JP2013106434A - Power supply identification method for electric power conversion system - Google Patents

Power supply identification method for electric power conversion system Download PDF

Info

Publication number
JP2013106434A
JP2013106434A JP2011248763A JP2011248763A JP2013106434A JP 2013106434 A JP2013106434 A JP 2013106434A JP 2011248763 A JP2011248763 A JP 2011248763A JP 2011248763 A JP2011248763 A JP 2011248763A JP 2013106434 A JP2013106434 A JP 2013106434A
Authority
JP
Japan
Prior art keywords
power
intermediate circuit
power supply
converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011248763A
Other languages
Japanese (ja)
Other versions
JP5713453B2 (en
Inventor
Akio Imayanada
明夫 今柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2011248763A priority Critical patent/JP5713453B2/en
Publication of JP2013106434A publication Critical patent/JP2013106434A/en
Application granted granted Critical
Publication of JP5713453B2 publication Critical patent/JP5713453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: Using a power supply with a different voltage magnitude, it is necessary to identify which power supply is connected in charging external storage means, and conventionally a method for adding an auxiliary control wire for power type detection to each of power connectors and reading it on the electric power conversion system side, and a method for consuming charges of a DC intermediate circuit with an AC motor winding when stopping the electric power conversion system have been used; however the former causes a cost increase and the latter requires to control an AC motor so that the motor does not rotate and causes technical difficulty, which goes against further high operation efficiency.SOLUTION: In stopping running of a power phase converter, charges stored in a DC intermediate circuit are discharged to an external storage device via a step-up/down DC-DC converter circuit. Thus, even when a different voltage from a power supply during stopping is applied at the next running start, power supply type is completely identified to prevent generation of wasteful discharging.

Description

本発明は、それぞれ異なる電圧を有する複数の電源によって、外部の蓄電装置を充電する機能を有する電力変換装置の電源識別方法に関するものである。   The present invention relates to a power source identification method for a power conversion device having a function of charging an external power storage device with a plurality of power sources having different voltages.

蓄電装置を充電しようとする場合に、高電圧大電力で急速充電する方法と、時間はかかっても例えば壁コンセントに給電されているような、単相AC100Vで手軽に充電する方法とが考えられる。このようにそれぞれ異なる電圧の複数の電源によって外部の蓄電装置を充電する場合には、何らかの手段でどの電源が接続されているかを電力変換装置に指示する必要があった。例えばそれぞれの電源コネクタに電源種別検知用の補助制御線を付加し、それを電力変換装置側で読み取る方法がある。しかし、この手段では余計な補助制御線を設ける必要があって、電力変換装置のコストアップに繋がる。   When charging the power storage device, there are a method of rapidly charging with high voltage and high power, and a method of easily charging with a single-phase AC 100V, for example, power is supplied to a wall outlet even if it takes time. . Thus, when charging an external power storage device with a plurality of power sources having different voltages, it is necessary to instruct the power conversion device which power source is connected by some means. For example, there is a method of adding an auxiliary control line for detecting the power type to each power connector and reading it on the power converter side. However, with this means, it is necessary to provide an extra auxiliary control line, which leads to an increase in the cost of the power converter.

補助制御線を設けない場合でも、電力変換装置の直流中間回路の直流電圧を計測することで、どの電源が接続されているか判断することは可能であるが、例えば電源のうち、三相AC200Vが接続されていて、それを切断した直後に単相AC100Vが再接続された場合には、三相AC200Vの整流電圧、直流約280Vが残留しており、単相AC100Vの整流電圧、DC約140Vの約2倍であるので、そのままでは単相AC100Vが接続されているとは識別不可能である。   Even when the auxiliary control line is not provided, it is possible to determine which power source is connected by measuring the DC voltage of the DC intermediate circuit of the power converter, but for example, among the power sources, the three-phase AC200V is If the single-phase AC100V is reconnected immediately after being connected and disconnected, the three-phase AC200V rectified voltage and DC about 280V remain, the single-phase AC100V rectified voltage and DC about 140V. Since it is about twice, it cannot be identified that the single-phase AC 100V is connected as it is.

これらの問題を解決するには、電力変換装置がどの電源が接続されているか判断する前にその直流中間回路の直流電圧が、接続される電源のうち、その整流電圧が最も低い直流電圧の大きさより低ければ良い。すなわち電力変換装置の動作を停止させる際に、その直流中間回路の直流電圧を放電させることで解決できる。これらの解決手段として、停止時に放電抵抗を接続する方法があるが、電力変換装置の構成品の小型化・低コスト化に適していない。また別の手段として特許文献1と特許文献2が提案されている。   In order to solve these problems, before the power converter determines which power source is connected, the DC voltage of the DC intermediate circuit is changed to the magnitude of the DC voltage with the lowest rectified voltage among the connected power sources. It is better if it is lower than this. That is, when the operation of the power converter is stopped, the problem can be solved by discharging the DC voltage of the DC intermediate circuit. As a solution to these problems, there is a method of connecting a discharge resistor at the time of stoppage, but it is not suitable for downsizing and cost reduction of components of the power conversion device. As another means, Patent Document 1 and Patent Document 2 are proposed.

特許文献1と特許文献2に係る技術では、電力変換装置の停止時に、その直流中間回路に蓄えられていた電荷を、交流電動機の巻線に流してその巻線抵抗に消費させて熱に変換し、放電させようとするものである。   In the technology according to Patent Document 1 and Patent Document 2, when the power conversion device is stopped, the electric charge stored in the DC intermediate circuit is passed through the winding of the AC motor and consumed by the winding resistance to be converted into heat. However, it is intended to be discharged.

特許第3289567号公報Japanese Patent No. 3289567 実開昭63−29391号公報Japanese Utility Model Publication No. 63-29391 特開2000−295715号公報(第6頁図4および第7頁図7)JP 2000-295715 A (Fig. 6 on page 6 and Fig. 7 on page 7)

「パワースイッチング工学」、電気学会大学講座、社団法人電気学会、2003年8月5日、P90“Power Switching Engineering”, The Institute of Electrical Engineers of Japan, The Institute of Electrical Engineers of Japan, August 5, 2003, P90

しかしながら、このような技術では電力変換装置の直流中間回路に蓄えられていた電荷を、熱として消費するために、電力変換装置の総合効率が低下し、外部の蓄電装置だけで運転する場合には、1充電あたりの運転継続時間が短くなってしまうなどの弊害がある。また、交流電動機の巻線に電流を流す時に、その交流電動機がトルクを発生することが無いようにしない場合、その交流電動機が一時的に回転する危険性があって、その電流制御方法は技術的に困難を伴う。   However, in such a technique, since the electric charge stored in the DC intermediate circuit of the power conversion device is consumed as heat, the overall efficiency of the power conversion device is reduced, and when operating only with an external power storage device, There are adverse effects such as shortening the operation continuation time per charge. Also, when current is passed through the winding of the AC motor, if the AC motor is not prevented from generating torque, there is a risk that the AC motor will rotate temporarily, and the current control method is technical. Is difficult.

この発明はこのような課題を考慮してなされたものであり、特別なハードウェアを追加することなく簡単な制御で、電力変換装置の停止時に、その直流中間回路に蓄えられていた電荷を、外部の蓄電装置に放電させる手段を有する電力変換装置の電源識別方法を提供することを目的とするものである。   The present invention has been made in consideration of such problems, and the electric charge stored in the DC intermediate circuit when the power converter is stopped can be easily controlled without adding special hardware. It is an object of the present invention to provide a method for identifying a power source of a power converter having means for discharging an external power storage device.

請求項1の発明によれば、複数の交流電源を接続できるように構成された、交流を直流に変換する整流器と、前記整流器の直流側に接続された、直流中間回路と、前記直流中間回路に接続され、交流電動機を駆動するためのインバータ回路と、外部の蓄電装置と、前記直流中間回路の間に接続され、該蓄電装置と該直流中間回路との間で双方向に電力をやり取りできるように構成された双方向DC/DCコンバータからなる電力変換装置において、該電力変換装置の運転を停止させるときに、前記直流中間回路に蓄えられた電荷を、前記双方向DC/DCコンバータによって、前記外部の蓄電装置にその電荷を移動させて、前記直流中間回路の電荷を放電し、次回の運転開始時の、前記直流中間回路の直流電圧の大きさによって、接続された複数の交流電源を識別するようしたことを特徴とした電力変換装置の電源識別方法である。   According to the first aspect of the present invention, a rectifier configured to connect a plurality of AC power sources and converting AC to DC, a DC intermediate circuit connected to the DC side of the rectifier, and the DC intermediate circuit Is connected between the inverter circuit for driving the AC motor, the external power storage device, and the DC intermediate circuit, and can exchange power bidirectionally between the power storage device and the DC intermediate circuit. In the power conversion device including the bidirectional DC / DC converter configured as described above, when the operation of the power conversion device is stopped, the charge stored in the DC intermediate circuit is converted by the bidirectional DC / DC converter. The charge is transferred to the external power storage device, and the charge of the DC intermediate circuit is discharged, and connected according to the magnitude of the DC voltage of the DC intermediate circuit at the start of the next operation. A power source identifying method of the power conversion apparatus characterized by being to identify the AC power supply of a few.

本発明の電力変換装置の電源識別方法は、外部交流電源を整流する整流器と、電解コンデンサ等からなる直流中間回路と、外部の電動機を駆動するためのインバータ回路と、外部の蓄電装置を充放電するための昇降圧DC/DCコンバータ回路で構成され、電力変換装置の運転を停止するときに、直流中間回路に蓄えられた電荷を、昇降圧DC/DCコンバータ回路を経由して外部蓄電装置に放電させることを特徴とする。   The power identification method for a power converter of the present invention includes a rectifier that rectifies an external AC power source, a DC intermediate circuit that includes an electrolytic capacitor, an inverter circuit that drives an external motor, and an external power storage device that is charged and discharged. When the operation of the power converter is stopped, the charge stored in the DC intermediate circuit is transferred to the external power storage device via the step-up / step-down DC / DC converter circuit. It is characterized by discharging.

本発明は、特別なハードウェアを追加することなく簡単な制御で、電力変換装置の停止時に、その直流中間回路に蓄えられた電荷を、外部の蓄電装置に放電させることによって、次回の運転開始時に、どの電源が接続されているかを確実に検知できる効果を有する。   The present invention starts the next operation by discharging the electric charge stored in the DC intermediate circuit to an external power storage device when the power conversion device is stopped with simple control without adding special hardware. Sometimes it has the effect of reliably detecting which power source is connected.

電力変換装置の停止時に、その直流中間回路に蓄えられた電荷を放電することによって、高電圧に充電された部分が極小化されて、メンテナンス時の感電防止にも役立つ効果も有する。   By discharging the electric charge stored in the DC intermediate circuit when the power conversion device is stopped, the portion charged to a high voltage is minimized, which also has an effect of helping to prevent an electric shock during maintenance.

本発明の実施形態における望ましい電力変換装置の構成を示す図である。It is a figure which shows the structure of the desirable power converter device in embodiment of this invention. 本発明の実施形態における望ましい、電力変換装置の運転開始時における充電動作を示すタイムチャートである。It is a time chart which shows the charge operation at the time of the driving | operation start of the power converter device desirable in embodiment of this invention. 本発明の実施形態における望ましい、電力変換装置の停止時における放電動作を示すタイムチャートである。It is a time chart which shows the discharge operation | movement at the time of the stop of the power converter device desirable in embodiment of this invention. 本発明の実施形態における望ましい電力変換装置のうち、昇降圧DC/DCコンバータ回路の構成を示す図である。It is a figure which shows the structure of a buck-boost DC / DC converter circuit among the desirable power converter devices in embodiment of this invention. 本発明の実施形態における望ましい電力変換装置のうち、整流器の構成を示す図である。It is a figure which shows the structure of a rectifier among the desirable power converter devices in embodiment of this invention. 本発明の実施形態における望ましい電力変換装置のうち、インバータ回路の構成を示す図である。It is a figure which shows the structure of an inverter circuit among the desirable power converter devices in embodiment of this invention. 本発明の実施形態における望ましい電力変換装置のうち、昇降圧DC/DCコンバータ回路の、放電時の動作を示すタイムチャートである。It is a time chart which shows the operation | movement at the time of discharge of a buck-boost DC / DC converter circuit among the desirable power converter devices in embodiment of this invention. 本発明の実施形態における望ましくない、電力変換装置の停止時における、従来の放電動作を示すタイムチャートである。It is a time chart which shows the conventional discharge operation | movement at the time of the stop of the power converter device which is not desirable in embodiment of this invention. 本発明の実施形態における直流中間電圧検出手段の例である。It is an example of the direct current | flow intermediate voltage detection means in embodiment of this invention. 本発明の実施形態における望ましい電力変換装置に示す直流中間回路の、他の例である。It is another example of the direct current | flow intermediate circuit shown to the desirable power converter device in embodiment of this invention.

以下、図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す本発明の実施形態における望ましい電力変換装置1は、外部交流電源10乃至12を整流する整流器3と、例えば電解コンデンサからなる直流中間回路5と、外部の交流電動機9を駆動するためのインバータ回路4と、外部の蓄電装置8を充放電するための昇降圧DC/DCコンバータ回路2で構成される。   A desirable power converter 1 in the embodiment of the present invention shown in FIG. 1 is for driving a rectifier 3 that rectifies external AC power supplies 10 to 12, a DC intermediate circuit 5 that is formed of, for example, an electrolytic capacitor, and an external AC motor 9. Inverter circuit 4 and a step-up / step-down DC / DC converter circuit 2 for charging / discharging an external power storage device 8.

図4は、図1に示す昇降圧DC/DCコンバータ回路2の具体的構成例である。同図中41〜44はそれぞれスイッチング素子、45〜48はそれぞれ還流ダイオード、49はDCリアクトル、401はコンデンサである。   FIG. 4 is a specific configuration example of the step-up / step-down DC / DC converter circuit 2 shown in FIG. In the figure, 41 to 44 are switching elements, 45 to 48 are free-wheeling diodes, 49 is a DC reactor, and 401 is a capacitor.

図5は、図1に示す整流器3の具体的構成例である。同図中51〜56はそれぞれ整流ダイオードである。   FIG. 5 is a specific configuration example of the rectifier 3 shown in FIG. In the figure, reference numerals 51 to 56 denote rectifier diodes.

図6は、図1に示すインバータ回路4の具体的構成例である。同図中61〜66はそれぞれスイッチング素子、67〜69と601〜603はそれぞれ還流ダイオードである。   FIG. 6 is a specific configuration example of the inverter circuit 4 shown in FIG. In the figure, reference numerals 61 to 66 denote switching elements, and reference numerals 67 to 69 and 601 to 603 denote reflux diodes.

図1に示す本発明の実施形態における望ましい電力変換装置1の、通常の運転形態は以下に示す通りである。   The normal operation mode of the desirable power conversion device 1 in the embodiment of the present invention shown in FIG. 1 is as follows.

図1に示す交流電動機9を運転する場合、同図外部蓄電装置8→二極電磁開閉器7→双方向DC/DCコンバータ回路2→インバータ回路4→交流電動機9の経由で電力を供給する。別の手段では、同図外部交流電源10(例えば三相AC200V)→外部電源用コネクタ13→三極電磁開閉器6→整流器3→直流中間回路5→インバータ回路4→交流電動機9の経由で電力を供給する。   When the AC motor 9 shown in FIG. 1 is operated, power is supplied via the external power storage device 8 → the two-pole electromagnetic switch 7 → the bidirectional DC / DC converter circuit 2 → the inverter circuit 4 → the AC motor 9. In another means, external AC power supply 10 (for example, three-phase AC200V) → external power supply connector 13 → tripolar electromagnetic switch 6 → rectifier 3 → DC intermediate circuit 5 → inverter circuit 4 → power via AC motor 9 Supply.

図1に示す外部蓄電装置8を充電する場合、同図外部交流電源10(例えば三相AC200V)→外部電源用コネクタ13→三極電磁開閉器6→整流器3→直流中間回路5→双方向電力変換器2→二極電磁開閉器7→外部蓄電装置8の経由で充電用電力を供給する。別の手段では、上記の同図外部交流電源10(例えば三相AC200V)→外部電源用コネクタ13の替わりに、外部交流電源11(例えば単相AC100V)→外部電源用コネクタ14、または外部交流電源12(例えば単相AC60V)→外部電源用コネクタ15を使用することも可能である。同図中外部電源用コネクタ13乃至15は、図示しない手段によってそのいずれか1つのみ接続が可能となる様に構成される。   When the external power storage device 8 shown in FIG. 1 is charged, the external AC power supply 10 (for example, three-phase AC200V) → external power supply connector 13 → three-pole electromagnetic switch 6 → rectifier 3 → DC intermediate circuit 5 → bidirectional power Electric power for charging is supplied via the converter 2 → the two-pole electromagnetic switch 7 → the external power storage device 8. In another means, instead of the external AC power supply 10 (for example, three-phase AC200V) → external power connector 13 in the figure, an external AC power supply 11 (for example, single-phase AC100V) → external power supply connector 14 or an external AC power supply is used. 12 (for example, single-phase AC60V) → external power supply connector 15 can also be used. In the figure, the external power connectors 13 to 15 are configured such that only one of them can be connected by means not shown.

図4に示す昇降圧DC/DCコンバータ回路2の具体的構成例と、図6に示すインバータ回路の具体的構成例の一般的な動作については、それぞれ特許文献3と非特許文献1に記載のとおり、当業者に広く周知されている。また、図5に示す整流器の動作についても同様に広く周知されているので、ここでは詳述しない。   The specific operations of the specific configuration example of the step-up / step-down DC / DC converter circuit 2 shown in FIG. 4 and the specific configuration example of the inverter circuit shown in FIG. 6 are described in Patent Document 3 and Non-Patent Document 1, respectively. As is well known to those skilled in the art. Further, the operation of the rectifier shown in FIG. 5 is also widely known and will not be described in detail here.

図2は、電源投入時の、図1に示す直流中間回路5に印加される電圧の時間的変化を表わす代表的な例である。同図中Tは電源を投入した時刻、Tは、どの電源が投入されたかを検知しようとする時刻であって、通常は電源投入に伴う過渡現象が終了した頃になされる。図中の破線は、例えば電源が三相AC200Vの時、実線は単相AC100Vの場合を示し、電源が投入され、図1に示すインバータ回路4と双方向DC/DCコンバータが起動していない時には電源の電圧の波高値近くまで上昇する。時刻Tにおいて検知された電圧の大きさで、電源が三相AC200Vか、または単相AC100Vかを判断するものであって、その検知された電圧が約DC280Vであれば電源が三相AC200V、約DC140Vであれば単相AC100Vとみなすものである。 FIG. 2 is a typical example showing a temporal change in the voltage applied to the DC intermediate circuit 5 shown in FIG. 1 when the power is turned on. In the figure, T 0 is the time when the power is turned on, and T 1 is the time when it is attempted to detect which power is turned on, usually at the time when the transient phenomenon accompanying the power-on is completed. The broken line in the figure indicates, for example, when the power source is a three-phase AC 200V, and the solid line indicates a single-phase AC 100V. When the power is turned on and the inverter circuit 4 and the bidirectional DC / DC converter shown in FIG. The voltage rises to near the peak value of the power supply voltage. Time magnitude of the sensed voltage at T 1, be one power to determine whether the three-phase AC200V or single phase AC100V, the sensed voltage power supply be about DC280V three-phase AC200V, If it is about DC140V, it will be regarded as single phase AC100V.

図9は、直流中間電圧を検知して、どの外部電源が接続されているかを識別する手段の例である。同図中で91乃至96は分圧抵抗、97乃至99は比較器、901は基準電源である。それぞれの分圧抵抗の比率と基準電源の電圧は、例えば、図1に示す直流中間電圧が、250V、125V、75Vに対応するように定められ、図9に示す比較器99の出力109は、図1に示す直流中間電圧が75V以上で“L”から“H”に変化し、同様に125V以上で108、250V以上で107がそれぞれ“L”から“H”に変化する。表1はこれらの関係を一覧表にしたもので、例えば図9の107、108、109がそれぞれ“L”、“H”、“H”であれば、図1に示す外部電源電圧がAC100Vと識別される。

Figure 2013106434
FIG. 9 is an example of means for detecting which direct current intermediate voltage is detected and identifying which external power source is connected. In the figure, reference numerals 91 to 96 are voltage dividing resistors, 97 to 99 are comparators, and 901 is a reference power source. The ratio of each voltage dividing resistor and the voltage of the reference power source are determined so that, for example, the DC intermediate voltage shown in FIG. 1 corresponds to 250V, 125V, and 75V, and the output 109 of the comparator 99 shown in FIG. The DC intermediate voltage shown in FIG. 1 changes from “L” to “H” when 75 V or higher, and similarly changes from “L” to “H” when the DC intermediate voltage is 125 V or higher and 108 or 250 V or higher. Table 1 lists these relationships. For example, if 107, 108, and 109 in FIG. 9 are “L”, “H”, and “H”, respectively, the external power supply voltage shown in FIG. Identified.
Figure 2013106434

図8は、従来技術の、電源断時に図1に示す直流中間回路5に蓄えられた電荷を強制的に放電しない場合の波形例であって、電源断後も長時間その電荷を保つ。例えば図8の時刻Tの電源断時直前に三相AC200Vが接続されていて、そのすぐ後の時刻Tに単相AC100Vを接続した場合には、同図の破線で示すように前記直流中間回路5の電圧は、約DC270Vを保っているので、接続された電源が単相100Vとは識別出来ず、三相AC200Vと誤識別する。 FIG. 8 is a waveform example in the case where the electric charge stored in the DC intermediate circuit 5 shown in FIG. 1 is not forcibly discharged when the power is turned off, and the electric charge is maintained for a long time after the power is turned off. For example, it has a three-phase AC200V to at power OFF immediately before time T 3 in FIG. 8 is connected, that when connecting the single phase AC100V at time T 4 shortly after, the DC as shown by the broken line in FIG. Since the voltage of the intermediate circuit 5 is maintained at about DC 270V, the connected power supply cannot be identified as the single-phase 100V, and is erroneously identified as the three-phase AC 200V.

図3は、電源断時に図1に示す直流中間回路5に蓄えられた電荷を強制的に放電する場合の波形例であって、時刻Tに電源断後直ちにその電圧は零近辺に引き下げられる。従って、次に時刻Tに電源再投入された場合を考えると、図2に示すように、前記直流中間回路5の電圧がゼロの状態から電圧が上昇するので、同図中時刻Tでその電圧を検知する場合でも誤検知しない。 Figure 3 is a waveform example of forcibly discharging the electric charge stored in the DC intermediate circuit 5 shown in FIG. 1 when the power failure immediately its voltage after power-off time T 5 is lowered near zero . Therefore, considering the case where it is then powered on again at time T 6, as shown in FIG. 2, since the voltage of the DC intermediate circuit 5 the voltage rises from zero state, at the same figure the time T 1 Even when the voltage is detected, no false detection is made.

本発明の要点は、電源断時に図1に示す直流中間回路5に蓄えられた電荷を強制的に放電する手段として、同図に示す双方向DC/DCコンバータ2の制御によって、同図中の蓄電装置8にその電気エネルギーを移動させるものである。   The main point of the present invention is that, as a means for forcibly discharging the electric charge stored in the DC intermediate circuit 5 shown in FIG. 1 when the power is cut off, the bidirectional DC / DC converter 2 shown in FIG. The electric energy is transferred to the power storage device 8.

図7は、図1に示す直流中間回路5に蓄えられた電荷を強制的に放電するための望ましい制御方法と、その直流中間回路5の電圧波形、および図4に示すDCリアクトル49に流れる電流波形と直流中間回路5を構成するコンデンサに流れる電流波形の例を示すものである。   7 shows a desirable control method for forcibly discharging the charge stored in the DC intermediate circuit 5 shown in FIG. 1, the voltage waveform of the DC intermediate circuit 5, and the current flowing through the DC reactor 49 shown in FIG. An example of a waveform and a current waveform flowing in a capacitor constituting the DC intermediate circuit 5 is shown.

図7において、(1)〜(4)は、それぞれ図4に示すスイッチング素子41〜44のゲート電圧波形に対応する。同図中、各ゲート波形が“H”レベル時に対応するスイッチング素子が導通し、“L”レベル時に非導通となる。すなわち、図1に示す直流中間回路5に蓄えられた電荷を強制的に同図に示す蓄電装置8に移動させるには、図4に示すスイッチング素子41と44を同時にオンオフすることでその目的を達成する。その最も簡単なオンオフの方法は、そのオン期間とオフ期間をそれぞれ一定の値にすることである。   7, (1) to (4) correspond to the gate voltage waveforms of the switching elements 41 to 44 shown in FIG. 4, respectively. In the figure, the corresponding switching element is turned on when each gate waveform is at "H" level, and is turned off when it is at "L" level. That is, in order to forcibly move the charge stored in the DC intermediate circuit 5 shown in FIG. 1 to the power storage device 8 shown in FIG. 1, the switching elements 41 and 44 shown in FIG. Achieve. The simplest on / off method is to set the on period and the off period to constant values.

図7に示す(5)は図4に示すDCリアクトル49に流れる電流波形、(6)は図1に示す直流中間回路5を構成するコンデンサに流れる電流波形、(7)は図1に示す直流中間回路5の電圧波形の具体例である。この例では図4に示すスイッチング素子41と44のオン期間とオフ期間は、それぞれ10μsと90μsとした。図7の時刻T10で図4に示すスイッチング素子41と44が導通すると、図1に示す直流中間回路5を構成するコンデンサの正極→母線101→図4に示すスイッチング素子41→同図DCリアクトル49→スイッチング素子44→直流母線102→図1に示す直流中間回路5を構成するコンデンサの負極に至る閉回路で電流が増加し、この間前記コンデンサに蓄えられた電気エネルギーが前記DCリアクトル49に移動する。図7の時刻T11で図4に示すスイッチング素子41と44をオフすると、同図DCリアクトル49に流れていた電流は、同図還流ダイオード47→母線103→コンデンサ401の正極と図1に示す蓄電装置8の正極に分流→それらの負極→母線104→還流ダイオード46→DCリアクトル49に至る閉回路で、コンデンサ401等の電圧に逆らう方向なので電流は次第に減少し、それらの電流がゼロになるまで継続し、DCリアクトル49に一時的に蓄えられた電気エネルギーは前記コンデンサ401と蓄電装置8に移される。以下、同様に時刻T12→T13→T14→T15・・・に示すように推移し、前記直流中間回路の電荷がほぼゼロになるまで続き、図3に示すように短時間で放電を終了し、その目的を達するものである。 (5) shown in FIG. 7 is a current waveform flowing through the DC reactor 49 shown in FIG. 4, (6) is a current waveform flowing through a capacitor constituting the DC intermediate circuit 5 shown in FIG. 1, and (7) is a DC waveform shown in FIG. It is a specific example of the voltage waveform of the intermediate circuit 5. FIG. In this example, the ON period and the OFF period of the switching elements 41 and 44 shown in FIG. 4 are 10 μs and 90 μs, respectively. When the switching element 41 and 44 shown in FIG. 4 to conduct at the time T 10 in FIG. 7, the switching element 41 → FIG DC reactor shown in positive → bus 101 → 4 capacitors constituting the DC intermediate circuit 5 shown in FIG. 1 49 → Switching element 44 → DC bus 102 → Current increases in a closed circuit that reaches the negative electrode of the capacitor constituting the DC intermediate circuit 5 shown in FIG. 1, and the electric energy stored in the capacitor moves to the DC reactor 49 during this period To do. When turning off the switching elements 41 and 44 shown in FIG. 4 at time T 11 in FIG. 7, the current flowing in the drawing DC reactor 49 is shown in the positive electrode and 1 of FIG reflux diode 47 → bus 103 → capacitor 401 In a closed circuit from the shunt to the positive electrode of the power storage device 8 → the negative electrode → the bus 104 → the reflux diode 46 → the DC reactor 49, the current gradually decreases because the direction is against the voltage of the capacitor 401 and the like, and the current becomes zero. The electric energy temporarily stored in the DC reactor 49 is transferred to the capacitor 401 and the power storage device 8. Thereafter, similarly, the time T 12 → T 13 → T 14 → T 15 ... Continues until the charge of the DC intermediate circuit becomes almost zero, and the discharge is performed in a short time as shown in FIG. To achieve its purpose.

以上説明した本実施形態では、特別なハードウェアを追加することなく簡単な制御で、運転開始時に、どの電源が接続されているかを確実に検知できる効果を有する電力変換装置の電源識別方法を提供できるものである。   In the present embodiment described above, a power source identification method for a power conversion device is provided that has an effect of reliably detecting which power source is connected at the start of operation with simple control without adding special hardware. It can be done.

図1に示す外部交流電源11と12は、交流電源に限定されることなく、例えば外部バッテリ電源のような外部直流電源でも同様な効果を有する。   The external AC power supplies 11 and 12 shown in FIG. 1 are not limited to an AC power supply, and have the same effect even with an external DC power supply such as an external battery power supply.

図1に示す直流中間回路は、コンデンサのみで構成されているが、図10に示すようにDCリアクトルとコンデンサで構成されたものでも同様な効果を有する。   The DC intermediate circuit shown in FIG. 1 is composed of only a capacitor. However, even if it is composed of a DC reactor and a capacitor as shown in FIG. 10, it has the same effect.

電力相変換装置の運転を停止するときに、直流中間回路に蓄えられた電荷を、昇降圧DC/DCコンバータ回路を経由して外部蓄電装置に放電させることで、次回の運転開始時に停止時の電源と異なった電圧が印加された場合でも確実に電源種別を識別し、無駄な電荷放電を防止することができる。   When stopping the operation of the power phase converter, the charge stored in the DC intermediate circuit is discharged to the external power storage device via the step-up / step-down DC / DC converter circuit. Even when a voltage different from the power source is applied, it is possible to reliably identify the power source type and prevent wasteful charge discharge.

1 電力変換装置
2 双方向DC/DCコンバータ回路
3 整流器
4 インバータ回路
5 直流中間回路
6 三極電磁開閉器
7 二極電磁開閉器
8 蓄電装置
9 交流電動機
10〜12 外部交流電源
13〜15 外部電源用コネクタ
41〜44 スイッチング素子
45〜48 還流ダイオード
49 DCリアクトル
401 コンデンサ
51〜56 整流ダイオード
61〜66 スイッチング素子
67〜69 還流ダイオード
601〜603 還流ダイオード
91〜96 分圧抵抗
97〜99 比較器
901 基準電源
1001 DCリアクトル
DESCRIPTION OF SYMBOLS 1 Power converter device 2 Bidirectional DC / DC converter circuit 3 Rectifier 4 Inverter circuit 5 DC intermediate circuit 6 Three pole electromagnetic switch 7 Two pole electromagnetic switch 8 Power storage device 9 AC motor 10-12 External AC power source 13-15 External power source Connectors 41 to 44 Switching element 45 to 48 Freewheeling diode 49 DC reactor 401 Capacitor 51 to 56 Rectifier diode 61 to 66 Switching element 67 to 69 Freewheeling diode 601 to 603 Freewheeling diode 91 to 96 Voltage dividing resistor 97 to 99 Comparator 901 Reference Power supply 1001 DC reactor

Claims (1)

複数の交流電源を接続できるように構成された、交流を直流に変換する整流器と、
前記整流器の直流側に接続された、直流中間回路と、
前記直流中間回路に接続され、交流電動機を駆動するためのインバータ回路と、
外部の蓄電装置と、前記直流中間回路の間に接続され、該蓄電装置と該直流中間回路との間で双方向に電力をやり取りできるように構成された双方向DC/DCコンバータからなる電力変換装置において、該電力変換装置の運転を停止させるときに、前記直流中間回路に蓄えられた電荷を、前記双方向DC/DCコンバータによって、前記外部の蓄電装置にその電荷を移動させて、前記直流中間回路の電荷を放電し、次回の運転開始時の、前記直流中間回路の直流電圧の大きさによって、接続された複数の交流電源を識別するようしたことを特徴とする電力変換装置の電源識別方法。
A rectifier configured to connect a plurality of AC power sources and converting AC to DC;
A DC intermediate circuit connected to the DC side of the rectifier;
An inverter circuit connected to the DC intermediate circuit for driving an AC motor;
Power conversion comprising a bi-directional DC / DC converter connected between an external power storage device and the DC intermediate circuit and configured to exchange power bidirectionally between the power storage device and the DC intermediate circuit In the device, when the operation of the power converter is stopped, the charge stored in the DC intermediate circuit is moved to the external power storage device by the bidirectional DC / DC converter, and the DC Distinguishing the electric charge of the intermediate circuit, and identifying the plurality of connected AC power supplies according to the magnitude of the DC voltage of the DC intermediate circuit at the start of the next operation, Method.
JP2011248763A 2011-11-14 2011-11-14 Power identification method for power conversion device Active JP5713453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011248763A JP5713453B2 (en) 2011-11-14 2011-11-14 Power identification method for power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011248763A JP5713453B2 (en) 2011-11-14 2011-11-14 Power identification method for power conversion device

Publications (2)

Publication Number Publication Date
JP2013106434A true JP2013106434A (en) 2013-05-30
JP5713453B2 JP5713453B2 (en) 2015-05-07

Family

ID=48625595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011248763A Active JP5713453B2 (en) 2011-11-14 2011-11-14 Power identification method for power conversion device

Country Status (1)

Country Link
JP (1) JP5713453B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329391U (en) * 1986-08-11 1988-02-26
JPH10248263A (en) * 1997-03-07 1998-09-14 Honda Motor Co Ltd Control apparatus for electric vehicle
JP2000295715A (en) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd Power source system of electric automobile
JP3289567B2 (en) * 1995-08-31 2002-06-10 トヨタ自動車株式会社 Discharge device for storage means inside inverter
JP2005323440A (en) * 2004-05-07 2005-11-17 Yaskawa Electric Corp Inverter device
JP2005354850A (en) * 2004-06-14 2005-12-22 Ricoh Co Ltd Power supply device and electronic apparatus
JP2006187085A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Circuit and method for discharging capacitor in inverter device
JP2008306795A (en) * 2007-06-05 2008-12-18 Toyota Motor Corp Discharge controller for power supply circuit
WO2010073552A1 (en) * 2008-12-25 2010-07-01 株式会社日立製作所 Apparatus for protecting power supply circuit of three-phase inverter
JP2011160502A (en) * 2010-01-29 2011-08-18 Hitachi Constr Mach Co Ltd Electric construction machine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329391U (en) * 1986-08-11 1988-02-26
JP3289567B2 (en) * 1995-08-31 2002-06-10 トヨタ自動車株式会社 Discharge device for storage means inside inverter
JPH10248263A (en) * 1997-03-07 1998-09-14 Honda Motor Co Ltd Control apparatus for electric vehicle
JP2000295715A (en) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd Power source system of electric automobile
JP2005323440A (en) * 2004-05-07 2005-11-17 Yaskawa Electric Corp Inverter device
JP2005354850A (en) * 2004-06-14 2005-12-22 Ricoh Co Ltd Power supply device and electronic apparatus
JP2006187085A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Circuit and method for discharging capacitor in inverter device
JP2008306795A (en) * 2007-06-05 2008-12-18 Toyota Motor Corp Discharge controller for power supply circuit
WO2010073552A1 (en) * 2008-12-25 2010-07-01 株式会社日立製作所 Apparatus for protecting power supply circuit of three-phase inverter
JP2011160502A (en) * 2010-01-29 2011-08-18 Hitachi Constr Mach Co Ltd Electric construction machine

Also Published As

Publication number Publication date
JP5713453B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
CN101572487B (en) Semiconductor device for controlling switching power supply
JP6331228B2 (en) Motor control device, power conversion device, auxiliary power supply device, and auxiliary power supply control method
US9716455B2 (en) Power conversion device and method of controlling the same
CN101682278A (en) Motor drive
JP2009142013A (en) Power supply system
CN103219878A (en) Capacitor discharging circuit and power converter
TW200410471A (en) Uninterruptible power system
CN105515418A (en) PFC shutdown circuit for light load
JP2011239523A (en) Auto start-stop device for motor generator
US9662986B2 (en) Switch circuit and motor energy recycling system
CN103010868A (en) Elevator energy-saving system and control method thereof
CN102624261A (en) Switch control circuit, switch controlling method, and power supply device using the switch control circuit
JPWO2013114710A1 (en) Switching power supply
JPWO2013111437A1 (en) Switching power supply
CN104205593A (en) Power source device
JP2009189160A (en) Battery charging circuit
JP2012125090A (en) Switching power supply and display device with it
WO2006051843A1 (en) Power supply apparatus
JP5602473B2 (en) Elevator control device
JP5713453B2 (en) Power identification method for power conversion device
JP2010004728A (en) Power conversion apparatus
CN101567553B (en) Circuit for protecting a DC network against overvoltage
CN203339788U (en) Direct-current uninterruptible power supply
JPWO2011155051A1 (en) Charge control system
JP5105098B2 (en) Power supply interruption countermeasure circuit, switching power supply device, and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5713453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150