JP2000295764A - Distribution facility circuit - Google Patents

Distribution facility circuit

Info

Publication number
JP2000295764A
JP2000295764A JP11094859A JP9485999A JP2000295764A JP 2000295764 A JP2000295764 A JP 2000295764A JP 11094859 A JP11094859 A JP 11094859A JP 9485999 A JP9485999 A JP 9485999A JP 2000295764 A JP2000295764 A JP 2000295764A
Authority
JP
Japan
Prior art keywords
ground fault
breaker
circuit
distribution
timer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11094859A
Other languages
Japanese (ja)
Other versions
JP3611476B2 (en
Inventor
Masafumi Sato
雅文 佐藤
Kazuo Kurita
和夫 栗田
Kazuo Kano
和夫 鹿野
Kenichiro Watanabe
健一郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Hitachi Ltd
Original Assignee
Obayashi Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Hitachi Ltd filed Critical Obayashi Corp
Priority to JP09485999A priority Critical patent/JP3611476B2/en
Priority to SG200001752A priority patent/SG87890A1/en
Priority to TW089105886A priority patent/TW463441B/en
Priority to KR1020000016810A priority patent/KR20010006937A/en
Publication of JP2000295764A publication Critical patent/JP2000295764A/en
Application granted granted Critical
Publication of JP3611476B2 publication Critical patent/JP3611476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/24Circuit arrangements for boards or switchyards
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the unnecessary power interruption of the entire distribution system by an earth accident by making the directions of the earth circuit and an earth detecting directional relay the same, and cutting off a breaker of a timer which has the fastest performance when the earth current enters a breaker for a feeder from a point of the earth accident through a distribution loop circuit. SOLUTION: A line 2 for receiving power is connected to a special high voltage line 1 connected to a power transforming station, then an earth switch 3, a disconnector 4, a breaker 5, and a transformer 6 are connected to step down special high voltage to high to voltage, and then a distribution loop circuit which is a high voltage bus is connected. A grounded transformer for measurement or capacitive voltage detector for grounding 8 is connected to a distribution loop 7, and feeders 10, 11 are also connected to the distribution loop 7. Each of the feeders 10, 11 is provided with a disconnector 12, 13 for a feeder, an earth current detector 14, 15, the grounded transformer for measurement or capacitive earth voltage detector 8, and an earth detecting directional relay 16, 17 which is used in combination with the earth current detector 14, 15. Due to this structure, the reliability of supplying power can be increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受配電装置におい
て、高圧母線からサブ配電所へ送電している受配電装置
に係り、特に、高圧母線から複数のサブ配電所への主回
路配線方法がループ配線方式を採用する配電設備回路の
地絡保護に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power receiving / distributing apparatus, and more particularly to a power receiving / distributing apparatus for transmitting power from a high-voltage bus to a sub-distribution station. The present invention relates to ground fault protection for distribution equipment circuits employing a loop wiring system.

【0002】[0002]

【従来の技術】受配電装置における高圧配電方法は、一
つのフィーダから一つのサブ配電所へ送電しているのが
一般的である。また、接地方式は、非接地方式が一般に
用いられている。
2. Description of the Related Art In general, a high-voltage distribution method in a power receiving and distribution device transmits power from one feeder to one sub-distribution station. As the grounding method, a non-grounding method is generally used.

【0003】非接地方式における地絡保護は高圧母線に
接地形計器用変圧器、或いはコンデンサ形接地電圧検出
装置を備え、これを介して地絡電圧を検出し、また各フ
ィーダに設けた地絡電流検出器により地絡電流を検出
し、これらと地絡検出継電器を組み合わせることで、警
報または地絡回線の切り離しを行っている。更には、接
地形計器用変圧器の三次端子、或いはコンデンサ形接地
電圧検出装置の二次端子に地絡電圧検出継電器を備え、
地絡電圧検出継電器が動作したことと、地絡検出継電器
が動作したことを直列に組み合わせることで、健全回線
と区別し信頼性を高め、地絡回線の切り離しを行ってい
る。
[0003] The ground fault protection in the non-grounding method is provided with a grounded-type instrument transformer or a capacitor-type ground voltage detector on the high-voltage bus, detects a ground-fault voltage via this, and also provides a ground fault provided in each feeder. A ground fault current is detected by a current detector, and an alarm or a ground fault line is disconnected by combining these with a ground fault detection relay. Further, a ground fault voltage detection relay is provided at a tertiary terminal of the grounding type instrument transformer or a secondary terminal of the capacitor type ground voltage detecting device,
By combining the operation of the ground fault voltage detection relay and the operation of the ground fault detection relay in series, it is distinguished from a healthy line to enhance reliability, and the ground fault line is separated.

【0004】上記とは異なり、高圧母線から複数のサブ
配電所への送電方法がループ方式であるときは、一般的
には送電側と受電側とに変流器を備え、パイロットワイ
ヤ継電器と組み合わせることで、地絡故障点区間を判別
し、地絡故障点の検出・除去を行っている。
In contrast to the above, when the power transmission method from the high voltage bus to the plurality of sub-distribution stations is a loop system, generally, current transformers are provided on the power transmission side and the power receiving side, and combined with a pilot wire relay. Thus, the ground fault point section is determined, and the ground fault point is detected and removed.

【0005】或いは上記同様、高圧母線から複数のサブ
配電所への送電方法がループ方式であるときは、各サブ
配電所の受電及び送電側にそれぞれ地絡電流検出器を備
え、地絡検出継電器を組み合わせ、中央監視設備の様な
受配電装置を一括して、監視・制御できる場所へ各継電
器の動作状況を送り、その動作した継電器の位置関係で
故障点を判別し、当該遮断装置の開放信号を送出し保護
を行っている。
[0005] Alternatively, when the power transmission method from the high-voltage bus to the plurality of sub-distribution stations is a loop method, a ground-fault current detector is provided on each of the power receiving and transmitting sides of each sub-distribution station. And collectively send and receive power distribution devices such as central monitoring equipment, send the operating status of each relay to a place where it can be monitored and controlled, determine the fault point based on the positional relationship of the operated relays, and open the interrupting device Signals are sent for protection.

【0006】[0006]

【発明が解決しようとする課題】高圧母線に接続される
フィーダから、複数のサブ配電所へループ配電を行う受
配電装置のいずれかのサブ配電所内、またはケーブルで
地絡事故が発生した場合、地絡電流検出器と地絡検出継
電器との組み合わせでは、地絡事故が発生したサブ配電
所の地絡検出継電器が検出することは勿論、事故点によ
っては健全であるサブ配電所の地絡検出継電器も同時に
検出・動作し、遮断装置が開放して、健全なサブ配電所
も停電してしまう問題がある。
When a ground fault occurs in any one of the sub-distribution stations of a power receiving and distribution apparatus that performs loop power distribution from a feeder connected to a high-voltage bus to a plurality of sub-distribution stations, or in a cable, In the combination of the ground fault current detector and the ground fault detection relay, not only the ground fault detection relay of the sub distribution station where the ground fault occurred but also the ground fault detection of the sub There is a problem that the relay is also detected and operated at the same time, the shut-off device is opened, and the sound of the sub-distribution station is also cut off.

【0007】また、中央監視装置のようなサブ配電所を
含めた受配電装置を一括して監視・制御できる場所へ継
電器の動作状況を送出して、故障点を判別させると、処
理するための時間がかかり、事故であるにも係わらず、
遮断装置への開放信号送出が遅れてしまう問題がある。
Further, when the operation status of the relay is sent to a place where the power receiving and distribution devices including the sub-distribution station such as the central monitoring device can be monitored and controlled collectively, and the fault point is determined, the processing is performed. It takes time and despite the accident,
There is a problem that transmission of the open signal to the shutoff device is delayed.

【0008】また、変流器とパイロットワイヤ継電器の
組み合わせ、或いはサブ配電所を含めた受配電装置の全
体監視・制御においては、高度な装置であり、また送電
側と受電側、或いは電気室と中央監視装置等に多くの制
御用ケーブルを布設する必要が発生し、コストが掛かる
ために高価となり容易に導入できない問題がある。尚、
このような技術として特開平10−112928号公報
を挙げることが出来る。
[0008] Further, in the combination of a current transformer and a pilot wire relay, or in the overall monitoring and control of a power receiving and distribution device including a sub-distribution station, it is an advanced device. A large number of control cables need to be laid in the central monitoring device or the like, and the cost is high. still,
Japanese Patent Application Laid-Open No. H10-112928 is an example of such a technique.

【0009】本発明の目的は、地絡事故により全配電系
統の不要な停電を防止した配電設備回路を提供すること
にある。
An object of the present invention is to provide a power distribution equipment circuit that prevents unnecessary power failures in all power distribution systems due to a ground fault.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に、本発明の請求項1に記載した配電設備回路は、主母
線の電力を複数に分配するフィーダ用遮断器と、各フィ
ーダ用遮断器間に複数のサブ配電所を接続した配電ルー
プ回路と、各サブ配電所に第1及び第2の遮断器を接続
し、各フィーダ用遮断器に流れる地絡電流を検出する地
絡電流検出器を接続し、各遮断器に方向地絡検出継電器
と逆方向の地絡電流を検出する方向地絡検出継電器を接
続し、全方向地絡検出継電器にタイマーを接続し、一方
の遮断器のタイマー動作時間を一方側フィーダ用遮断器
から他方側フィーダ用遮断器に行くに従い順次早くする
場合と、他方の遮断器のタイマー動作時間を他方側フィ
ーダ用遮断器から一方側フィーダ用遮断器に行くに従い
順次早くする場合とに設定し、地絡個所から地絡電流が
配電ループ回路を介して一方側フィーダ用遮断器と他方
側フィーダ用遮断器とに流れる時に、地絡電流と方向地
絡検出継電器との方向が同じで、且つ動作時間の一番速
いタイマーの遮断器を遮断することを特徴とする。
In order to achieve this object, a power distribution equipment circuit according to a first aspect of the present invention includes a feeder circuit breaker for distributing power of a main bus to a plurality of power supply circuits, and a breaker for each feeder. A distribution loop circuit in which a plurality of sub-distribution stations are connected between units, and a ground-fault current detection for connecting a first and a second circuit breaker to each sub-distribution station and detecting a ground-fault current flowing through each feeder circuit breaker Connect a directional ground fault detection relay to each breaker and a directional ground fault detection relay that detects the reverse ground fault current, connect a timer to the omnidirectional ground fault detection relay, and connect one The case where the timer operation time is sequentially increased from the one-side feeder breaker to the other-side feeder breaker, and the case where the timer operation time of the other breaker goes from the other-side feeder breaker to the one-side feeder breaker. If you want to quickly When the ground fault current flows from the ground fault location to the one-side feeder breaker and the other-side feeder breaker via the distribution loop circuit, the direction of the ground fault current and the direction of the directional ground fault detection relay are the same. And the circuit breaker of the timer having the fastest operation time is cut off.

【0011】[0011]

【発明の実施の形態】以下、図1、図2を用いて、本発
明の一実施形態による配電設備回路の地絡保護の構成に
ついて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2, a description will be given of a configuration for ground fault protection of a power distribution equipment circuit according to an embodiment of the present invention.

【0012】図1は、本発明の一実施形態による特別高
圧受電、高圧配電方式で、フィーダからサブ配電所への
配電はループ配電であり、接地方式は非接地方式を示す
全体系統図である。図2は本実施形態による受配電装置
に用いる制御装置の回路図である。
FIG. 1 is an overall system diagram showing a special high-voltage receiving and high-voltage distribution system according to an embodiment of the present invention, in which power distribution from a feeder to a sub-distribution station is loop distribution, and a grounding system is a non-grounding system. . FIG. 2 is a circuit diagram of a control device used for the power receiving and distribution device according to the present embodiment.

【0013】図1において、電源変電所に接続された三
相の特別高圧回線1には、受電用回線2が接続されてお
り、受電用回線2には接地開閉器3、断路装置4、遮断
器5、変圧器6等が接続されて、特別高圧から高圧に降
圧され、高圧母線である配電ループ回路7に接続されて
いる。
In FIG. 1, a power receiving line 2 is connected to a three-phase extra high voltage line 1 connected to a power substation, and the power receiving line 2 is connected to a grounding switch 3, a disconnecting device 4, and a cutoff. The transformer 5, the transformer 6 and the like are connected, stepped down from an extra high voltage to a high voltage, and connected to a distribution loop circuit 7 which is a high voltage bus.

【0014】配電ループ回路7には、接地形計器用変圧
器あるいはコンデンサ形接地電圧検出装置8が接続さ
れ、また、フィーダ10,11が接続されている。フィ
ーダ10,11にはフィーダ用遮断器12,13と、地
絡電流検出器14,15と、接地形計器用変圧器、ある
いはコンデンサ形接地電圧検出装置8と、地絡電流検出
器14,15と組み合わせて使用する方向地絡検出継電
器16,17が備えられている。方向地絡検出継電器1
6,17は地絡電流iが負荷L側から特別高圧回線1に
向かって流れた時に動作をする。フィーダ10,11か
らは、各サブ配電所20,21,22へループ配電を行
っている。
The distribution loop circuit 7 is connected to a grounding type transformer for a meter or a capacitor type grounding voltage detecting device 8, and also to feeders 10 and 11. Feeders 10 and 11 include feeder breakers 12 and 13, ground fault current detectors 14 and 15, a grounding type instrument transformer or a capacitor type grounding voltage detector 8, and ground fault current detectors 14 and 15. Directional ground fault detecting relays 16 and 17 used in combination with the above. Direction ground fault detection relay 1
6 and 17 operate when the ground fault current i flows from the load L toward the special high voltage line 1. From the feeders 10 and 11, loop power is distributed to the respective sub distribution stations 20, 21 and 22.

【0015】配電ループ回路7に接続される各サブ配電
所20,21,22には遮断器30,32,34と遮断
器31,33,35を配電ループ回路7に直列接続し、
また各サブ配電所20,21,22には接地形計器用変
圧器、或いはコンデンサ形接地電圧検出装置8と、地絡
電流検出のための地絡電流検出器40,41,42,4
3,44,45を備え、接地形計器用変圧器あるいはコ
ンデンサ形接地電圧検出装置8と、地絡電流検出器40
乃至45と組み合わせて使用する方向地絡検出継電器5
0,51,52,53,54,55を備えている。方向
地絡検出継電器51,53,55は方向地絡検出継電器
16と同方向に地絡電流iが流れた時に動作し、方向地
絡検出継電器50,52,54は方向地絡検出継電器1
7と同方向に地絡電流iが流れた時に動作をする。
In each of the sub distribution stations 20, 21, 22 connected to the distribution loop circuit 7, breakers 30, 32, 34 and circuit breakers 31, 33, 35 are connected in series to the distribution loop circuit 7,
Further, each of the sub-distribution stations 20, 21, 22 includes a ground-type instrument transformer or a capacitor-type ground voltage detector 8, and ground-fault current detectors 40, 41, 42, 4 for detecting a ground-fault current.
3, 44, 45, a ground-type instrument transformer or a capacitor-type ground voltage detector 8, and a ground fault current detector 40.
Ground fault detection relay 5 used in combination with 4545
0, 51, 52, 53, 54, 55. The direction ground fault detection relays 51, 53, and 55 operate when the ground fault current i flows in the same direction as the direction ground fault detection relay 16, and the direction ground fault detection relays 50, 52, and 54 operate as the direction ground fault detection relays 1.
7 operates when a ground fault current i flows in the same direction as that of FIG.

【0016】各方向地絡検出継電器16,17,50乃
至55は、接地形計器用変圧器或いはコンデンサ形接地
電圧検出装置8の三次、或いは二次、地絡電流検出器1
4,15,40乃至45の二次端子に接続されている。
各方向地絡検出継電器16,17,50乃至55は、接
地形計器用変圧器あるいはコンデンサ形接地電圧検出装
置8の三次、或いは二次から出力される電圧を検出し、
地絡電流検出器14,15,40乃至45の二次端子か
ら出力される電流を検出して、系統内に発生した地絡事
故を検出する。
Each of the directional ground fault detection relays 16, 17, 50 to 55 is a tertiary or secondary ground fault current detector 1 of the ground type instrument transformer or the capacitor type ground voltage detector 8.
4, 15, 40 to 45 are connected to the secondary terminals.
Each of the directional ground fault detection relays 16, 17, 50 to 55 detects a voltage output from the tertiary or secondary of the ground type instrument transformer or the capacitor type ground voltage detector 8,
A current output from the secondary terminals of the ground fault current detectors 14, 15, 40 to 45 is detected to detect a ground fault occurring in the system.

【0017】地絡事故が検出されると、各方向地絡検出
継電器16,17,50乃至55の図2に示すA接点1
6A,17A,50A,51A,52A,53A,54
A,55Aが、それぞれ閉じる。
When a ground fault is detected, each of the ground fault detecting relays 16, 17, 50 to 55 shown in FIG.
6A, 17A, 50A, 51A, 52A, 53A, 54
A and 55A are closed respectively.

【0018】制御装置10A,11A,20A,20
B,21A,21B,22A,22Bはそれぞれ各方向
地絡検出継電器16,17,50乃至55に接続されて
いる。また、制御装置10Aはフィーダ10に収納さ
れ、制御装置11Aはフィーダ11に収納され、制御装
置20A,20Bはサブ配電所20に収納され、制御装
置21A,21Bはサブ配電所21に収納され、制御装
置22A,22Bはサブ配電所22に収納されているも
のである。
Control devices 10A, 11A, 20A, 20
B, 21A, 21B, 22A, and 22B are connected to respective directional ground fault detection relays 16, 17, 50 to 55, respectively. In addition, the control device 10A is housed in the feeder 10, the control device 11A is housed in the feeder 11, the control devices 20A and 20B are housed in the sub distribution station 20, and the control devices 21A and 21B are housed in the sub distribution station 21. The control devices 22A and 22B are housed in the sub power distribution station 22.

【0019】図2を用いて、制御装置10A,11A,
20A,20B,21A,21B,22A,22Bにつ
いて説明する。
Referring to FIG. 2, control devices 10A, 11A,
20A, 20B, 21A, 21B, 22A, and 22B will be described.

【0020】制御装置10A,11A,20A,20
B,21A,21B,22A,22Bは、各方向地絡検
出継電器16,17,50乃至55のA接点16A,1
7A,50A,51A,52A,53A,54A,55
Aが閉じると、それぞれ内部のA接点T1A,T2A,
T3A,T4A,T5A,T6A,T7A,T8Aが時
限をもって作動して、開放指令12A,13A,30
A,31A,32A,33A,34A,35Aを出力
し、遮断器12は開放指令12Aにより、遮断器13は
13Aにより、遮断器30は30Aにより、遮断器31
は31Aにより、遮断器32は32Aにより、遮断器3
3は33Aにより、遮断器34は34Aにより、遮断器
35は35Aにより開放する。
Control devices 10A, 11A, 20A, 20
B, 21A, 21B, 22A, 22B are A contact points 16A, 1 of each direction ground fault detecting relays 16, 17, 50 to 55.
7A, 50A, 51A, 52A, 53A, 54A, 55
When A is closed, the internal A contacts T1A, T2A,
T3A, T4A, T5A, T6A, T7A, T8A operate in a timed manner, and release commands 12A, 13A, 30
A, 31A, 32A, 33A, 34A, 35A are output, the circuit breaker 12 is operated by an open command 12A, the circuit breaker 13 is operated by 13A, the circuit breaker 30 is operated by 30A, and the circuit breaker 31 is operated by 30A.
Is 31A, and the breaker 32 is 32A.
3 is opened by 33A, breaker 34 is opened by 34A, and breaker 35 is opened by 35A.

【0021】ここで、A接点T1A,T2A,T3A,
T4A,T5A,T6A,T7A,T8Aは、接点T1
AはT4Aよりも遅いタイミングで、T4AはT6Aよ
りも遅いタイミングで、T6AはT8Aよりも遅いタイ
ミングで作動し、また、接点T2AはT7Aよりも遅い
タイミングで、T7AはT5Aよりも遅いタイミング
で、T5AはT3Aよりも遅いタイミングで作動するよ
うに、制御装置10A,11A,20A,20B,21
A,21B,22A,22Bの内部には、タイマーを備
えている。
Here, A contacts T1A, T2A, T3A,
T4A, T5A, T6A, T7A, T8A are connected to a contact T1.
A operates at a later timing than T4A, T4A operates at a later timing than T6A, T6A operates at a later timing than T8A, and the contact T2A operates at a later timing than T7A, and T7A operates at a later timing than T5A. The control devices 10A, 11A, 20A, 20B, and 21 are operated so that T5A operates at a later timing than T3A.
Timers are provided inside A, 21B, 22A, and 22B.

【0022】次に、制御装置10A,11A,20A,
20B,21A,21B,22A,22Bの内部構成に
ついて説明する。
Next, the control devices 10A, 11A, 20A,
The internal configuration of 20B, 21A, 21B, 22A, 22B will be described.

【0023】制御装置10Aは、方向地絡検出継電器1
6のA接点16Aに接続された遅延タイマーT1によっ
て、所定時間遅延された後、作動をするA接点T1Aを
備えている。遅延タイマーT1は時限調整可能なタイマ
ーでもよい。遅延タイマーT1の設定時間は、それぞ
れ、制御装置20B,21B,22Bに備えたタイマー
T4,T6,T8と関係を持たせ、T1はT4よりも長
く整定し、T4はT6よりも長く、T6はT8よりも長
く整定してある。遅延タイマーT1の設定時間は例えば
2秒であり、遅延タイマーT4の設定時間は例えば1.
5秒であり、遅延タイマーT6の設定時間は例えば1秒
であり、遅延タイマーT8の設定時間は例えば0.5秒
である。
The control device 10A includes a directional ground fault detection relay 1
6 is provided with an A contact T1A that operates after being delayed for a predetermined time by a delay timer T1 connected to the A contact 16A. The delay timer T1 may be a time-adjustable timer. The set time of the delay timer T1 is related to the timers T4, T6, and T8 provided in the control devices 20B, 21B, and 22B, respectively. T1 is set longer than T4, T4 is longer than T6, and T6 is longer than T6. It is set longer than T8. The set time of the delay timer T1 is, for example, 2 seconds, and the set time of the delay timer T4 is, for example, 1.
The setting time of the delay timer T6 is, for example, 1 second, and the setting time of the delay timer T8 is, for example, 0.5 second.

【0024】制御装置20Bは、方向地絡検出継電器5
1のA接点51Aに接続された遅延タイマーT4によっ
て、所定時間遅延された後、作動をするA接点T4Aを
備えている。遅延タイマーT4は時限調整可能なタイマ
ーでもよい。遅延タイマーT4の設定時間は、それぞ
れ、制御装置10A,21B,22Bに備えたタイマー
T1,T6,T8と関係を持たせ、T1はT4よりも長
く整定し、T4はT6よりも長く、T6はT8よりも長
く整定してある。遅延タイマーT1の設定時間は例えば
2秒であり、遅延タイマーT4の設定時間は例えば1.
5秒であり、遅延タイマーT6の設定時間は例えば1秒
であり、遅延タイマーT8の設定時間は例えば0.5秒
である。
The control device 20B includes a directional ground fault detection relay 5
An A-contact T4A that operates after being delayed for a predetermined time by a delay timer T4 connected to one A-contact 51A is provided. The delay timer T4 may be a time-adjustable timer. The set time of the delay timer T4 is related to the timers T1, T6, and T8 provided in the control devices 10A, 21B, and 22B, respectively. T1 is set longer than T4, T4 is longer than T6, and T6 is It is set longer than T8. The set time of the delay timer T1 is, for example, 2 seconds, and the set time of the delay timer T4 is, for example, 1.
The setting time of the delay timer T6 is, for example, 1 second, and the setting time of the delay timer T8 is, for example, 0.5 second.

【0025】制御装置21Bは、方向地絡検出継電器5
3のA接点53Aに接続された遅延タイマーT6によっ
て、所定時間遅延された後作動するA接点T6Aを備え
ている。遅延タイマーT6は時限調整可能なタイマーで
もよい。遅延タイマーT6の設定時間は、それぞれ、制
御装置10A,20B,22Bに備えたタイマーT1,
T4,T8と関係を持たせ、T1はT4よりも長く整定
し、T4はT6よりも長く、T6はT8よりも長く整定
してある。遅延タイマーT1の設定時間は例えば2秒で
あり、遅延タイマーT4の設定時間は例えば1.5秒で
あり、遅延タイマーT6の設定時間は例えば1秒であ
り、遅延タイマーT8の設定時間は例えば0.5秒であ
る。
The control device 21B includes a directional ground fault detection relay 5
An A-contact T6A is activated after a predetermined time delay by a delay timer T6 connected to the A-contact 53A of No.3. The delay timer T6 may be a time-adjustable timer. The set time of the delay timer T6 is determined by the timers T1 and T1 provided in the control devices 10A, 20B and 22B, respectively.
In relation to T4 and T8, T1 is settled longer than T4, T4 is set longer than T6, and T6 is settled longer than T8. The set time of the delay timer T1 is, for example, 2 seconds, the set time of the delay timer T4 is, for example, 1.5 seconds, the set time of the delay timer T6 is, for example, 1 second, and the set time of the delay timer T8 is, for example, 0. .5 seconds.

【0026】制御装置22Bは、方向地絡検出継電器5
5のA接点55Aに接続された遅延タイマーT8によっ
て、所定時間遅延された後、作動するA接点T8Aを備
えている。遅延タイマーT8は時限調整可能なタイマー
でもよい。遅延タイマーT8の設定時間は、それぞれ、
制御装置10A,20B,21Bに備えたタイマーT
1,T4,T6と関係を持たせ、T1はT4よりも長く
整定し、T4はT6よりも長く、T6はT8よりも長く
整定してある。遅延タイマーT1の設定時間は例えば2
秒であり、遅延タイマーT4の設定時間は例えば1.5
秒であり、遅延タイマーT6の設定時間は例えば1秒で
あり、遅延タイマーT8の設定時間は例えば0.5秒で
ある。
The control device 22B includes a directional ground fault detection relay 5
5 is provided with an A contact T8A that is activated after being delayed for a predetermined time by a delay timer T8 connected to the A contact 55A. The delay timer T8 may be a time-adjustable timer. The set time of the delay timer T8 is
Timer T provided in control devices 10A, 20B, 21B
1, T4, and T6, T1 is set longer than T4, T4 is set longer than T6, and T6 is set longer than T8. The set time of the delay timer T1 is, for example, 2
And the set time of the delay timer T4 is, for example, 1.5
The setting time of the delay timer T6 is, for example, 1 second, and the setting time of the delay timer T8 is, for example, 0.5 second.

【0027】制御装置11Aは、方向地絡検出継電器1
7のA接点17Aに接続された遅延タイマーT2によっ
て、所定時間遅延された後、作動するA接点T2Aを備
えている。遅延タイマーT2は時限調整可能なタイマー
でもよい。遅延タイマーT2の設定時間は、それぞれ、
制御装置20A,21A,22Aに備えたタイマーT
3,T5,T7と関係を持たせ、T2はT7よりも長く
整定し、T7はT5よりも長く、T5はT3よりも長く
整定してある。遅延タイマーT2の設定時間は例えば2
秒であり、遅延タイマーT7の設定時間は例えば1.5
秒であり、遅延タイマーT5の設定時間は例えば1秒で
あり、遅延タイマーT3の設定時間は例えば0.5秒で
ある。
The control device 11A includes a directional ground fault detection relay 1
7 is provided with an A-contact T2A that is activated after being delayed for a predetermined time by a delay timer T2 connected to the A-contact 17A. The delay timer T2 may be a time-adjustable timer. The set time of the delay timer T2 is
Timer T provided in control devices 20A, 21A, 22A
3, T5, and T7, T2 is settled longer than T7, T7 is set longer than T5, and T5 is settled longer than T3. The set time of the delay timer T2 is, for example, 2
And the set time of the delay timer T7 is, for example, 1.5.
The setting time of the delay timer T5 is, for example, 1 second, and the setting time of the delay timer T3 is, for example, 0.5 second.

【0028】制御装置20Aは、方向地絡検出継電器5
0のA接点50Aに接続された遅延タイマーT3によっ
て、所定時間遅延された後、作動するA接点T3Aを備
えている。遅延タイマーT3は時限調整可能なタイマー
でもよい。遅延タイマーT3の設定時間は、それぞれ、
制御装置11A,21A,22Aに備えたタイマーT
2,T5,T7と関係を持たせ、T2はT7よりも長く
整定し、T7はT5よりも長く、T5はT3よりも長く
整定してある。遅延タイマーT2の設定時間は例えば2
秒であり、遅延タイマーT7の設定時間は例えば1.5
秒であり、遅延タイマーT5の設定時間は例えば1秒で
あり、遅延タイマーT3の設定時間は例えば0.5秒で
ある。
The control device 20A includes a directional ground fault detection relay 5
An A-contact T3A is provided, which is activated after being delayed for a predetermined time by a delay timer T3 connected to the 0-A contact 50A. The delay timer T3 may be a time-adjustable timer. The set time of the delay timer T3 is
Timer T provided in control devices 11A, 21A, 22A
2, T5 and T7, T2 is settled longer than T7, T7 is set longer than T5, and T5 is settled longer than T3. The set time of the delay timer T2 is, for example, 2
And the set time of the delay timer T7 is, for example, 1.5.
The setting time of the delay timer T5 is, for example, 1 second, and the setting time of the delay timer T3 is, for example, 0.5 second.

【0029】制御装置21Aは、方向地絡検出継電器5
2のA接点52Aに接続された遅延タイマーT5によっ
て、所定時間遅延された後作動するA接点T5Aを備え
ている。遅延タイマーT5は時限調整可能なタイマーで
もよい。遅延タイマーT5の設定時間は、それぞれ、制
御装置11A,20A,22Aに備えたタイマーT2,
T3,T7と関係を持たせ、T2はT7よりも長く整定
し、T7はT5よりも長く、T5はT3よりも長く整定
してある。遅延タイマーT2の設定時間は例えば2秒で
あり、遅延タイマーT7の設定時間は例えば1.5秒で
あり、遅延タイマーT5の設定時間は例えば1秒であ
り、遅延タイマーT3の設定時間は例えば0.5秒であ
る。
The control device 21A includes a directional ground fault detection relay 5
An A-contact T5A is activated after a predetermined time delay by a delay timer T5 connected to the second A-contact 52A. The delay timer T5 may be a time-adjustable timer. The set times of the delay timer T5 are the timers T2 and T2 provided in the control devices 11A, 20A and 22A, respectively.
T2 is set longer than T7, T7 is set longer than T5, and T5 is set longer than T3. The set time of the delay timer T2 is, for example, 2 seconds, the set time of the delay timer T7 is, for example, 1.5 seconds, the set time of the delay timer T5 is, for example, 1 second, and the set time of the delay timer T3 is, for example, 0. .5 seconds.

【0030】制御装置22Aは、方向地絡検出継電器5
4のA接点54Aに接続された遅延タイマーT7によっ
て、所定時間遅延された後作動するA接点T7Aを備え
ている。遅延タイマーT7は時限調整可能なタイマーで
もよい。遅延タイマーT7の設定時間は、それぞれ、制
御装置11A,20A,21Aに備えたタイマーT2,
T3,T5と関係を持たせ、T2はT7よりも長く整定
し、T7はT5よりも長く、T5はT3よりも長く整定
してある。遅延タイマーT2の設定時間は例えば2秒で
あり、遅延タイマーT7の設定時間は例えば1.5秒で
あり、遅延タイマーT5の設定時間は例えば1秒であ
り、遅延タイマーT3の設定時間は例えば0.5秒であ
る。
The control device 22A includes a directional ground fault detection relay 5
An A-contact T7A is activated after a predetermined time delay by a delay timer T7 connected to the A-contact 54A of No.4. The delay timer T7 may be a time-adjustable timer. The set time of the delay timer T7 is the timer T2 provided in the control device 11A, 20A, 21A, respectively.
T2 is set longer than T7, T7 is set longer than T5, and T5 is set longer than T3. The set time of the delay timer T2 is, for example, 2 seconds, the set time of the delay timer T7 is, for example, 1.5 seconds, the set time of the delay timer T5 is, for example, 1 second, and the set time of the delay timer T3 is, for example, 0. .5 seconds.

【0031】ここで、例えばループ配電回路上に直列に
接続される遮断器12,13,30乃至35は全て閉と
して配電ループ回路とし、フィーダ10,11よりそれ
ぞれのサブ配電所20,21,22に送電しているもの
とする。フィーダ10,11から開ループ送電している
場合の地絡事故検出には、接地形計器用変圧器あるいは
コンデンサ形接地電圧検出装置8と、地絡電流検出器1
4,15,40乃至45と、それらの二次あるいは三次
端子に接続される方向地絡検出継電器16,17,50
乃至55で地絡事故を検出する。
Here, for example, the circuit breakers 12, 13, 30 to 35 connected in series on the loop power distribution circuit are all closed to form a power distribution loop circuit, and the feeders 10, 11 serve as sub-power distribution stations 20, 21, 22, 22, respectively. It is assumed that power is transmitted to To detect a ground fault when power is being transmitted from the feeders 10 and 11 in an open loop, a ground-type instrument transformer or a capacitor-type ground voltage detector 8 and a ground-fault current detector 1
4, 15, 40 to 45 and directional ground fault detecting relays 16, 17, 50 connected to their secondary or tertiary terminals.
At 55, a ground fault is detected.

【0032】方向地絡検出継電器16,17,50乃至
55が一斉に作動をすると、A接点16A,17A,5
0A乃至55Aが閉じ、制御装置10A,11A,20
A,20B,21A,21B,22A,22Bの内部に
設けたタイマーが励磁する。タイマーの設定時間の関係
は、T1はT4よりも遅いタイミングで、T4はT6よ
りも遅いタイミングで、T6はT8よりも遅いタイミン
グで作動し、T2はT7よりも遅いタイミングで、T7
はT5よりも遅いタイミングで、T5はT3よりも遅い
タイミングで作動すようにする。例えばT1は2秒、T
4は1.5秒、T6は1秒、T8は0.5秒とし、T2
は2秒、T7は1.5秒、T5は1秒、T3は0.5秒
である。
When the directional ground fault detection relays 16, 17, 50 to 55 operate simultaneously, the A contacts 16A, 17A, 5
0A to 55A are closed, and the control devices 10A, 11A, 20
Timers provided inside A, 20B, 21A, 21B, 22A, and 22B excite. The relationship between the timer setting times is as follows: T1 operates at a timing later than T4, T4 operates at a timing later than T6, T6 operates at a timing later than T8, T2 operates at a timing later than T7, and T7 operates at a timing later than T7.
Is activated at a timing later than T5, and T5 is activated at a timing later than T3. For example, T1 is 2 seconds, T
4 is 1.5 seconds, T6 is 1 second, T8 is 0.5 seconds, T2
Is 2 seconds, T7 is 1.5 seconds, T5 is 1 second, and T3 is 0.5 seconds.

【0033】このように一方側タイマーT1から他方側
タイマーT2に向かって、各タイマーの動作時間は、T
1>T4>T6>T8の順で順次速くなる。又他方側タ
イマーT2から一方側タイマーT1に向かって、各タイ
マーの動作時間は、T2>T7>T5>T3>T1の順
で順次速くなる。
As described above, from one timer T1 to the other timer T2, the operation time of each timer is T
1>T4>T6> T8 in order. In addition, the operation time of each timer increases in the order of T2>T7>T5>T3> T1 from the other timer T2 to the one timer T1.

【0034】今、配電ループ回路7のサブ配電所22で
地絡事故60が発生すると、地絡事故60から一方のフ
ィーダ用遮断器12と他方のフィーダ用遮断器13とに
向かって地絡電流i1と地絡電流i2とが流れる。接地形
計器用変圧器或いはコンデンサ形接地電圧検出装置8の
全てが地絡電圧を検出し、地絡電流検出器14,15,
41,43により地絡電流i1を検出する。
Now, when a ground fault 60 occurs in the sub-distribution station 22 of the distribution loop circuit 7, the ground fault current flows from the ground fault 60 toward one of the feeder breakers 12 and the other feeder breaker 13. i 1 and ground fault current i 2 flow. All of the grounding type instrument transformers or the capacitor type grounding voltage detectors 8 detect the ground fault voltage, and the ground fault current detectors 14, 15,.
The ground fault current i 1 is detected by 41 and 43.

【0035】地絡電流i1と同じ方向の方向地絡検出継
電器16,51,53が一斉に作動をすると、A接点1
6A,A接点51A,A接点53Aが閉じる。この中で
一番動作時間の速いタイマーは、タイマーT6であるか
ら、タイマーT6を励磁し、そのA接点T6Aを閉じて
遮断指令33Aを遮断器33に入力し、遮断器33をト
リップする。
When the ground fault detecting relays 16, 51, 53 in the same direction as the ground fault current i 1 operate simultaneously, the A contact 1
6A, A contact 51A, and A contact 53A are closed. Among them, the timer with the fastest operation time is the timer T6. Therefore, the timer T6 is excited, the A contact T6A is closed, the cutoff command 33A is input to the circuit breaker 33, and the circuit breaker 33 is tripped.

【0036】一方、地絡電流i2と同じ方向の方向地絡
検出継電器は17だけであるから、この方向地絡検出継
電器17が作動をすると、A接点17Aが閉じ、タイマ
ーT2を励磁し、そのA接点T2Aを閉じて遮断指令1
3Aを遮断器13に入力し、遮断器13をトリップす
る。
On the other hand, since there are only 17 directional ground fault detecting relays in the same direction as the ground fault current i 2 , when the directional ground fault detecting relay 17 operates, the A contact 17A is closed, and the timer T2 is excited. The A contact T2A is closed and the cutoff command 1
3A is input to the circuit breaker 13, and the circuit breaker 13 is tripped.

【0037】この結果、全負荷L1,L2,L3が停電
することなく、負荷L1,L2に電力を供給することが
出来るようになった。つまり、これにより、地絡事故点
60を切り離しできるため、他の遮断指令31A,12
Aは出力されず、フィーダ10からの送電が継続され、
サブ配電所20,21の不要な停電を防止することが出
来る。
As a result, power can be supplied to the loads L1 and L2 without power failure of all the loads L1, L2 and L3. In other words, this allows the ground fault point 60 to be separated, so that the other shutoff commands 31A, 12A
A is not output, power transmission from the feeder 10 is continued,
Unnecessary power outages of the sub distribution stations 20 and 21 can be prevented.

【0038】次に、サブ配電所21、22間を接続する
主回路ケーブルである配電ループ回路7で地絡事故点6
1を生じたとする。
Next, in the power distribution loop circuit 7, which is a main circuit cable connecting between the sub power distribution stations 21 and 22, a ground fault 6
Assume that a 1 has occurred.

【0039】地絡事故61が発生すると、地絡事故61
からフィーダ用遮断器12とフィーダ用遮断器13とに
向かって地絡電流i1と地絡電流i2とが流れる。接地形
計器用変圧器或いはコンデンサ形接地電圧検出装置8の
全てが地絡電圧を検出し、地絡電流検出器14,41,
43により地絡電流i1を検出する。
When the ground fault accident 61 occurs, the ground fault accident 61
, A ground fault current i 1 and a ground fault current i 2 flow toward the feeder breaker 12 and the feeder breaker 13. All of the grounding type instrument transformer or the capacitor type grounding voltage detector 8 detects the ground fault voltage, and the ground fault current detectors 14, 41,
43 detects the ground fault current i 1 .

【0040】地絡電流i1と同じ方向の方向地絡検出継
電器16,51,53が一斉に作動をすると、A接点1
6A,A接点51A,A接点53Aが閉じる。この中で
一番動作時間の速いタイマーは、タイマーT6であるか
ら、タイマーT6を励磁し、そのA接点T6Aを閉じて
遮断指令33Aを遮断器33に入力し、遮断器33をト
リップする。
The location and fault current i 1 in the same direction of direction ground fault detection relay 16,51,53 is a simultaneously operating, A contact 1
6A, A contact 51A, and A contact 53A are closed. Among them, the timer with the fastest operation time is the timer T6. Therefore, the timer T6 is excited, the A contact T6A is closed, the cutoff command 33A is input to the circuit breaker 33, and the circuit breaker 33 is tripped.

【0041】一方、地絡電流i2と同じ方向の方向地絡
検出継電器17,54が作動をすると、A接点17A,
A接点54Aが閉じ、タイマーT2,T7を励磁する
が、タイマーの動作時間はタイマーT7の方がタイマー
T2の動作時間より速いので、そのA接点T7Aを閉じ
て遮断指令34Aを遮断器34に入力し、遮断器34を
トリップする。
On the other hand, when the directional ground fault detecting relays 17, 54 in the same direction as the ground fault current i 2 operate, the A contacts 17A,
The A contact 54A is closed and the timers T2 and T7 are excited. However, the timer T7 operates faster than the timer T2. Therefore, the A contact T7A is closed and the cutoff command 34A is input to the circuit breaker 34. Then, the circuit breaker 34 is tripped.

【0042】この結果、全負荷L1,L2,L3が停電
することなく、負荷に電力を供給することが出来るよう
になった。つまり、これにより、地絡事故点61を切り
離しできるため、他の遮断指令31A,12A,13A
は出力されず、フィーダ10,11からの送電が継続さ
れ、サブ配電所20,21,22の不要な停電を防止す
ることが出来る。
As a result, power can be supplied to the loads without power failure of all the loads L1, L2, L3. In other words, this allows the ground fault point 61 to be separated, so that the other cutoff commands 31A, 12A, 13A
Is not output, the power transmission from the feeders 10 and 11 is continued, and it is possible to prevent unnecessary power outages of the sub distribution stations 20, 21 and 22.

【0043】更に地絡事故62の場合は、地絡電流i1
とi2とによって遮断器31と32とがトリップするの
で、全負荷L1,L2,L3が停電することなく、全負
荷に電力を供給することが出来る。
Further, in the case of the ground fault 62, the ground fault current i 1
And since the breakers 31 and 32 is tripped by a i 2, without full load L1, L2, L3 is a power failure, it is possible to supply power to full load.

【0044】更に地絡事故63の場合は、地絡電流i1
とi2とによって遮断器12と32とがトリップするの
で、負荷L2,L3に電力を供給することが出来る。
Further, in the case of the ground fault 63, the ground fault current i 1
And since the circuit breaker 12 and 32 trips by the i 2, it is possible to supply power to a load L2, L3.

【0045】更に、もう一つの運用方法として、例えば
ループ配電回路上に直列に接続される遮断器13は開と
し、その他の遮断器12,30乃至35は全て閉として
閉ループ配電回路とし、フィーダ10よりそれぞれサブ
配電所20,21,22に送電しているものとする。
Further, as another operation method, for example, the circuit breaker 13 connected in series on the loop power distribution circuit is opened, and the other circuit breakers 12, 30 to 35 are all closed to form a closed loop power distribution circuit. It is assumed that power is transmitted to the sub distribution stations 20, 21 and 22, respectively.

【0046】ここで地絡事故62の場合は、遮断器13
が開放されているため、地絡電流i2は流れず、地絡電
流i1によって遮断器31がトリップするので、サブ配
電所20,21,22は健全であるにも拘らず停電状態
となが、負荷L1は停電することは無い。
Here, in the case of a ground fault accident 62,
So that if open, a ground fault current i 2 does not flow, it since breaker 31 is tripped by a ground fault current i 1, sub-power distribution station 20, 21, 22 and the power failure state despite a healthy However, the load L1 does not lose power.

【0047】この場合には、方向地絡継電器51が動作
して遮断器31がトリップしたことを条件として、手動
或いは自動制御装置にて遮断器13を投入すると、地絡
電流i2は流れて遮断器32がトリップするが、サブ配
電所20,21,22への再給電が可能となる。このよ
うにして、開ループでの運用も可能である。
In this case, the ground fault current i 2 flows when the circuit breaker 13 is turned on by a manual or automatic control device on condition that the directional ground fault relay 51 operates and the circuit breaker 31 trips. Although the circuit breaker 32 trips, it is possible to supply power again to the sub distribution stations 20, 21, 22. In this way, open loop operation is also possible.

【0048】[0048]

【発明の効果】以上説明したように、本発明では、第1
の遮断器のタイマー動作時間を一方側フィーダ用遮断器
から他方側フィーダ用遮断器に行くに従い順次早くする
場合と、第2の遮断器のタイマー動作時間を他方側フィ
ーダ用遮断器から一方側フィーダ用遮断器に行くに従い
順次早くする場合とに設定し、地絡個所から地絡電流が
配電ループ回路を介して一方側フィーダ用遮断器と他方
側フィーダ用遮断器とに流る時に、地絡電流と全方向地
絡検出継電器との方向性が同じで、且つ動作時間の一番
速いタイマーの遮断器を遮断するようにしたので、全負
荷L1,L2,L3の全部が停電することなく、負荷に
電力を供給することが出来るようになり、電力供給の信
頼性を向上することが出来る。
As described above, according to the present invention, the first
The case where the timer operation time of the circuit breaker of the first embodiment is sequentially increased from the circuit breaker for one side feeder to the circuit breaker for the other side feeder, and the timer operation time of the second circuit breaker is changed from the circuit breaker for the other side feeder to the one side feeder. When the ground fault current flows from the ground fault location to the one-side feeder breaker and the other-side feeder breaker through the distribution loop circuit, Since the direction of the current and the omnidirectional ground fault detection relay are the same, and the breaker of the timer with the fastest operation time is cut off, all the loads L1, L2, L3 do not lose power, Power can be supplied to the load, and the reliability of power supply can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態による配電設備回路の全体
構成を示す系統回路図である。
FIG. 1 is a system circuit diagram illustrating an entire configuration of a power distribution equipment circuit according to an embodiment of the present invention.

【図2】図1による地絡保護の制御装置の回路図であ
る。
FIG. 2 is a circuit diagram of a control device for ground fault protection according to FIG. 1;

【符号の説明】[Explanation of symbols]

1…特別高圧回線、2…受電用回線、3…接地開閉器、
4…断路器、5…フィーダ用遮断器、6…変圧器、7…
配電ループ回路、8…接地形計器用変圧器あるいはコン
デンサ形接地電圧検出装置、10,11…フィーダ、1
0A,11A,20A,20B,21A,21B,22
A,22B…制御装置、12,13…フィーダ用遮断
器、14,15,40乃至45…地絡電流検出器、1
6,17,50乃至55…方向地絡検出継電器、20,
21,22…サブ配電所、30乃至35…遮断器。
1 ... Special high voltage line, 2 ... Power receiving line, 3 ... Ground switch,
4: disconnector, 5: circuit breaker for feeder, 6: transformer, 7:
Distribution loop circuit, 8: Grounding type instrument transformer or capacitor type grounding voltage detector, 10, 11 ... Feeder, 1
0A, 11A, 20A, 20B, 21A, 21B, 22
A, 22B: Control device, 12, 13: Circuit breaker for feeder, 14, 15, 40 to 45: Ground fault current detector, 1
6, 17, 50 to 55 ... directional ground fault detection relay, 20,
21, 22 ... sub distribution station, 30 to 35 ... breaker.

フロントページの続き (72)発明者 栗田 和夫 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 鹿野 和夫 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 渡辺 健一郎 東京都港区港南二丁目15番2号 株式会社 大林組東京本社内 Fターム(参考) 2G014 AA04 AB09 AB33 AC19 5G058 EE06 EF03 EG05 EH01 Continued on the front page (72) Inventor Kazuo Kurita 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant of Hitachi, Ltd. (72) Inventor Kazuo Kano 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo Hitachi, Ltd. Hitachi, Ltd. Inside the factory (72) Inventor Kenichiro Watanabe 2-15-2 Konan, Minato-ku, Tokyo F-term (reference) 2G014 AA04 AB09 AB33 AC19 5G058 EE06 EF03 EG05 EH01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主母線の電力を複数に分配するフィーダ
用遮断器と、各フィーダ用遮断器間に複数のサブ配電所
を接続した配電ループ回路と、各サブ配電所に第1及び
第2の遮断器を接続し、各フィーダ用遮断器に流れる地
絡電流を検出する地絡電流検出器を接続し、各遮断器に
方向地絡検出継電器と逆方向の地絡電流を検出する方向
地絡検出継電器を接続し、全方向地絡検出継電器にタイ
マーを接続し、一方の遮断器のタイマー動作時間を一方
側フィーダ用遮断器から他方側フィーダ用遮断器に行く
に従い順次早くする場合と、他方の遮断器のタイマー動
作時間を他方側フィーダ用遮断器から一方側フィーダ用
遮断器に行くに従い順次早くする場合とに設定し、地絡
個所から地絡電流が配電ループ回路を介して一方側フィ
ーダ用遮断器と他方側フィーダ用遮断器とに流れる時
に、地絡電流と方向地絡検出継電器との方向性が同じ
で、且つ動作時間の一番速いタイマーの遮断器を遮断す
ることを特徴とする配電設備回路。
1. A feeder circuit breaker for distributing power of a main bus to a plurality of power distribution circuits, a distribution loop circuit having a plurality of sub distribution stations connected between the feeder circuit breakers, and a first and a second distribution circuit for each sub distribution station. Connected to a ground fault current detector that detects the ground fault current flowing through each feeder breaker, and a directional ground fault detector that detects the ground fault current in the opposite direction to the directional ground fault detection relay to each breaker. A case in which a short-circuit detection relay is connected, a timer is connected to the omnidirectional ground-fault detection relay, and the timer operation time of one of the circuit breakers is sequentially shortened from the one-side feeder breaker to the other-side feeder breaker. The timer operation time of the other circuit breaker is set to be gradually increased from the circuit breaker for the other side feeder to the circuit breaker for the one side feeder, so that the ground fault current flows from the ground fault to the one side via the distribution loop circuit. Feeder breaker and the other A power distribution equipment circuit, wherein when flowing to a side feeder circuit breaker, a ground fault current and a direction ground fault detection relay have the same directionality and a timer breaker having the fastest operation time is cut off.
JP09485999A 1999-04-01 1999-04-01 Power distribution equipment circuit Expired - Fee Related JP3611476B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP09485999A JP3611476B2 (en) 1999-04-01 1999-04-01 Power distribution equipment circuit
SG200001752A SG87890A1 (en) 1999-04-01 2000-03-28 Electric power distribution installation circuit
TW089105886A TW463441B (en) 1999-04-01 2000-03-30 Electric power distribution installation circuit
KR1020000016810A KR20010006937A (en) 1999-04-01 2000-03-31 Electric power distribution installation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09485999A JP3611476B2 (en) 1999-04-01 1999-04-01 Power distribution equipment circuit

Publications (2)

Publication Number Publication Date
JP2000295764A true JP2000295764A (en) 2000-10-20
JP3611476B2 JP3611476B2 (en) 2005-01-19

Family

ID=14121769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09485999A Expired - Fee Related JP3611476B2 (en) 1999-04-01 1999-04-01 Power distribution equipment circuit

Country Status (4)

Country Link
JP (1) JP3611476B2 (en)
KR (1) KR20010006937A (en)
SG (1) SG87890A1 (en)
TW (1) TW463441B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020067902A (en) * 2002-07-02 2002-08-24 (주)한창트랜스 Load switching transformer
KR100726029B1 (en) * 2005-10-25 2007-06-08 한국전기연구원 SERIAL CAPACITANCE APPARATUS for ROOF SYSTEM
JP2016054574A (en) * 2014-09-03 2016-04-14 株式会社明電舎 Power transmission system
JP2017208999A (en) * 2016-05-11 2017-11-24 ディーラボラトリー スウェーデン エービー Method and device for fault clearing in power network with ring-feed-loop

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105300B1 (en) * 2009-06-30 2012-01-17 한국전력공사 Closed-loop power distribution system including sub loops
KR101105302B1 (en) * 2009-08-04 2012-01-17 한국전력공사 Overhead loop power distribution system
KR101348037B1 (en) * 2011-09-30 2014-01-06 한국전력공사 Method for processing fault of loop distribution line, and apparatus for cutting off loop distribution line

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169976B2 (en) * 1991-04-30 2001-05-28 株式会社日立製作所 Distribution line ground fault protection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020067902A (en) * 2002-07-02 2002-08-24 (주)한창트랜스 Load switching transformer
KR100726029B1 (en) * 2005-10-25 2007-06-08 한국전기연구원 SERIAL CAPACITANCE APPARATUS for ROOF SYSTEM
JP2016054574A (en) * 2014-09-03 2016-04-14 株式会社明電舎 Power transmission system
JP2017208999A (en) * 2016-05-11 2017-11-24 ディーラボラトリー スウェーデン エービー Method and device for fault clearing in power network with ring-feed-loop

Also Published As

Publication number Publication date
SG87890A1 (en) 2002-04-16
TW463441B (en) 2001-11-11
JP3611476B2 (en) 2005-01-19
KR20010006937A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
EP0948111B1 (en) Fault protection arrangements and methods for electric power distribution systems
CA2365737C (en) Loop restoration scheme for distribution feeders
JP2000295764A (en) Distribution facility circuit
JP2020028200A (en) Distribution board and distribution board function expansion method
WO2004008600A3 (en) Electrical network protection system
JPH08205377A (en) Protective device for feeding equipment
CN110932244B (en) Relay protection method for no-switching of all-station protection outlet pressure plates of transformer substation
CN106940390B (en) Insulation detection switching device of direct current system
JP2826610B2 (en) Distribution line switching method and apparatus
JPH11299087A (en) Bus protecting system for spot network power receiving equipment
JPH10108321A (en) Distribution board provided with earthquake sensing relay
JP3241073B2 (en) Distribution system controller
JP4670810B2 (en) Power line carrier communication system and signal relay device
CN112751333B (en) Intelligent low-voltage switch cabinet for rail transit and control method
JP3641567B2 (en) Ground fault protection device for distribution substation
JPH1014100A (en) Ground self-breaking type automatic section switch
JPH10336622A (en) Cable television network system
JP3041632B2 (en) Distribution line accident section separation method
Belometti et al. Full digital architecture for selective protection coordination in low voltage electrical installations
JPH04244729A (en) Spot network system
JPH09233685A (en) Distribution line section switch controller
JPH0324129B2 (en)
CN116316469A (en) Power transmission system
JP3869841B2 (en) Normally open loop power distribution ground fault detection protection system
JPH03251037A (en) Fault zone detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees