiment of the optical element material used in the optical element molding method of the present invention. The optical element material 5 shown in FIG. 5 has a protruding portion 51 formed by, for example, a grinding process on an outer peripheral surface 52 near one effective diameter forming portion 50, and goes from the other effective diameter forming portion 50 to the protruding portion 51. A tapered portion 57 whose diameter increases is formed. Further, between the diameter X of the protruding portion 51 and the inner diameter Y of the mold that regulates the outer diameter, as in the case of the first embodiment,
It is preferable that the relationship of the above formula (II) is satisfied.
【0050】この光学素子材料5をプレス成形した場
合、図に示すように外径が規制されたコバ部103が形
成される。さらに、第1実施形態の場合と同様に、突出
部51は光学素子100の光軸を中心に合計で中心角2
70°相当以上の範囲で外径を規制することが好まし
く、光学素子100のコバ部103の厚さdと最大外径
Wとの間に上記したように式(I)の関係が成立するこ
とが好ましい。When the optical element material 5 is press-molded, an edge portion 103 having a restricted outer diameter is formed as shown in FIG. Further, similarly to the case of the first embodiment, the projection 51 has a total central angle of 2 around the optical axis of the optical element 100.
It is preferable that the outer diameter is restricted within a range of 70 ° or more, and the relationship of the formula (I) is established between the thickness d of the edge portion 103 of the optical element 100 and the maximum outer diameter W as described above. Is preferred.
【0051】図6は、本発明の光学素子の成形方法に用
いられる光学素子材料の第4実施形態を示す断面図であ
る。図6に示す光学素子材料5は、外周面52の中央付
近に例えば研削加工により形成された突出部51を有
し、その両側に小径部54a、54bを有する。FIG. 6 is a cross-sectional view showing a fourth embodiment of the optical element material used in the optical element molding method of the present invention. The optical element material 5 shown in FIG. 6 has a protruding portion 51 formed by, for example, grinding near the center of an outer peripheral surface 52, and has small diameter portions 54a and 54b on both sides thereof.
【0052】また、突出部51における径Xと外径を規
制する型の内径Yとの間には、第1実施形態の場合と同
様、上記式(II)の関係が成立することが好ましい。
小径部54aと54bとは同じ径であっても相異なる径
であってもよい。この光学素子材料5をプレス成形した
場合、図に示すように光学素子の外周のほぼ中央部に外
径が規制されたコバ部103が形成される。第1実施形
態の場合と同様に、突出部51は光学素子100の光軸
を中心に合計で中心角270°相当以上の範囲で外径を
規制することが好ましく、光学素子100のコバ部10
3の厚さdと最大外径Wとの間に上記したように式
(I)の関係が成立することが好ましい。It is preferable that the relationship of the above-mentioned formula (II) is established between the diameter X of the protrusion 51 and the inner diameter Y of the mold for regulating the outer diameter, as in the first embodiment.
The small diameter portions 54a and 54b may have the same diameter or different diameters. When the optical element material 5 is press-molded, an edge portion 103 having a restricted outer diameter is formed substantially at the center of the outer periphery of the optical element as shown in the figure. As in the case of the first embodiment, it is preferable that the outer diameter of the protruding portion 51 be regulated within a range corresponding to a central angle of 270 ° or more with respect to the optical axis of the optical element 100.
It is preferable that the relationship of the formula (I) be established as described above between the thickness d and the maximum outer diameter W.
【0053】以上、本発明の光学素子の成形方法を図示
の実施形態に基づいて説明したが、本発明はこれらに限
定されるものではなく、光学素子材料は同様の機能を有
する突出部が形成されたものであればいかなる形状であ
ってもよい。また、テーパ部を有する場合、その傾斜は
任意の角度をもって設けられていてもよく、テーパ面は
曲面であってもよい。The method for molding an optical element according to the present invention has been described above with reference to the illustrated embodiments. However, the present invention is not limited to these, and the optical element material may be formed with a protrusion having the same function. Any shape may be used as long as it is done. When the tapered portion is provided, the inclination may be provided at an arbitrary angle, and the tapered surface may be a curved surface.
【0054】また、用いられる成形型は図示のような外
径型4の内周面により外径を規制するものに限定され
ず、胴型62および63の内周面で外径を規制するもの
であってもよい。さらに、本発明の成形方法で成形され
る光学素子としては凸レンズに限られず、例えば凹面レ
ンズ、非球面レンズ、シリンドリカルレンズ等が挙げら
れる。Further, the molding die used is not limited to the one whose outer diameter is restricted by the inner peripheral surface of the outer diameter mold 4 as shown in the figure, but the one whose outer diameter is restricted by the inner peripheral surfaces of the body dies 62 and 63. It may be. Further, the optical element molded by the molding method of the present invention is not limited to a convex lens, and includes, for example, a concave lens, an aspherical lens, a cylindrical lens, and the like.
【0055】[0055]
【実施例】次に、本発明の具体的実施例について説明す
る。 (実施例1)図1に示す光学素子材料5を用いて図2お
よび図3に示す光学素子成形装置1により光学素子(両
凸レンズ)を成形した。光学ガラスL−BAL35(株
式会社オハラ製)からなる光学素子材料5(熱膨張係数
α1:94×10-7[deg])は、突出部51における径X
を11.960mm、小径部54の径を成形する光学素子
の有効径11.000mmに対し11.300mmとし、突
出部51の厚さを1.0mmとした。WC製(熱膨張係数
α2:48×10-7[deg])外径型4の内径Yは12.0
00mmとした。Next, specific examples of the present invention will be described. Example 1 Using the optical element material 5 shown in FIG. 1, an optical element (a biconvex lens) was molded by the optical element molding apparatus 1 shown in FIGS. The optical element material 5 (thermal expansion coefficient α 1 : 94 × 10 −7 [deg]) made of optical glass L-BAL35 (manufactured by OHARA CORPORATION) has a diameter X at the protrusion 51.
Was 11.960 mm, the effective diameter of the optical element for molding the small diameter portion 54 was 11.300 mm, 11.300 mm, and the thickness of the projection 51 was 1.0 mm. WC (thermal expansion coefficient α 2 : 48 × 10 -7 [deg]) The outer diameter type 4 has an inner diameter Y of 12.0
00 mm.
【0056】以上の数値から、成形温度Tを580℃と
した場合、下記式(II)が成立することを確認した。 {Y(1+Tα2)/(1+Tα1)}−0.3≦X<Y・・・(II) 成形面31上に光学素子材料5(プリフォーム)を載置
し、上型2の成形面21と光学素子材料5の有効径形成
部50との距離が0.5mmになるよう可動上型支持部材
8を降下させた後、石英管10を降下させて成形面2
1、31を覆い、石英管10内をN2ガス雰囲気とし
た。From the above values, it was confirmed that when the molding temperature T was 580 ° C., the following formula (II) was satisfied. {Y (1 + Tα 2 ) / (1 + Tα 1 )} − 0.3 ≦ X <Y (II) The optical element material 5 (preform) is placed on the molding surface 31 and the molding surface of the upper mold 2 is formed. After lowering the movable upper die supporting member 8 so that the distance between the effective diameter forming portion 50 of the optical element material 5 and the optical element material 5 becomes 0.5 mm, the quartz tube 10 is lowered to form the molding surface 2.
The quartz tube 10 was covered with N 2 gas atmosphere.
【0057】ヒータ11に通電することにより加熱し、
型温度を熱電対12により監視した。型温度が580℃
に達すると、光学素子材料5は軟化・熱膨張し、光学素
子材料5の外周面52の径は拡張した。膨張後の突出部
の径をX'、膨張後の外径型4の内径をY'とすると、 X'=X(1+Tα1)=12.025[mm]、 Y'=Y(1+Tα2)=12.033[mm]となる。加熱
前では、外径型4の内径Yと突出部51における径Xと
の差は、Y−X=40[μm]であったが、加熱により両
者の差は、Y’−X’=8[μm]と、非常に小さくなっ
た。Heating is performed by energizing the heater 11,
The mold temperature was monitored by thermocouple 12. Mold temperature is 580 ° C
, The optical element material 5 softened and thermally expanded, and the diameter of the outer peripheral surface 52 of the optical element material 5 expanded. Assuming that the diameter of the protruding portion after expansion is X ′ and the inner diameter of the outer diameter mold 4 after expansion is Y ′, X ′ = X (1 + Tα 1 ) = 12.025 [mm], Y ′ = Y (1 + Tα 2 ) = 12.033 [mm]. Before heating, the difference between the inner diameter Y of the outer diameter mold 4 and the diameter X at the protruding portion 51 was YX = 40 [μm], but the difference between the two due to heating was Y′−X ′ = 8. [μm], which was very small.
【0058】したがって、加熱前には光学素子材料5が
成形面31上の偏心した位置に設置された状態であって
も、加熱すると熱膨張により成形面31上の中心位置か
らの偏差を縮小することができた。さらに、この状態で
プレス成形することにより外径が規制されたコバ部が十
分形成されることがわかった。Therefore, even if the optical element material 5 is placed at an eccentric position on the molding surface 31 before heating, when heated, the deviation from the center position on the molding surface 31 due to thermal expansion is reduced. I was able to. Further, it was found that by performing the press molding in this state, the edge portion whose outer diameter was regulated was sufficiently formed.
【0059】可動上型支持部材8をさらに下降させて光
学素子材料5のプレス成形を開始した。このとき、成形
温度を580℃、成形時の加圧力を200kgf/cm2とし
た。軟化した光学素子材料5は上下の成形型による押圧
にしたがって成形面21および31に沿って径方向に圧
延された。突出部51は外径型4の内周面に当接した後
さらに上下方向に圧延され、図1および図3に示すよう
な外径が規制された光学素子が成形された。The movable upper die supporting member 8 was further lowered, and press molding of the optical element material 5 was started. At this time, the molding temperature was 580 ° C., and the pressure during molding was 200 kgf / cm 2 . The softened optical element material 5 was rolled in the radial direction along the molding surfaces 21 and 31 according to the pressing by the upper and lower molds. After the protruding portion 51 comes into contact with the inner peripheral surface of the outer diameter mold 4, it is further rolled up and down to form an optical element whose outer diameter is restricted as shown in FIGS. 1 and 3.
【0060】プレス成形終了後、石英管10を上昇させ
閉空間を開放し、可動上型支持部材8を上昇させ、成形
された光学素子100を取出した。得られた光学素子1
00には、コバ部103が光学素子の全周(中心角36
0°)に形成された。また、コバ部103の厚さdは
1.1mm、最大外径Wは12mmでありd≧W/50の関
係を満足するため、この光学素子は鏡筒内に安定に保持
することができた。一方、熱膨張後の小径部54の径は
11.362mmであり、プレス成形後も外径型4の内周
面に当接しなかった。After press molding, the quartz tube 10 was raised to open the closed space, the movable upper die supporting member 8 was raised, and the formed optical element 100 was taken out. Obtained optical element 1
At 00, the edge portion 103 is provided around the entire circumference of the optical element (central angle 36
0 °). In addition, the thickness d of the edge portion 103 is 1.1 mm, and the maximum outer diameter W is 12 mm, which satisfies the relationship d ≧ W / 50. Therefore, this optical element could be stably held in the lens barrel. . On the other hand, the diameter of the small diameter portion 54 after thermal expansion was 11.362 mm, and did not come into contact with the inner peripheral surface of the outer diameter mold 4 even after press molding.
【0061】(実施例2)図4に示すような形状の光学
素子材料を(X=11.960[mm])を用いた以外
は、実施例1と同様にして光学素子を作成した。得られ
た光学素子100には、コバ部103が光学素子の全周
(中心角360°)に形成された。かかるコバ部103
の厚さdは0.6mm、最大外径Wは12mmであり、d≧
W/50の関係を満足するものであった。Example 2 An optical element was produced in the same manner as in Example 1 except that an optical element material (X = 11.960 [mm]) having a shape as shown in FIG. 4 was used. In the obtained optical element 100, the edge portion 103 was formed on the entire circumference (central angle of 360 °) of the optical element. The edge portion 103
Has a thickness d of 0.6 mm, a maximum outer diameter W of 12 mm, and d ≧
The relationship of W / 50 was satisfied.
【0062】(実施例3)図5に示すような形状の光学
素子材料(X=7.970[mm])を用い、内径Yが
8.000[mm]の外径型4を用いた以外は、実施例1と
同様にして光学素子を作成した。得られた光学素子10
0には、コバ部103が光学素子の全周(中心角360
°)に形成された。かかるコバ部103の厚さdは0.
4mm、最大外径Wは8mmであり、d≧W/50の関係を
満足するものであった。Example 3 An optical element material (X = 7.970 [mm]) having the shape shown in FIG. 5 was used, and an outer diameter mold 4 having an inner diameter Y of 8.000 [mm] was used. Produced an optical element in the same manner as in Example 1. Obtained optical element 10
In the case of 0, the edge portion 103 is provided around the entire circumference of the optical element (central angle 360
°). The thickness d of the edge portion 103 is equal to 0.
4 mm and the maximum outer diameter W was 8 mm, which satisfied the relationship d ≧ W / 50.
【0063】(実施例4)図6に示すような形状の光学
素子材料を(X=29.905[mm])を用い、内径Y
が30.000[mm]の外径型4を用いた以外は、実施例
1と同様にして光学素子を作成した。また、光学素子を
鏡筒に組み込む際のかみ合わせ部分を考慮し、突出部5
1の厚さを1.1mmとした。得られた光学素子100に
は、コバ部103が光学素子の全周(中心角360°)
に形成された。かかるコバ部103の厚さdは1.2m
m、最大外径Wは30mmであり、d≧W/50の関係を
満足するものであった。Example 4 An optical element material having a shape as shown in FIG. 6 was used (X = 29.905 [mm]), and the inner diameter Y
An optical element was prepared in the same manner as in Example 1 except that an outer diameter mold 4 having a diameter of 30.000 [mm] was used. Also, considering the engagement portion when incorporating the optical element into the lens barrel, the protrusion 5
1 was 1.1 mm thick. In the obtained optical element 100, the edge portion 103 has the entire circumference of the optical element (central angle 360 °).
Formed. The thickness d of the edge portion 103 is 1.2 m.
m, the maximum outer diameter W was 30 mm, and the relationship of d ≧ W / 50 was satisfied.
【0064】実施例1〜4で成形された光学素子は、い
ずれも所望の形状に成形され、寸法精度および光学機能
面の成形精度にも優れ、後工程での芯取りが不要であっ
た。また、各光学素子には外径が規制されたコバ部が精
度よく形成されていたため、光軸と外径軸とが偏芯する
ことなく容易かつ精密に鏡筒への組み込みを行うことが
できた。Each of the optical elements molded in Examples 1 to 4 was molded into a desired shape, was excellent in dimensional accuracy and molding accuracy of the optical functional surface, and did not require centering in a later step. In addition, since each optical element has an edge formed with a restricted outer diameter with high precision, the optical axis and the outer diameter axis can be easily and precisely incorporated into the lens barrel without eccentricity. Was.
【0065】[0065]
【発明の効果】以上述べたように、本発明の光学素子の
成形方法によれば、外径型4により光学素子の外径を規
制することにより成形された光学素子は芯取り工程を必
要とせず、製造コストの低減を図ることができる。ま
た、外周面に外径方向に突出する突出部を有する光学素
子材料を用いることにより、光学素子材料の厳しい容量
精度を要しないだけでなく厳密な位置決めを必要とせ
ず、レンズ外径、レンズ厚み等の寸法精度、光軸精度お
よび光学機能面の転写精度に優れた光学素子を成形する
ことができる。As described above, according to the optical element molding method of the present invention, the optical element molded by regulating the outer diameter of the optical element by the outer diameter mold 4 requires a centering step. Therefore, the manufacturing cost can be reduced. In addition, by using an optical element material having a protruding portion protruding in the outer diameter direction on the outer peripheral surface, not only does not require strict capacity accuracy of the optical element material but also strict positioning is required, and the lens outer diameter and lens thickness are not required. An optical element having excellent dimensional accuracy, optical axis accuracy, and transfer accuracy of an optical functional surface can be formed.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の光学素子の成形方法に用いられる光学
素子材料の第1実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing a first embodiment of an optical element material used in a method for molding an optical element of the present invention.
【図2】本発明の光学素子の成形方法に用いられる成形
装置の一例を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing an example of a molding apparatus used in the optical element molding method of the present invention.
【図3】本発明の光学素子の成形方法に用いられる成形
装置の一例を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing an example of a molding apparatus used in the optical element molding method of the present invention.
【図4】本発明の光学素子の成形方法に用いられる光学
素子材料の第2実施形態を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a second embodiment of the optical element material used in the optical element forming method of the present invention.
【図5】本発明の光学素子の成形方法に用いられる光学
素子材料の第3実施形態を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a third embodiment of an optical element material used in the optical element molding method of the present invention.
【図6】本発明の光学素子の成形方法に用いられる光学
素子材料の第4実施形態を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing a fourth embodiment of an optical element material used in the optical element molding method of the present invention.
【図7】光学素子における外径が規制される範囲と最大
軸ずれ量との関係を示す図である。FIG. 7 is a diagram illustrating a relationship between a range in which the outer diameter of the optical element is restricted and a maximum axial deviation amount.
【図8】光学素子材料の成形面における位置と成形され
る光学素子について説明する図である。FIG. 8 is a diagram illustrating the position of the optical element material on the molding surface and the optical element to be molded.
【図9】従来の光学素子材料を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing a conventional optical element material.
2 上型 21 成形面 24 フランジ 3 下型 31 成形面 32 段差部 4 外径型 41 粗面部 43 嵌合部 5 光学素子材料 50 有効径成形部 51 突出部 52 外周面 54 小径部 53、55、57 テーパ部 59 外周面 62 上部胴型 63 下部胴型 7 固定下型支持部材 8 可動上型支持部材 9 スペーサ 10 石英管 11 ヒータ 12 熱電対 100 光学素子 103 コバ部 2 Upper die 21 Molding surface 24 Flange 3 Lower die 31 Molding surface 32 Step part 4 Outer diameter mold 41 Rough surface part 43 Fitting part 5 Optical element material 50 Effective diameter molding part 51 Projection part 52 Outer peripheral surface 54 Small diameter part 53, 55, 57 Tapered portion 59 Outer peripheral surface 62 Upper trunk die 63 Lower trunk die 7 Fixed lower die support member 8 Movable upper die support member 9 Spacer 10 Quartz tube 11 Heater 12 Thermocouple 100 Optical element 103 Edge part
Claims (7)
光学素子の光学機能面を成形し同時に外径を規制する光
学素子の成形方法において、 前記光学素子材料の外周面の少なくとも一部に径方向に
突出する突出部が形成されていることを特徴とする光学
素子の成形方法。1. A method of molding an optical element, wherein a heat-softened optical element material is pressure-molded to form an optical functional surface of the optical element and simultaneously regulate an outer diameter. A method for molding an optical element, wherein a protruding portion projecting in a radial direction is formed.
コバ部が成形される請求項1に記載の光学素子の成形方
法。2. The method for forming an optical element according to claim 1, wherein the edge portion whose outer diameter is regulated by the projecting portion is formed.
に合計で中心角270°相当以上の範囲で前記外径を規
制する請求項1または2に記載の光学素子の成形方法。3. The method of molding an optical element according to claim 1, wherein the protrusion regulates the outer diameter within a range corresponding to a central angle of 270 ° or more with respect to an optical axis of the optical element.
大外径Wとの間に下記式(I)の関係が成立する請求項
1ないし3のいずれかに記載の光学素子の成形方法。 d≧W/50・・・(I)4. The molding of the optical element according to claim 1, wherein a relationship represented by the following formula (I) is established between the thickness d of the edge portion of the optical element and the maximum outer diameter W. Method. d ≧ W / 50 (I)
制する型の内径Yとの間に下記式(II)の関係が成立す
る請求項1ないし4のいずれかに記載の光学素子の成形
方法。 {Y(1+Tα2)/(1+Tα1)}−0.3≦X<Y・・・(II) (α1:光学素子材料の熱膨張係数、α2:成形型の型材
料の熱膨張係数、T:光学素子の成形温度)5. The optical element according to claim 1, wherein a relationship represented by the following expression (II) is established between a diameter X of the projecting portion and an inner diameter Y of the mold that regulates the outer diameter. Molding method. {Y (1 + Tα 2 ) / (1 + Tα 1 )} − 0.3 ≦ X <Y (II) (α 1 : coefficient of thermal expansion of optical element material, α 2 : coefficient of thermal expansion of mold material of mold) , T: molding temperature of optical element)
請求項1ないし5のいずれかに記載の光学素子の成形方
法。6. The method according to claim 1, wherein the protrusion is formed by grinding.
て径が拡大するテーパ部を有する請求項1ないし6のい
ずれかに記載の光学素子の成形方法。7. The method of molding an optical element according to claim 1, wherein the optical element material has a tapered portion whose diameter increases toward the protruding portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11320209A JP2000313627A (en) | 1999-02-22 | 1999-11-10 | Method for molding optical element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4330299 | 1999-02-22 | ||
JP11-43302 | 1999-02-22 | ||
JP11320209A JP2000313627A (en) | 1999-02-22 | 1999-11-10 | Method for molding optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000313627A true JP2000313627A (en) | 2000-11-14 |
Family
ID=26383063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11320209A Pending JP2000313627A (en) | 1999-02-22 | 1999-11-10 | Method for molding optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000313627A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002234739A (en) * | 2001-02-07 | 2002-08-23 | Canon Inc | Glass blank, manufacturing method of glass blank, optical element and manufacturing method of optical element |
CN100378471C (en) * | 2004-01-22 | 2008-04-02 | 日本板硝子株式会社 | Optical component with holder and manufacturing method thereof |
JP2008285377A (en) * | 2007-05-18 | 2008-11-27 | Panasonic Corp | Joined optical element |
WO2011102085A1 (en) * | 2010-02-16 | 2011-08-25 | Fujifilm Corporation | Preform for molding an optical element and method of molding an optical element |
JP2015067474A (en) * | 2013-09-27 | 2015-04-13 | Hoya株式会社 | Lens molding tool and production method for glass lens |
US20210230041A1 (en) * | 2020-01-28 | 2021-07-29 | Schott Ag | Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method |
-
1999
- 1999-11-10 JP JP11320209A patent/JP2000313627A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002234739A (en) * | 2001-02-07 | 2002-08-23 | Canon Inc | Glass blank, manufacturing method of glass blank, optical element and manufacturing method of optical element |
CN100378471C (en) * | 2004-01-22 | 2008-04-02 | 日本板硝子株式会社 | Optical component with holder and manufacturing method thereof |
JP2008285377A (en) * | 2007-05-18 | 2008-11-27 | Panasonic Corp | Joined optical element |
WO2011102085A1 (en) * | 2010-02-16 | 2011-08-25 | Fujifilm Corporation | Preform for molding an optical element and method of molding an optical element |
JP2015067474A (en) * | 2013-09-27 | 2015-04-13 | Hoya株式会社 | Lens molding tool and production method for glass lens |
US20210230041A1 (en) * | 2020-01-28 | 2021-07-29 | Schott Ag | Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method |
US12084374B2 (en) * | 2020-01-28 | 2024-09-10 | Schott Ag | Method for producing glass wafers for packaging electronic devices, and electronic component produced according to the method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6813906B1 (en) | Method and apparatus for preparation of molded glass | |
US20060162385A1 (en) | Press mold and method of manufacturing optical element | |
CN101321701B (en) | Process for production of molded articles, holders and molding equipment | |
US6334335B1 (en) | Method of manufacturing a glass optical element | |
JP2000313627A (en) | Method for molding optical element | |
JP3273921B2 (en) | Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold | |
JP3886022B2 (en) | Method and apparatus for producing glass molded body | |
JP4131016B2 (en) | Optical element molding apparatus and optical element manufacturing method | |
JP2000001322A (en) | Optical element forming apparatus and production of optical element | |
JP4559784B2 (en) | Optical element manufacturing method | |
JP4460339B2 (en) | Mold press molding apparatus and optical element manufacturing method | |
JP3674910B2 (en) | Method and apparatus for producing glass molded body | |
JP4094210B2 (en) | Manufacturing method of glass optical element and molding die for glass optical element used therefor | |
JPH0247411B2 (en) | KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA | |
JP4118668B2 (en) | Molding apparatus for press molding and method for producing molded body using the same | |
JP4426910B2 (en) | Mold press mold, optical element manufacturing method, and mold press lens | |
JPH07267656A (en) | Apparatus for forming optical element | |
CN1814559B (en) | Install device for forming die and method for making optical element | |
JP2000203852A (en) | Optical element-forming apparatus and production of optical element | |
JP7407528B2 (en) | glass lens mold | |
JP2952185B2 (en) | Glass optical element molding method | |
JP5100790B2 (en) | Optical element manufacturing method | |
JP4094587B2 (en) | Glass optical element molding method | |
JPH05286727A (en) | Method for forming optical element | |
JP2790261B2 (en) | Die structure for press forming optical elements |