JP2000295715A - Power source system of electric automobile - Google Patents

Power source system of electric automobile

Info

Publication number
JP2000295715A
JP2000295715A JP11094534A JP9453499A JP2000295715A JP 2000295715 A JP2000295715 A JP 2000295715A JP 11094534 A JP11094534 A JP 11094534A JP 9453499 A JP9453499 A JP 9453499A JP 2000295715 A JP2000295715 A JP 2000295715A
Authority
JP
Japan
Prior art keywords
storage device
power storage
chopper
main power
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11094534A
Other languages
Japanese (ja)
Other versions
JP3552087B2 (en
Inventor
Shigenori Kinoshita
繁則 木下
Atsushi Yamada
淳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
UD Trucks Corp
Original Assignee
Fuji Electric Co Ltd
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, UD Trucks Corp filed Critical Fuji Electric Co Ltd
Priority to JP09453499A priority Critical patent/JP3552087B2/en
Publication of JP2000295715A publication Critical patent/JP2000295715A/en
Application granted granted Critical
Publication of JP3552087B2 publication Critical patent/JP3552087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size and weight of a vehicle-mounted apparatus, make the voltage of a main charge storing device changeable, and improve system efficiency, in an electric automobile in which electric double layer capacitor cells are used in the main charge storing device. SOLUTION: This electric automobile drives a vehicle driving motor via a power converter by the electric power of a vehicle-mounted engine generator and a vehicle-mounted main charge storing device 40 or the power of the vehicle-mounted main charge storing device 40. The main charge storing device 40 consists of at least two battery blocks 10, 11 constituted by connecting a plurality of electric double layer capacitor cells in series, and a current bidirectional type stepping-up chopper 12 connected between the battery blocks 10 and 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタ電池を主蓄電装置に使用したハイブリッド電気自動
車、その他、主蓄電装置を有する電気自動車一般に適用
可能な電源システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply system applicable to a hybrid electric vehicle using an electric double layer capacitor battery as a main power storage device, and other electric vehicles having a main power storage device.

【0002】[0002]

【従来の技術】図10は、主蓄電装置として電気二重層
キャパシタ電池を使用したハイブリッド電気自動車の公
知の電源システムを示している。従来では、蓄電装置と
して化学二次電池を使用していたが、化学二次電池は充
放電サイクル寿命が短く、しかも高出力作動時の効率が
悪いため、最近では電気二重層キャパシタ電池が適用さ
れてきている。
2. Description of the Related Art FIG. 10 shows a known power supply system of a hybrid electric vehicle using an electric double layer capacitor battery as a main power storage device. In the past, chemical secondary batteries were used as power storage devices.Chemical secondary batteries have a short charge-discharge cycle life and are inefficient at high-power operation. Is coming.

【0003】図10において、1はエンジン、2は発電
機、3は整流器、4は主蓄電装置、5は車両駆動電動機
6を駆動する電力変換器としてのインバータであり、こ
れらの要素がパワートレインを構成している。7は補助
蓄電装置8を充電するDCーDCコンバータ、9は補機
である。なお、ここでは電動機6以降の駆動機構の図示
を省略してある。主蓄電装置4は、電気二重層キャパシ
タセル41,42,43,……を複数直列接続して構成
された電気二重層キャパシタ電池である。図示していな
いが、主蓄電装置4の容量を増大させるため、必要に応
じて電気二重層キャパシタセル41,42,43,……
の直列回路を複数、並列接続することも行われる。
In FIG. 10, 1 is an engine, 2 is a generator, 3 is a rectifier, 4 is a main power storage device, 5 is an inverter as a power converter for driving a vehicle drive motor 6, and these elements are power trains. Is composed. Reference numeral 7 denotes a DC-DC converter for charging the auxiliary power storage device 8, and reference numeral 9 denotes an auxiliary machine. Here, the illustration of the drive mechanism after the electric motor 6 is omitted. The main power storage device 4 is an electric double layer capacitor battery configured by connecting a plurality of electric double layer capacitor cells 41, 42, 43,. Although not shown, in order to increase the capacity of the main power storage device 4, the electric double layer capacitor cells 41, 42, 43,.
May be connected in parallel with each other.

【0004】図10に示したものはシリーズハイブリッ
ド方式の電気自動車であり、エンジン1及び発電機2に
より発生させた電力の一部または全部を使用して主蓄電
装置4を充電する。そして、エンジン1及び発電機2に
より発生させた電力と主蓄電装置4の電力とを用いて、
インバータ5を介し電動機6により車両を駆動する。更
に、発電機2及び主蓄電装置4の電力、または主蓄電装
置4の電力のみを用いて、インバータ5を介し電動機6
により車両を駆動する。制動時は、電動機6から発生し
た制動電力を、インバータ5を介して主蓄電装置4に回
生する。発電機を搭載せずに主蓄電装置の電力のみを用
いて車両を駆動する電気自動車の電気システムは、図1
0においてエンジン1、発電機2及び整流器3が無いシ
ステムと同じ構成であるため、詳述を省略する。
FIG. 10 shows a series hybrid electric vehicle, in which a main power storage device 4 is charged by using part or all of electric power generated by an engine 1 and a generator 2. Then, using the power generated by the engine 1 and the generator 2 and the power of the main power storage device 4,
The vehicle is driven by the electric motor 6 via the inverter 5. Furthermore, using the power of the generator 2 and the main power storage device 4 or only the power of the main power storage device 4,
To drive the vehicle. At the time of braking, the braking power generated from the electric motor 6 is regenerated to the main power storage device 4 via the inverter 5. The electric system of an electric vehicle that drives a vehicle using only the power of the main power storage device without a generator is shown in FIG.
At 0, the configuration is the same as that of the system without the engine 1, the generator 2, and the rectifier 3, and therefore the detailed description is omitted.

【0005】前述したように、主蓄電装置4は車両の加
速時及び定速走行時には放電、制動時には充電の繰り返
し動作となり、その回数は数万回にも達する。電気自動
車用の主蓄電装置は、この充放電サイクル回数に耐える
ものでなくてはならない。前述した電気二重層キャパシ
タ電池はこの性能を有しており、電気自動車用として優
れた蓄電装置と言うことができる。図10に示した主蓄
電装置4も、従来の化学二次電池を多数直列接続してな
る組電池と同様に、電気二重層キャパシタセル41,4
2,43,……を多数直列接続して構成されており、従
来の化学二次電池を電気二重層キャパシタ電池に置き替
えたシステムとなっている。
[0005] As described above, the main power storage device 4 repeats discharging and charging when the vehicle is accelerating and running at a constant speed, and reaches several tens of thousands of times. The main power storage device for an electric vehicle must be able to withstand this number of charge / discharge cycles. The above-described electric double layer capacitor battery has this performance, and can be said to be an excellent power storage device for electric vehicles. Main power storage device 4 shown in FIG. 10 also has electric double layer capacitor cells 41 and 4 similarly to a battery pack formed by connecting a number of conventional chemical secondary batteries in series.
2, 43,... Are connected in series, and this is a system in which a conventional chemical secondary battery is replaced with an electric double layer capacitor battery.

【0006】さて、電気二重層キャパシタセルの蓄積エ
ネルギはキャパシタセルの電圧の2乗に比例する。言い
換えれば、直流電源として使用した場合、放電エネルギ
の増大に応じて電気二重層キャパシタセルの電圧は低下
して行く。エネルギの75%を放電すると、電圧は1/
2に低下する。図10に示す電気システムでは、放電電
力によってインバータ5の入力電圧が大きく変化する。
特に電気自動車の場合、電圧が低下すると、中高速域の
車両性能が大きく低下する。このため、実際には、図1
1に示すように電気二重層キャパシタ電池としての主蓄
電装置4とインバータ5との間にチョッパ44を挿入
し、このチョッパ44の動作によりインバータ5の入力
電圧を一定にする方法がとられている。
The energy stored in an electric double layer capacitor cell is proportional to the square of the voltage of the capacitor cell. In other words, when used as a DC power supply, the voltage of the electric double layer capacitor cell decreases as the discharge energy increases. When 75% of the energy is discharged, the voltage becomes 1 /
Drops to 2. In the electric system shown in FIG. 10, the input voltage of the inverter 5 changes greatly depending on the discharge power.
In particular, in the case of an electric vehicle, when the voltage is reduced, the vehicle performance in a middle to high speed region is significantly reduced. Therefore, in practice, FIG.
As shown in FIG. 1, a method is employed in which a chopper 44 is inserted between a main power storage device 4 as an electric double layer capacitor battery and an inverter 5 and the input voltage of the inverter 5 is made constant by the operation of the chopper 44. .

【0007】図12は、図11のチョッパ44の詳細な
回路構成を示したもので、電流双方向形(電流2象限)
昇降圧チョッパの回路例である。図12において、図1
0、図11と同一構成要素は同一番号を付してある。図
12において、441,442はトランジスタからなる
半導体スイッチ、443,444は半導体スイッチ44
1,442に逆並列接続されたダイオード、445は電
流平滑リアクトル、446,447はフィルタコンデン
サである。
FIG. 12 shows a detailed circuit configuration of the chopper 44 shown in FIG. 11, and shows a bidirectional current type (two current quadrants).
It is a circuit example of a step-up / step-down chopper. In FIG. 12, FIG.
0, the same components as those of FIG. 11 are denoted by the same reference numerals. 12, reference numerals 441 and 442 denote semiconductor switches composed of transistors, and 443 and 444 denote semiconductor switches 44.
Diodes 445 are connected in anti-parallel to each other, 445 is a current smoothing reactor, and 446 and 447 are filter capacitors.

【0008】車両の加速時及び定速走行時は、主蓄電装
置(電気二重層キャパシタ電池)4の電圧はインバータ
5の入力電圧より低下するので、チョッパ44を主蓄電
装置4側から見て昇圧チョッパとして動作させる。この
場合、半導体スイッチ441をスイッチングし、半導体
スイッチ442をオフする。図13は、この昇圧チョッ
パの等価回路であり、図12における半導体スイッチ4
42及びダイオード443を除去した構成となる。
When the vehicle is accelerating and running at a constant speed, the voltage of main power storage device (electric double layer capacitor battery) 4 is lower than the input voltage of inverter 5, so that chopper 44 is boosted when viewed from main power storage device 4 side. Operate as a chopper. In this case, the semiconductor switch 441 is switched and the semiconductor switch 442 is turned off. FIG. 13 shows an equivalent circuit of this boost chopper, and the semiconductor switch 4 shown in FIG.
42 and the diode 443 are removed.

【0009】次に、回生制動時の動作を述べる。回生制
動時は、インバータ5の入力電圧が主蓄電装置4より高
いので、チョッパ44をインバータ5側から見て降圧チ
ョッパとして動作させる。この場合、半導体スイッチ4
42をスイッチングし、半導体スイッチ441をオフす
る。図14は、この降圧チョッパの等価回路であり、図
12における半導体スイッチ441及びダイオード44
4を除去した構成となる。
Next, the operation at the time of regenerative braking will be described. At the time of regenerative braking, the input voltage of the inverter 5 is higher than that of the main power storage device 4, so that the chopper 44 is operated as a step-down chopper when viewed from the inverter 5 side. In this case, the semiconductor switch 4
42, and the semiconductor switch 441 is turned off. FIG. 14 is an equivalent circuit of this step-down chopper, and the semiconductor switch 441 and the diode 44 in FIG.
4 is removed.

【0010】次に、図15は図11のチョッパ44の動
作を説明する図である。モードIは加速・定速走行時、
モードIIは惰行時、モードIIIは回生制動時の動作を示
す。加速・定速走行時(モードI)は、主蓄電装置4が
放電するので電圧Vcは減少するが、チョッパ44の昇
圧動作(主蓄電装置4側から見て)により、インバータ
5の入力電圧Viは一定に保たれる。この間、チョッパ
44の電流Ic(図12におけるリアクトル445の電
流)は、主蓄電装置4の電圧低下に伴って増大する。
Next, FIG. 15 is a view for explaining the operation of the chopper 44 of FIG. Mode I is for acceleration and constant speed driving.
Mode II indicates an operation during coasting, and mode III indicates an operation during regenerative braking. During acceleration / constant speed traveling (mode I), the voltage Vc decreases because the main power storage device 4 discharges, but the input voltage Vi of the inverter 5 is increased by the boosting operation of the chopper 44 (as viewed from the main power storage device 4 side). Is kept constant. During this time, current Ic of chopper 44 (current of reactor 445 in FIG. 12) increases as the voltage of main power storage device 4 decreases.

【0011】回生制動時(モードIII)には、チョッパ
44の降圧動作(インバータ5側から見て)により、チ
ョッパ44の入力電圧を一定に保ちながら、回生電力を
主蓄電装置4に供給して充電する。この間、チョッパ4
4の電流Icは、主蓄電装置4の電圧上昇に伴って減少
する。
During regenerative braking (mode III), the regenerative power is supplied to the main power storage device 4 by the step-down operation of the chopper 44 (as viewed from the inverter 5 side) while keeping the input voltage of the chopper 44 constant. Charge. During this time, chopper 4
4 decreases as the voltage of the main power storage device 4 increases.

【0012】[0012]

【発明が解決しようとする課題】前述のように、電気二
重層キャパシタ電池は化学二次電池と異なり、蓄積エネ
ルギが電圧の2乗に比例する。すなわち、蓄積エネルギ
の変化でキャパシタ電圧が大きく変動する。このため、
図11に示した従来のシステムでは、電気二重層キャパ
シタ電池からなる主蓄電装置4の出力側に電流双方向形
昇降圧チョッパ44を接続し、あたかも主蓄電装置4の
電圧が一定であるようにしている。このようなチョッパ
方式の場合、図12に示したごとくチョッパ44には電
流平滑リアクトル445が必須である。更に、図15か
ら明らかなように、リアクトル445を流れる電流Ic
は主蓄電装置4の電圧Vcに反比例するので、主蓄電装
置4の電圧Vcが半減するとリアクトル445の電流Ic
は2倍にもなる。
As described above, an electric double layer capacitor battery differs from a chemical secondary battery in that the stored energy is proportional to the square of the voltage. That is, the capacitor voltage greatly fluctuates due to the change in the stored energy. For this reason,
In the conventional system shown in FIG. 11, a current bidirectional buck-boost chopper 44 is connected to the output side of a main power storage device 4 composed of an electric double layer capacitor battery so that the voltage of the main power storage device 4 is constant. ing. In the case of such a chopper system, a current smoothing reactor 445 is indispensable for the chopper 44 as shown in FIG. Further, as is clear from FIG. 15, the current Ic flowing through the reactor 445 is
Is inversely proportional to the voltage Vc of the main power storage device 4, so that when the voltage Vc of the main power storage device 4 is reduced by half, the current Ic of the reactor 445 is reduced.
Is doubled.

【0013】このチョッパ44の最大動作電圧はインバ
ータ5と同じであり、最大動作電流はインバータ5より
大きくなるので、チョッパ44の電力変換容量はインバ
ータ5より大きくなる。一方、電気自動車用の場合、車
載機器はできるだけ小形・軽量、高効率であることが強
く求められるので、電気自動車の主蓄電装置として電気
二重層キャパシタ電池を使用する場合、このチョッパの
小形・軽量化、高効率化が大きな課題となっていた。
Since the maximum operating voltage of the chopper 44 is the same as that of the inverter 5 and the maximum operating current is larger than that of the inverter 5, the power conversion capacity of the chopper 44 is larger than that of the inverter 5. On the other hand, in the case of electric vehicles, the on-board equipment is required to be as small, lightweight and highly efficient as possible, so when using an electric double layer capacitor battery as the main power storage device of an electric vehicle, the chopper is small and lightweight. And high efficiency have been major issues.

【0014】前述のように、電気二重層キャパシタ電池
は従来の化学二次電池と異なり、電池電圧が電池の使用
状態に応じて大きく変化する。化学二次電池の場合の放
電終止に相当する放電状態では、キャパシタ電池の電圧
はほぼ零となってしまう。このため、電気二重層キャパ
シタ電池を使用する場合、電圧がほぼ零からの充電(初
期充電)を容易に行えることが望ましい。
As described above, the electric double layer capacitor battery differs from the conventional chemical secondary battery in that the battery voltage greatly changes depending on the use condition of the battery. In a discharge state corresponding to the end of discharge in the case of a chemical secondary battery, the voltage of the capacitor battery becomes almost zero. For this reason, when an electric double layer capacitor battery is used, it is desirable that charging (initial charging) from a voltage of almost zero can be easily performed.

【0015】図10に示した従来の電源システムでは、
主蓄電装置4の電圧がほぼ零からの充電(初期充電)ま
たは規定値以下からの充電(予備充電)は、車載のエン
ジン発電機から行うことができない。これは、エンジン
1はアイドリング回転数以下では回転できないため、整
流器3の出力電圧の最小値が決まってしまい、主蓄電装
置4の電圧が規定値以上でないと充電できないためであ
る。従ってこの場合には、図16に示すように外部電源
を使用して充電している。すなわち図16において、2
00は主蓄電装置4に接続された外部の充電用電源装置
である。この充電用電源装置200の詳細な構成は本発
明の要旨ではないため、ここでは説明を省略する。以上
のように従来の電源システムでは、初期充電等に当たっ
て外部の充電用電源装置が必要であり、充電作業が煩わ
しいという問題があった。
In the conventional power supply system shown in FIG.
Charging from a voltage of the main power storage device 4 of approximately zero (initial charging) or charging below a specified value (preliminary charging) cannot be performed by an onboard engine generator. This is because the engine 1 cannot rotate at an idling rotational speed or less, so the minimum value of the output voltage of the rectifier 3 is determined, and charging cannot be performed unless the voltage of the main power storage device 4 is equal to or more than a specified value. Therefore, in this case, charging is performed using an external power supply as shown in FIG. That is, in FIG.
Reference numeral 00 denotes an external charging power supply device connected to the main power storage device 4. The detailed configuration of the charging power supply device 200 is not the gist of the present invention, and thus the description is omitted here. As described above, the conventional power supply system requires an external charging power supply device for initial charging and the like, and has a problem that the charging operation is troublesome.

【0016】[0016]

【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、請求項1,3に記載する
ように、電気二重層キャパシタセルを複数、直列接続し
て電池ブロックを形成し、少なくとも2個の電池ブロッ
ク間を電流双方向形昇降圧チョッパにより接続して主蓄
電装置を構成するものであり、また、請求項2に記載す
るように、この主蓄電装置をインバータ等の電力変換器
に対して複数、並列に接続するものである。更に、請求
項4,5に記載するように、負荷の大小に応じて、チョ
ッパの昇降圧制御により主蓄電装置の電圧を予め設定さ
れた値に制御するものである。また、請求項6に記載す
るごとく、主蓄電装置の電池ブロックを、接続ケーブル
またはチョッパを介して車載の補助蓄電装置の電力によ
り初期充電するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a battery block formed by connecting a plurality of electric double layer capacitor cells in series. The main power storage device is formed by connecting at least two battery blocks by a current bidirectional buck-boost chopper, and the main power storage device is connected to an inverter. And a plurality of such power converters are connected in parallel. Furthermore, as described in claims 4 and 5, the voltage of the main power storage device is controlled to a preset value by the step-up / down control of the chopper according to the magnitude of the load. According to a sixth aspect of the present invention, the battery block of the main power storage device is initially charged with the power of the vehicle-mounted auxiliary power storage device via a connection cable or a chopper.

【0017】[0017]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。まず、図1は本発明の第1実施形態であ
り、請求項1,3に記載した発明の実施形態に相当す
る。図10と同一の構成要素は同一の番号を付してあ
る。図1において、40は前述の主蓄電装置4に相当す
る主蓄電装置であり、電気二重層キャパシタ電池ブロッ
ク10,11と、これらの電池ブロック10,11の間
に接続された電流双方向形昇降圧チョッパ12とから構
成されている。なお、電池ブロック10,11は何れも
電気二重層キャパシタセル100,110を複数、直列
接続して構成されている。図示されていないが、各電池
ブロックは、複数の電気二重層キャパシタセルの直列回
路をそれぞれ複数、並列接続して構成しても良い。前記
電池ブロック11の両端には、DC−DCコンバータ7
及びインバータ5が互いに並列に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, FIG. 1 shows a first embodiment of the present invention, which corresponds to the first and third embodiments of the present invention. The same components as those in FIG. 10 are denoted by the same reference numerals. In FIG. 1, reference numeral 40 denotes a main power storage device corresponding to the above-described main power storage device 4, which includes electric double-layer capacitor battery blocks 10, 11 and a current bidirectional lifting device connected between these battery blocks 10, 11. And a pressure chopper 12. Each of the battery blocks 10 and 11 is configured by connecting a plurality of electric double layer capacitor cells 100 and 110 in series. Although not shown, each battery block may be configured by connecting a plurality of series circuits of a plurality of electric double layer capacitor cells in parallel. A DC-DC converter 7 is provided at both ends of the battery block 11.
And the inverter 5 are connected in parallel with each other.

【0018】チョッパ12は電流二象限動作により電池
ブロック10,11の相互間で昇降圧可能となってい
る。このチョッパ12の構成及び動作については後述す
る。
The chopper 12 can be stepped up and down between the battery blocks 10 and 11 by a current two-quadrant operation. The configuration and operation of the chopper 12 will be described later.

【0019】図2は本発明の第2実施形態であり、請求
項2の発明の実施形態に相当する。図1と同一構成要素
は同一番号を付してある。この実施形態は、図1に示し
た主蓄電装置をインバータ5に対して並列接続した例で
あり、図2における40a,40bは図1の主蓄電装置
40と同一の構成である。
FIG. 2 shows a second embodiment of the present invention, and corresponds to the second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals. This embodiment is an example in which the main power storage device shown in FIG. 1 is connected in parallel to the inverter 5, and 40a and 40b in FIG. 2 have the same configuration as the main power storage device 40 in FIG.

【0020】図3は本発明の第3実施形態であり、請求
項1の発明の実施形態を図10に示したシリーズハイブ
リッド方式の電気自動車に適用した場合の実施形態に相
当する。図3において、図1や図10と同一の構成要素
は同一番号を付してあり、図10における主蓄電装置4
を主蓄電装置40に置き換えた構成となっている。
FIG. 3 shows a third embodiment of the present invention, which corresponds to an embodiment in which the first embodiment of the present invention is applied to the series hybrid type electric vehicle shown in FIG. 3, the same components as those in FIGS. 1 and 10 are denoted by the same reference numerals, and main power storage device 4 in FIG.
Is replaced by a main power storage device 40.

【0021】次に、図4は図1〜図3におけるチョッパ
12の詳細な構成を示した回路図である。なお、図1〜
図3に示したDC−DCコンバータ7及び補助蓄電装置
8は図示を省略してある。図4に示したチョッパ12の
回路構成は請求項3に記載した発明の実施形態に相当
し、電流双方向形の昇降圧チョッパとなっている。
Next, FIG. 4 is a circuit diagram showing a detailed configuration of the chopper 12 in FIGS. In addition, FIG.
The illustration of the DC-DC converter 7 and the auxiliary power storage device 8 shown in FIG. 3 is omitted. The circuit configuration of the chopper 12 shown in FIG. 4 corresponds to the embodiment of the invention described in claim 3, and is a current bidirectional buck-boost chopper.

【0022】図4において、121〜124は半導体ス
イッチ部、125は半導体スイッチ部121,122の
相互接続点と半導体スイッチ部123,124の相互接
続点との間に接続された電流平滑リアクトル、126,
127は電池ブロック10,11にそれぞれ並列接続さ
れるフィルタコンデンサである。前記半導体スイッチ部
121〜124は、トランジスタからなる半導体スイッ
チ121a〜124aとこれらに逆並列接続されたダイ
オード121b〜124bとから構成されている。
In FIG. 4, 121 to 124 are semiconductor switch parts, 125 is a current smoothing reactor connected between the interconnection point between the semiconductor switch parts 121 and 122 and the interconnection point between the semiconductor switch parts 123 and 124, 126 ,
127 is a filter capacitor connected in parallel to the battery blocks 10 and 11, respectively. The semiconductor switch units 121 to 124 are composed of semiconductor switches 121a to 124a formed of transistors and diodes 121b to 124b connected in anti-parallel to these switches.

【0023】次いで、図5は、図1の回路構成において
電池ブロック10を一定電力で放電させた時の主蓄電装
置40の電圧の挙動を示したものである。図5におい
て、aは主蓄電装置40の電圧、bは電池ブロック10
の電圧を示す。また、cは図10の従来方式における主
蓄電装置4の電圧を示す。
Next, FIG. 5 shows the behavior of the voltage of the main power storage device 40 when the battery block 10 is discharged at a constant power in the circuit configuration of FIG. In FIG. 5, a is the voltage of the main power storage device 40, b is the battery block 10
Is shown. Further, c indicates the voltage of the main power storage device 4 in the conventional system of FIG.

【0024】図5におけるモードIは、チョッパ12を
昇圧動作させて、電力を一方の電池ブロック10から供
給し、主蓄電装置40全体の出力電圧を一定に保つ運転
域である。また、モードIIは、チョッパ動作を停止し
て、電力を他方の電池ブロック11から供給する運転域
を示す。
Mode I in FIG. 5 is an operation range in which the chopper 12 is stepped up to supply power from one of the battery blocks 10 and the output voltage of the entire main power storage device 40 is kept constant. Mode II indicates an operation range in which chopper operation is stopped and power is supplied from the other battery block 11.

【0025】図6は、図5の動作モードI,IIに対応し
た動作を示した図であり、(a)は図5のモードIの電
力の流れを、(b)は図5のモードIIの電力の流れをそ
れぞれ矢印で示してある。動作モードIに対応する図6
(a)では、電池ブロック10の有する電力がチョッパ
12を介してインバータ5側に供給され、動作モードII
に対応する図6(b)では、電池ブロック11の有する
電力が直接、インバータ5側に供給される。図5に示し
たように、動作モードIでは電池ブロック10の電圧
(特性b)は次第に低下するが、チョッパ12の昇圧動
作により、主蓄電装置40全体としての出力電圧(特性
a)は一定値を保っている。また、動作モードIIでは、
電池ブロック11の電圧低下に伴って主蓄電装置40の
出力電圧(特性a)も次第に低下することとなる。な
お、電池ブロック10,11から同時に電力を供給する
ことも可能であり、この場合の電力の流れを図6(c)
に矢印で示す。
FIGS. 6A and 6B are diagrams showing an operation corresponding to the operation modes I and II in FIG. 5. FIG. 6A shows the power flow in the mode I in FIG. 5, and FIG. 6B shows the operation in the mode II in FIG. Are indicated by arrows. FIG. 6 corresponding to operation mode I
In (a), the power of the battery block 10 is supplied to the inverter 5 through the chopper 12, and the operation mode II
In FIG. 6B corresponding to FIG. 6, the electric power of the battery block 11 is directly supplied to the inverter 5 side. As shown in FIG. 5, in the operation mode I, the voltage (characteristic b) of the battery block 10 gradually decreases, but the output voltage (characteristic a) of the entire main power storage device 40 becomes constant by the boosting operation of the chopper 12. Is kept. In operation mode II,
As the voltage of the battery block 11 decreases, the output voltage (characteristic a) of the main power storage device 40 also gradually decreases. It is also possible to supply power simultaneously from the battery blocks 10 and 11, and the flow of power in this case is shown in FIG.
Are indicated by arrows.

【0026】図7は図4に示したチョッパ12の詳細な
動作説明図であり、図4と同一構成要素は同一番号を付
してある。回路構成要素の番号は、煩雑になるのを避け
るため図7(a)だけに付すこととし、(b),
(c),(d)については省略する。
FIG. 7 is a detailed explanatory diagram of the operation of the chopper 12 shown in FIG. 4, and the same components as those in FIG. 4 are denoted by the same reference numerals. Circuit component numbers are assigned only to FIG. 7A to avoid complication, and FIG.
(C) and (d) are omitted.

【0027】図7(a)は、チョッパ12を昇圧動作さ
せて電池ブロック10から電池ブロック11側へ電力を
供給する場合であり、半導体スイッチ121aがオン、
半導体スイッチ122a,123aがオフ、半導体スイ
ッチ124aがスイッチングする。半導体スイッチ12
4aをオンした時の電流通路を実線で、オフした時の電
流通路を破線で示してある。
FIG. 7 (a) shows a case where the chopper 12 is stepped up to supply power from the battery block 10 to the battery block 11, and the semiconductor switch 121a is turned on.
The semiconductor switches 122a and 123a are turned off, and the semiconductor switch 124a switches. Semiconductor switch 12
The current path when 4a is turned on is shown by a solid line, and the current path when it is turned off is shown by a broken line.

【0028】図7(b)は、チョッパ12を降圧動作さ
せて電池ブロック11から電池ブロック10側へ電力を
供給する場合であり、半導体スイッチ121a,122
a,124aがオフ、半導体スイッチ123aがスイッ
チングする。半導体スイッチ123aをオンした時の電
流通路を実線で、オフした時の電流通路を破線で示して
ある。
FIG. 7B shows a case where the chopper 12 is operated to lower the voltage to supply electric power from the battery block 11 to the battery block 10 side.
a, 124a are off, and the semiconductor switch 123a switches. The current path when the semiconductor switch 123a is turned on is indicated by a solid line, and the current path when the semiconductor switch 123a is turned off is indicated by a broken line.

【0029】図7(c)は、チョッパ12を降圧動作さ
せて電池ブロック10から電池ブロック11側へ電力を
供給する場合であり、半導体スイッチ122a,123
a,124aがオフ、半導体スイッチ121aがスイッ
チングする。半導体スイッチ121aをオンした時の電
流通路を実線で、オフした時の電流通路を破線で示して
ある。
FIG. 7C shows a case in which the chopper 12 is operated to lower the voltage to supply electric power from the battery block 10 to the battery block 11, and the semiconductor switches 122a, 123
a, 124a are off, and the semiconductor switch 121a switches. The current path when the semiconductor switch 121a is turned on is indicated by a solid line, and the current path when the semiconductor switch 121a is turned off is indicated by a broken line.

【0030】図7(d)は、チョッパ12を昇圧動作さ
せて電池ブロック11から電池ブロック10側へ電力を
供給する場合であり、半導体スイッチ123aがオン、
半導体スイッチ121a,124aがオフ、半導体スイ
ッチ122aがスイッチングする。半導体スイッチ12
2aをオンした時の電流通路を実線で、オフした時の電
流通路を破線で示してある。
FIG. 7D shows a case where the chopper 12 is operated to boost the voltage to supply electric power from the battery block 11 to the battery block 10, and the semiconductor switch 123a is turned on.
The semiconductor switches 121a and 124a are turned off, and the semiconductor switch 122a switches. Semiconductor switch 12
The current path when 2a is turned on is shown by a solid line, and the current path when it is turned off is shown by a broken line.

【0031】更に、図1に示した電源システムでは、チ
ョッパ12の制御によって主蓄電装置40の電圧を可変
にすることが可能である。車両が都市内の平坦路を定速
走行する場合の走行電力は、最大出力の1/10程度で
ある。電気自動車の場合、このような運転域でもパワー
トレインの効率が高いことが望まれる。このような運転
域で効率を高める有効な手段の一つとして、インバータ
の入力電圧を下げることが考えられる。
Further, in the power supply system shown in FIG. 1, the voltage of main power storage device 40 can be varied by controlling chopper 12. The traveling power when the vehicle travels at a constant speed on a flat road in a city is about 1/10 of the maximum output. In the case of an electric vehicle, it is desired that the efficiency of the power train is high even in such an operating range. As one of effective means for increasing the efficiency in such an operation range, it is conceivable to reduce the input voltage of the inverter.

【0032】図8は、上記の点に着目した本発明の第4
実施形態を示す動作説明図であり、請求項4,5に記載
した発明の実施形態に相当する。図8において、負荷の
大小(走行電力の大小)に応じて予め設定されたインバ
ータ5の入力電圧に対し、チョッパ12を昇降圧動作さ
せて電池ブロック11の電圧を変化させ、これによって
インバータ5の入力電圧を設定値に保つ。例えば、加速
時のようにインバータ5の電圧(電池ブロック11の電
圧)を高く保つ場合には、放電によってその電圧が初期
電圧から次第に低下する電池ブロック10側から見てチ
ョッパ12を昇圧動作させ、電池ブロック11の電圧を
所定値まで上昇させる。回生制動時には、電池ブロック
11側から見てチョッパ12を降圧動作させ、電池ブロ
ック10を充電する。
FIG. 8 shows a fourth embodiment of the present invention focusing on the above points.
FIG. 7 is an operation explanatory diagram showing the embodiment, and corresponds to the embodiment of the invention described in claims 4 and 5. In FIG. 8, the voltage of the battery block 11 is changed by raising and lowering the chopper 12 with respect to the input voltage of the inverter 5 preset according to the magnitude of the load (the magnitude of the traveling power). Keep the input voltage at the set value. For example, when the voltage of the inverter 5 (the voltage of the battery block 11) is kept high as in the case of acceleration, the chopper 12 is stepped up when viewed from the battery block 10 where the voltage gradually decreases from the initial voltage by discharging. The voltage of the battery block 11 is raised to a predetermined value. At the time of regenerative braking, the battery block 10 is charged by stepping down the chopper 12 when viewed from the battery block 11 side.

【0033】図9は、本発明の第5実施形態を示す回路
構成図であり、請求項6に記載した発明の実施形態に相
当する。この実施形態は、電池ブロック10,11をチ
ョッパ12により初期充電するための構成である。電池
ブロック10の電圧がほぼ零の時、一方の電池ブロック
10と補助蓄電装置8とを接続ケーブル300によって
接続する。この接続ケーブル300には、従来のエンジ
ン自動車に使用されているブースタケーブルを用いるこ
とができる。
FIG. 9 is a circuit diagram showing a fifth embodiment of the present invention, and corresponds to the sixth embodiment of the present invention. This embodiment is a configuration for initially charging the battery blocks 10 and 11 by the chopper 12. When the voltage of the battery block 10 is substantially zero, one battery block 10 and the auxiliary power storage device 8 are connected by the connection cable 300. As the connection cable 300, a booster cable used in a conventional engine automobile can be used.

【0034】補助蓄電装置8と電池ブロック10とを接
続ケーブル300により接続し、電池ブロック10を補
助蓄電装置8の電圧に充電する。この時の充電電流は、
電池ブロック10と補助蓄電装置8との内部抵抗及び接
続ケーブル300の抵抗によって制限された電流とな
り、補助蓄電装置8、電池ブロック10共に許容される
値となる。電池ブロック10の電圧が規定値(チョッパ
12の制御動作が可能となる電圧)に達したら、電池ブ
ロック10側から見てチョッパ12を昇圧動作させ、補
助蓄電装置8により他方の電池ブロック11を充電すれ
ばよい。
The auxiliary power storage device 8 and the battery block 10 are connected by a connection cable 300, and the battery block 10 is charged to the voltage of the auxiliary power storage device 8. The charging current at this time is
The current is limited by the internal resistance between the battery block 10 and the auxiliary power storage device 8 and the resistance of the connection cable 300, and both the auxiliary power storage device 8 and the battery block 10 have allowable values. When the voltage of the battery block 10 reaches a specified value (a voltage at which the control operation of the chopper 12 can be performed), the chopper 12 is boosted when viewed from the battery block 10 side, and the other battery block 11 is charged by the auxiliary power storage device 8. do it.

【0035】[0035]

【発明の効果】以上のように本発明によれば、主蓄電装
置を動力源とする一般の電気自動車またはハイブリッド
電気自動車の主蓄電装置として、電気二重層キャパシタ
セルを直列接続した電池ブロックを複数備え、これらの
ブロック間を電流双方向形昇降圧チョッパにより接続す
ると共に、このチョッパの動作により電池ブロック間の
電力の授受を行うようにしたので、次の効果が期待され
る。
As described above, according to the present invention, as a main power storage device of a general electric vehicle or a hybrid electric vehicle powered by a main power storage device, a plurality of battery blocks in which electric double layer capacitor cells are connected in series are provided. Since these blocks are connected by a current bidirectional step-up / step-down chopper, and power is transferred between the battery blocks by the operation of the chopper, the following effects are expected.

【0036】(1)電気二重層キャパシタ電池を使用し
た小形・軽量かつ長寿命な主蓄電装置の実現が可能とな
り、ハイブリッド形を含む種々の実用的な電気自動車を
提供することができる。 (2)前記チョッパにより、主蓄電装置の電圧を可変に
してシステム効率の高い電圧で運転できるので、燃費向
上が可能になる。
(1) A small, lightweight and long-life main power storage device using an electric double layer capacitor battery can be realized, and various practical electric vehicles including a hybrid type can be provided. (2) The chopper can be operated at a voltage with high system efficiency by varying the voltage of the main power storage device, so that fuel efficiency can be improved.

【0037】なお、前記実施形態では本発明をシリーズ
ハイブリッド電気自動車に適用した場合を説明したが、
本発明は、主蓄電装置のみを動力源とする電気自動車や
パラレルハイブリッド電気自動車、主蓄電装置以外に燃
料電池を備えた電気自動車等、種々の電気自動車の電源
システムに適用可能である。
In the above embodiment, the case where the present invention is applied to a series hybrid electric vehicle has been described.
INDUSTRIAL APPLICABILITY The present invention is applicable to various electric vehicle power supply systems such as an electric vehicle using only the main power storage device as a power source, a parallel hybrid electric vehicle, and an electric vehicle equipped with a fuel cell in addition to the main power storage device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示す回路構成図であ
る。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施形態を示す回路構成図であ
る。
FIG. 2 is a circuit configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第1実施形態をシリーズハイブリッド
電気自動車に適用した場合の構成例である。
FIG. 3 is a configuration example when the first embodiment of the present invention is applied to a series hybrid electric vehicle.

【図4】図1〜図3におけるチョッパの詳細な回路構成
図である。
FIG. 4 is a detailed circuit configuration diagram of the chopper in FIGS. 1 to 3;

【図5】図1〜図4における主蓄電装置及び電池ブロッ
クの電圧の挙動を示す図である。
FIG. 5 is a diagram showing a behavior of voltages of a main power storage device and a battery block in FIGS. 1 to 4;

【図6】図5の動作モードに応じた動作説明図である。FIG. 6 is an operation explanatory diagram according to the operation mode of FIG. 5;

【図7】図4に示したチョッパの詳細な動作説明図であ
る。
FIG. 7 is a detailed operation explanatory diagram of the chopper shown in FIG. 4;

【図8】本発明の第4実施形態を示す動作説明図であ
る。
FIG. 8 is an operation explanatory view showing a fourth embodiment of the present invention.

【図9】本発明の第5実施形態を示す回路構成図であ
る。
FIG. 9 is a circuit configuration diagram showing a fifth embodiment of the present invention.

【図10】従来技術としてのシリーズハイブリッド電気
自動車の電源システムを示す図である。
FIG. 10 is a diagram showing a power supply system of a series hybrid electric vehicle as a conventional technique.

【図11】従来技術としてのシリーズハイブリッド電気
自動車の電源システムを示す図である。
FIG. 11 is a diagram showing a power supply system of a series hybrid electric vehicle as a conventional technique.

【図12】図11のチョッパの詳細な回路構成図であ
る。
FIG. 12 is a detailed circuit configuration diagram of the chopper of FIG. 11;

【図13】図12の等価回路図である。FIG. 13 is an equivalent circuit diagram of FIG.

【図14】図12の等価回路図である。FIG. 14 is an equivalent circuit diagram of FIG.

【図15】図11のチョッパの動作説明図である。FIG. 15 is an operation explanatory view of the chopper of FIG. 11;

【図16】従来技術としてのシリーズハイブリッド電気
自動車の初期充電システムの構成図である。
FIG. 16 is a configuration diagram of an initial charging system of a series hybrid electric vehicle as a prior art.

【符号の説明】[Explanation of symbols]

1 エンジン 2 発電機 3 整流器 5 インバータ 6 車両駆動電動機 7 DC−DCコンバータ 8 補助蓄電装置 9 補機 10,11 電気二重層キャパシタ電池ブロック 12 電流双方向形昇降圧チョッパ 40 主蓄電装置 100,110 電気二重層キャパシタセル 121,122,123,124 半導体スイッチ部 121a,122a,123a,124a 半導体ス
イッチ 121b,122b,123b,124b ダイオード 125 電流平滑リアクトル 126,127 フィルタコンデンサ 300 接続ケーブル
DESCRIPTION OF SYMBOLS 1 Engine 2 Generator 3 Rectifier 5 Inverter 6 Vehicle drive motor 7 DC-DC converter 8 Auxiliary power storage device 9 Auxiliary device 10, 11 Electric double layer capacitor battery block 12 Current bidirectional buck-boost chopper 40 Main power storage device 100, 110 Electricity Double layer capacitor cell 121, 122, 123, 124 Semiconductor switch unit 121a, 122a, 123a, 124a Semiconductor switch 121b, 122b, 123b, 124b Diode 125 Current smoothing reactor 126, 127 Filter capacitor 300 Connection cable

フロントページの続き (72)発明者 山田 淳 埼玉県上尾市大字一丁目1番地 日産ディ ーゼル工業株式会社内 Fターム(参考) 5H115 PA12 PC06 PG04 PI11 PI16 PI22 PI29 PO02 PU01 PU21 PU26 PV03 PV07 PV09 PV22 QE05 QE08 QE09 Continuation of the front page (72) Inventor Jun Yamada 1-chome, 1-chome, Ageo-shi, Saitama F-term in Nissan Diesel Industry Co., Ltd. (reference) 5H115 PA12 PC06 PG04 PI11 PI16 PI22 PI29 PO02 PU01 PU21 PU26 PV03 PV07 PV09 PV22 QE05 QE08 QE09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 車載エンジン発電機及び車載主蓄電装置
の電力、または、車載主蓄電装置の電力により電力変換
器を介し車両駆動電動機を駆動する電気自動車におい
て、 前記主蓄電装置を、電気二重層キャパシタセルを複数個
直列接続してなる少なくとも2個の電池ブロックと、こ
れらの電池ブロック間に接続されたチョッパとから構成
したことを特徴とする電気自動車の電源システム。
1. An electric vehicle that drives a vehicle drive motor via a power converter using electric power of an onboard engine generator and an onboard main power storage device or power of an onboard main power storage device, wherein the main power storage device is an electric double layer. A power supply system for an electric vehicle, comprising: at least two battery blocks formed by connecting a plurality of capacitor cells in series; and a chopper connected between these battery blocks.
【請求項2】 請求項1記載の電気自動車の電源システ
ムにおいて、 前記電力変換器に対して、前記主蓄電装置を複数、並列
に接続したことを特徴とする電気自動車の電源システ
ム。
2. The power supply system for an electric vehicle according to claim 1, wherein a plurality of said main power storage devices are connected in parallel to said power converter.
【請求項3】 請求項1または2記載の電気自動車の電
源システムにおいて、 前記チョッパが電流双方向形昇降圧チョッパであること
を特徴とする電気自動車の電源システム。
3. The power supply system for an electric vehicle according to claim 1, wherein the chopper is a current bidirectional buck-boost chopper.
【請求項4】 請求項1〜3の何れか1項に記載の電気
自動車の電源システムにおいて、 前記チョッパの制御により前記主蓄電装置の電圧を可変
とすることを特徴とする電気自動車の電源システム。
4. The power supply system for an electric vehicle according to claim 1, wherein the voltage of the main power storage device is made variable by controlling the chopper. .
【請求項5】 請求項4記載の電気自動車の電源システ
ムにおいて、 前記主蓄電装置の電圧を負荷の大小に応じた値とするこ
とを特徴とする電気自動車の電源システム。
5. The power supply system for an electric vehicle according to claim 4, wherein a voltage of said main power storage device is set to a value corresponding to a magnitude of a load.
【請求項6】 請求項1〜5の何れか1項に記載の電気
自動車の電源システムにおいて、 前記電池ブロックを、接続ケーブルまたは前記チョッパ
を介して車載の補助蓄電装置の電力により初期充電する
ことを特徴とする電気自動車の電源システム。
6. The power supply system for an electric vehicle according to claim 1, wherein the battery block is initially charged with electric power of a vehicle-mounted auxiliary power storage device via a connection cable or the chopper. A power supply system for an electric vehicle.
JP09453499A 1999-04-01 1999-04-01 Electric vehicle power system Expired - Lifetime JP3552087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09453499A JP3552087B2 (en) 1999-04-01 1999-04-01 Electric vehicle power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09453499A JP3552087B2 (en) 1999-04-01 1999-04-01 Electric vehicle power system

Publications (2)

Publication Number Publication Date
JP2000295715A true JP2000295715A (en) 2000-10-20
JP3552087B2 JP3552087B2 (en) 2004-08-11

Family

ID=14113007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09453499A Expired - Lifetime JP3552087B2 (en) 1999-04-01 1999-04-01 Electric vehicle power system

Country Status (1)

Country Link
JP (1) JP3552087B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272137A (en) * 2001-03-09 2002-09-20 Tdk Corp Interconnected system inverter
JP2002272136A (en) * 2001-03-09 2002-09-20 Tdk Corp Interconnected system inverter
JP2002291109A (en) * 2001-03-29 2002-10-04 Fuji Electric Co Ltd Drive system for parallel hybrid vehicle
EP1366948A1 (en) * 2002-05-30 2003-12-03 Nec Tokin Corporation Hybrid power supply system
EP1253698A3 (en) * 2001-04-25 2004-03-10 Hitachi, Ltd. Power supply equipment for motor vehicle
WO2006108020A1 (en) * 2005-04-04 2006-10-12 Aerovironment, Inc. Energy storage apparatus and related method
JP2007323997A (en) * 2006-06-01 2007-12-13 Equos Research Co Ltd Fuel cell system, and its operation method
US7439631B2 (en) 2002-01-17 2008-10-21 Komatsu Ltd. Hybrid power supply system
JP2009523002A (en) * 2006-01-09 2009-06-11 ゼネラル・エレクトリック・カンパニイ Vehicle propulsion system
WO2011013528A1 (en) 2009-07-30 2011-02-03 ヤンマー株式会社 Dc-dc converter circuit
JP2011035999A (en) * 2009-07-30 2011-02-17 Yanmar Co Ltd Dc-dc converter circuit
JP2011035998A (en) * 2009-07-30 2011-02-17 Yanmar Co Ltd Dc-dc converter circuit
WO2012039131A2 (en) 2010-09-22 2012-03-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Power supply system
CN102458911A (en) * 2009-06-16 2012-05-16 丰田自动车株式会社 Fuel cell system
JP2012147563A (en) * 2011-01-12 2012-08-02 Ihi Corp Power supply stabilizer and power supply stabilizer control method
WO2013001989A1 (en) 2011-06-29 2013-01-03 トヨタ自動車株式会社 Power supply system
JP2013106434A (en) * 2011-11-14 2013-05-30 Toyo Electric Mfg Co Ltd Power supply identification method for electric power conversion system
JP2013532942A (en) * 2010-07-30 2013-08-19 イエフペ エネルジ ヌヴェル Bidirectional current double boost type secondary DC / DC converter
WO2015033553A1 (en) 2013-09-04 2015-03-12 Toyota Jidosha Kabushiki Kaisha Power supply system
WO2015079303A1 (en) 2013-11-29 2015-06-04 Toyota Jidosha Kabushiki Kaisha Controller and control method for power converter
US9647544B2 (en) 2012-03-19 2017-05-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Magnetic component, power converter and power supply system
US9906133B2 (en) 2014-09-04 2018-02-27 Toyota Jidosha Kabushiki Kaisha Electric source control apparatus
CN111181203A (en) * 2018-11-09 2020-05-19 丰田自动车株式会社 Power supply for vehicle and method for controlling power supply
CN113315375A (en) * 2021-05-10 2021-08-27 江苏阿诗特能源科技有限公司 Bidirectional BUCK-BOOST circuit and method based on battery charging and discharging

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272136A (en) * 2001-03-09 2002-09-20 Tdk Corp Interconnected system inverter
JP2002272137A (en) * 2001-03-09 2002-09-20 Tdk Corp Interconnected system inverter
JP4683365B2 (en) * 2001-03-09 2011-05-18 Tdk株式会社 Grid interconnection inverter
JP4683366B2 (en) * 2001-03-09 2011-05-18 Tdk株式会社 Grid interconnection inverter
JP2002291109A (en) * 2001-03-29 2002-10-04 Fuji Electric Co Ltd Drive system for parallel hybrid vehicle
EP1253698A3 (en) * 2001-04-25 2004-03-10 Hitachi, Ltd. Power supply equipment for motor vehicle
US6861767B2 (en) 2001-04-25 2005-03-01 Hitachi, Ltd. Power supply equipment for motor vehicle with battery and capacitor
US6995480B2 (en) 2001-04-25 2006-02-07 Hitachi, Ltd. Power supply equipment for motor vehicle with inverter for controlling motor generator
US7439631B2 (en) 2002-01-17 2008-10-21 Komatsu Ltd. Hybrid power supply system
EP1366948A1 (en) * 2002-05-30 2003-12-03 Nec Tokin Corporation Hybrid power supply system
US7436150B2 (en) 2005-04-04 2008-10-14 Aerovironment Inc. Energy storage apparatus having a power processing unit
US7492130B2 (en) 2005-04-04 2009-02-17 Aerovironment, Inc. Power processing unit and related method for regulating a voltage despite voltage fluctuations across an energy storage device
WO2006108020A1 (en) * 2005-04-04 2006-10-12 Aerovironment, Inc. Energy storage apparatus and related method
JP2009523002A (en) * 2006-01-09 2009-06-11 ゼネラル・エレクトリック・カンパニイ Vehicle propulsion system
JP2007323997A (en) * 2006-06-01 2007-12-13 Equos Research Co Ltd Fuel cell system, and its operation method
CN102458911B (en) * 2009-06-16 2014-05-14 丰田自动车株式会社 Fuel cell system
CN102458911A (en) * 2009-06-16 2012-05-16 丰田自动车株式会社 Fuel cell system
CN102474179A (en) * 2009-07-30 2012-05-23 洋马株式会社 Dc-dc converter circuit
WO2011013528A1 (en) 2009-07-30 2011-02-03 ヤンマー株式会社 Dc-dc converter circuit
JP2011035998A (en) * 2009-07-30 2011-02-17 Yanmar Co Ltd Dc-dc converter circuit
JP2011035999A (en) * 2009-07-30 2011-02-17 Yanmar Co Ltd Dc-dc converter circuit
US8736239B2 (en) 2009-07-30 2014-05-27 Yanmar Co., Ltd. DC-DC converter circuit
JP2013532942A (en) * 2010-07-30 2013-08-19 イエフペ エネルジ ヌヴェル Bidirectional current double boost type secondary DC / DC converter
US9431824B2 (en) 2010-09-22 2016-08-30 Kabushiki Kaisha Toyota Chuo Kenkyusho DC-DC converter comprising DC power sources to be connected in parallel or in series
WO2012039131A2 (en) 2010-09-22 2012-03-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Power supply system
CN103141019A (en) * 2010-09-22 2013-06-05 丰田自动车株式会社 DC-DC converter comprising DC power sources to be connected in parallel or in series
JP2012147563A (en) * 2011-01-12 2012-08-02 Ihi Corp Power supply stabilizer and power supply stabilizer control method
JP2013013234A (en) * 2011-06-29 2013-01-17 Toyota Central R&D Labs Inc Power-supply system
KR101514914B1 (en) 2011-06-29 2015-04-23 도요타지도샤가부시키가이샤 Power supply system
WO2013001989A1 (en) 2011-06-29 2013-01-03 トヨタ自動車株式会社 Power supply system
US9438115B2 (en) 2011-06-29 2016-09-06 Toyota Jidosha Kabushiki Kaisha Power supply system
JP2013106434A (en) * 2011-11-14 2013-05-30 Toyo Electric Mfg Co Ltd Power supply identification method for electric power conversion system
US9647544B2 (en) 2012-03-19 2017-05-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Magnetic component, power converter and power supply system
WO2015033553A1 (en) 2013-09-04 2015-03-12 Toyota Jidosha Kabushiki Kaisha Power supply system
US10170988B2 (en) 2013-09-04 2019-01-01 Toyota Jidosha Kabushiki Kaisha Power supply system
WO2015079303A1 (en) 2013-11-29 2015-06-04 Toyota Jidosha Kabushiki Kaisha Controller and control method for power converter
US9906133B2 (en) 2014-09-04 2018-02-27 Toyota Jidosha Kabushiki Kaisha Electric source control apparatus
CN111181203A (en) * 2018-11-09 2020-05-19 丰田自动车株式会社 Power supply for vehicle and method for controlling power supply
CN111181203B (en) * 2018-11-09 2023-10-03 丰田自动车株式会社 Power supply for vehicle and control method of power supply
CN113315375A (en) * 2021-05-10 2021-08-27 江苏阿诗特能源科技有限公司 Bidirectional BUCK-BOOST circuit and method based on battery charging and discharging

Also Published As

Publication number Publication date
JP3552087B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP3552087B2 (en) Electric vehicle power system
JP3219039B2 (en) Electric vehicle electric system
CN101746247B (en) Auxiliary drive apparatus and manufacture method thereof
US7568537B2 (en) Vehicle propulsion system
JP5611345B2 (en) Circuit device for in-vehicle system
JP3655277B2 (en) Electric motor power management system
JP4440936B2 (en) Electric vehicle control device
EP1366948A1 (en) Hybrid power supply system
US9586496B2 (en) Modular stacked dc architecture traction system and method of making same
JP2007174867A (en) Power supply unit for vehicle
JP2001177914A (en) Power system for electric vehicle
US9533582B2 (en) Vehicle and power unit for it
JP3827935B2 (en) Vehicle power supply
JP3558546B2 (en) Electric vehicle power system
JP2013031238A (en) Power conversion device
JPH09233608A (en) Hybrid electric car
JP3558159B2 (en) Electric vehicle power system
JPH08251711A (en) Battery apparatus for hybrid automobile
JP5076918B2 (en) Power storage device
JPH11220812A (en) Electrical system of electric vehicle
JP2012023803A (en) Dc-dc converter for driving motor
CN118182258A (en) Electric vehicle and control method thereof
KR20210058422A (en) Low voltage compensation system for micro electric vehicle

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term