JP2012147563A - Power supply stabilizer and power supply stabilizer control method - Google Patents

Power supply stabilizer and power supply stabilizer control method Download PDF

Info

Publication number
JP2012147563A
JP2012147563A JP2011003868A JP2011003868A JP2012147563A JP 2012147563 A JP2012147563 A JP 2012147563A JP 2011003868 A JP2011003868 A JP 2011003868A JP 2011003868 A JP2011003868 A JP 2011003868A JP 2012147563 A JP2012147563 A JP 2012147563A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
power supply
terminals
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011003868A
Other languages
Japanese (ja)
Other versions
JP5664251B2 (en
Inventor
Masayo Nakagawa
雅代 中川
Yuji Sasaki
裕司 佐々木
Toshiyuki Hirao
俊幸 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011003868A priority Critical patent/JP5664251B2/en
Publication of JP2012147563A publication Critical patent/JP2012147563A/en
Application granted granted Critical
Publication of JP5664251B2 publication Critical patent/JP5664251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

PROBLEM TO BE SOLVED: To provide a power supply stabilizer for eliminating the need for communicating between voltage converters of power source and capacitor for stabilizing a load side voltage.SOLUTION: A power supply stabilizer includes: a power source 20 for supplying power to a load; a capacitor 30 connected parallel to the power source 20 for supplying power to the load and charging a regenerative power generated with the load for storing the power; a first voltage converter 10 connected parallel to the power source 20 between the power source 20 and the capacitor 30 for detecting inter-terminal voltage of the capacitor 30, and converting the voltage of the power source 20 based on the capacitor 30 voltage; and a second voltage converter 11 connected parallel to the capacitor 30 and the first voltage converter 10 between terminals 40a and 40b connected to the capacitor 30 and the load for detecting the voltages of the terminals 40a and 40b and converting the inter-terminal voltage of the capacitor 30 based on the voltages of the terminals 40a and 40b.

Description

本発明は、電力供給安定化装置に関し、特に、負荷変動に対応できる電力供給安定化装置及び電力供給安定化装置制御方法に関する。   The present invention relates to a power supply stabilization device, and more particularly, to a power supply stabilization device and a power supply stabilization device control method that can cope with load fluctuations.

近年、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とするハイブリッド自動車や、直流電源とインバータとインバータによって駆動されるモータとを動力源とする電気自動車が注目されている。ハイブリッド自動車及び電気自動車においては、車両を適切に走行させつつエネルギー効率を向上させるために、そのモータに対する負荷に応じた電力を供給し、回生時は効率良くエネルギーを回収するために、二次電池(電源)とコンデンサ(キャパシタ)とを並列に接続したハイブリット型直流電源装置が提供されている。   In recent years, in addition to conventional engines, hybrid vehicles using a DC power source, an inverter and a motor driven by an inverter as a power source, and electric vehicles using a DC power source, a motor driven by an inverter and an inverter as a power source are attracting attention. Has been. In a hybrid vehicle and an electric vehicle, in order to improve energy efficiency while driving the vehicle appropriately, power is supplied according to the load on the motor, and a secondary battery is used to efficiently recover energy during regeneration. There is provided a hybrid DC power supply device in which a (power supply) and a capacitor (capacitor) are connected in parallel.

高エネルギー密度が特徴である二次電池と高電力密度が特徴であるキャパシタの双方から電力補償を行うシステムは数多く存在する(例えば、特許文献1参照。)。そのシステムでは、二次電池又はキャパシタのどちらか、又はその双方に充放電電流を制限する装置や電圧変換装置(DCDCコンバータ)等の制御装置を接続して電圧等の制御を行っている。   There are many systems that perform power compensation from both a secondary battery characterized by high energy density and a capacitor characterized by high power density (see, for example, Patent Document 1). In such a system, a control device such as a device for limiting charge / discharge current or a voltage converter (DCDC converter) is connected to either or both of the secondary battery and the capacitor to control the voltage or the like.

従来のシステムでは、二次電池やキャパシタそれぞれのDCDCコンバータが双方の状態を監視するために、通信を用いたデータのやりとりや、DCDCコンバータを挟んでの配線処理、又は外部センサ等が必要であった。   In the conventional system, in order for the DCDC converter of each of the secondary battery and the capacitor to monitor both states, data exchange using communication, wiring processing across the DCDC converter, an external sensor, etc. are necessary. It was.

特開2002−315109号公報JP 2002-315109 A

本発明は上記実情に鑑みてなされたものであって、電源及びキャパシタそれぞれの電圧変換装置間での通信が不要であり、負荷側電圧を一定にできる電力供給安定化装置及び電力供給安定化装置制御方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and does not require communication between the voltage conversion devices of the power supply and the capacitor, and can provide a constant load-side voltage and a power supply stabilization device and a power supply stabilization device An object is to provide a control method.

本願発明の一態様によれば、負荷に対して電力を供給する電源と、電源と並列に接続され、負荷に対して電力を供給し、負荷で発生した回生電力を充電により蓄えることが可能なキャパシタと、電源とキャパシタとの間で電源と並列に接続され、キャパシタの端子間電圧を検知して、キャパシタの端子間電圧に基づいて電源の電圧を変換制御する第1電圧変換装置と、キャパシタと負荷に接続される端子との間でキャパシタ及び第1電圧変換装置と並列に接続され、端子の電圧を検知して、端子の電圧に基づいてキャパシタの端子間電圧を変換制御する第2電圧変換装置とを備える電力供給安定化装置であることを要旨とする。   According to one aspect of the present invention, a power source that supplies power to a load, and a power source that is connected in parallel to the power source, supplies power to the load, and can store regenerative power generated at the load by charging. A capacitor, a first voltage converter connected in parallel with the power source between the power source and the capacitor, detecting a voltage between terminals of the capacitor, and converting and controlling the voltage of the power source based on the voltage between the terminals of the capacitor; and the capacitor And a terminal connected to the load are connected in parallel with the capacitor and the first voltage converter, a second voltage for detecting the voltage of the terminal and converting and controlling the voltage between the terminals of the capacitor based on the voltage of the terminal The gist of the invention is that it is a power supply stabilization device including a conversion device.

本願発明の他の態様によれば、力行時において、第2電圧変換装置が負荷に接続される端子の電圧を検知して、端子の電圧に基づいてキャパシタの端子間電圧を昇圧する工程と、第1電圧変換装置がキャパシタの電圧を検知して、キャパシタの端子間電圧に基づいて電源の電圧を昇圧する工程とを含み、回生時において、第2電圧変換装置が端子の電圧を検知して、端子の電圧に基づいてキャパシタの端子間電圧を降圧する工程と、第1電圧変換装置がキャパシタの端子間電圧を検知して、キャパシタの端子間電圧に基づいて電源の電圧を降圧する工程とを含む電力供給安定化装置制御方法であることを要旨とする。   According to another aspect of the present invention, during powering, the second voltage conversion device detects the voltage of the terminal connected to the load, and boosts the voltage across the terminals based on the voltage of the terminal; The first voltage converter detects the voltage of the capacitor and boosts the voltage of the power supply based on the voltage across the terminals of the capacitor. During regeneration, the second voltage converter detects the voltage of the terminal. A step of stepping down the voltage between the terminals of the capacitor based on the voltage of the terminal, and a step of stepping down the voltage of the power source based on the voltage between the terminals of the capacitor by the first voltage converter detecting the voltage between the terminals of the capacitor. The power supply stabilizing device control method includes the following.

本発明によれば、電源及びキャパシタそれぞれの電圧変換装置間での通信が不要であり、負荷側電圧を一定にできる電力供給安定化装置及び電力供給安定化装置制御方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the communication between the voltage converters of a power supply and a capacitor is unnecessary, and the power supply stabilization apparatus and power supply stabilization apparatus control method which can make load side voltage constant can be provided.

本発明の実施の形態に係る電力供給安定化装置の概略回路図である。1 is a schematic circuit diagram of a power supply stabilization device according to an embodiment of the present invention. 本発明の実施の形態に係る電力供給安定化装置における電源側に設けられた第1電圧変換装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the 1st voltage converter provided in the power supply side in the electric power supply stabilization apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置における電源側に設けられた第1電圧変換装置の力行時の動作を示す概略回路図である。It is a schematic circuit diagram which shows the operation | movement at the time of the power running of the 1st voltage converter provided in the power supply side in the electric power supply stabilization apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置における電源側に設けられた第1電圧変換装置の回生時の動作を示す概略回路図である。It is a schematic circuit diagram which shows the operation | movement at the time of regeneration of the 1st voltage converter provided in the power supply side in the electric power supply stabilization apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置におけるキャパシタ側に設けられた第2電圧変換装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the 2nd voltage converter provided in the capacitor side in the electric power supply stabilization apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置におけるキャパシタ側に設けられた第2電圧変換装置の力行時の動作を示す概略回路図である。It is a schematic circuit diagram which shows the operation | movement at the time of the power running of the 2nd voltage converter provided in the capacitor side in the electric power supply stabilization apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置におけるキャパシタ側に設けられた第2電圧変換装置の回生時の動作を示す概略回路図である。It is a schematic circuit diagram which shows the operation | movement at the time of regeneration of the 2nd voltage converter provided in the capacitor side in the electric power supply stabilization apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置制御方法を示すための概略回路図である。It is a schematic circuit diagram for demonstrating the power supply stabilization apparatus control method which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置制御方法における力行時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of power running in the electric power supply stabilization apparatus control method which concerns on embodiment of this invention. 本発明の実施の形態に係る電力供給安定化装置制御方法における回生時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of regeneration in the electric power supply stabilization apparatus control method which concerns on embodiment of this invention. 本発明のその他の実施の形態に係る電力供給安定化装置の概略回路図である。It is a schematic circuit diagram of the electric power supply stabilization apparatus which concerns on other embodiment of this invention.

以下に図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(実施の形態)
本発明の第1の実施の形態に係る電力供給安定化装置は、図1に示すように、負荷に対して電力を供給する電源20と、電源20と並列に接続され、負荷に対して電力を供給し、負荷で発生した回生電力を充電により蓄えることが可能なキャパシタ30と、電源20とキャパシタ30との間で電源20と並列に接続され、キャパシタ30の端子間電圧を検知して、キャパシタ30の端子間電圧に基づいて電源20の電圧を変換制御する第1電圧変換装置10と、キャパシタ30と負荷に接続される端子40a,40bとの間でキャパシタ30及び第1電圧変換装置10と並列に接続され、端子40a,40bの電圧を検知して、端子40a,40bの電圧に基づいてキャパシタ30の端子間電圧を変換制御する第2電圧変換装置11とを備える。
(Embodiment)
As shown in FIG. 1, the power supply stabilization apparatus according to the first embodiment of the present invention is connected to a power source 20 that supplies power to a load, and is connected in parallel to the power source 20. Is connected in parallel with the power source 20 between the power source 20 and the capacitor 30, and the voltage between the terminals of the capacitor 30 is detected. The capacitor 30 and the first voltage converter 10 are connected between the first voltage converter 10 that converts and controls the voltage of the power supply 20 based on the voltage between the terminals of the capacitor 30 and the terminals 40a and 40b connected to the capacitor 30 and the load. And a second voltage conversion device 11 that detects the voltages of the terminals 40a and 40b and converts and controls the voltage across the terminals of the capacitor 30 based on the voltages of the terminals 40a and 40b. .

電源20は、リチウムイオン電池及びニッケル水素電池等の充電を行うことにより電気を蓄えて電池として使用できる二次電池である。電源20は、充電及び放電を繰り返すことが可能であるので、繰り返し使用することができる。   The power source 20 is a secondary battery that can be used as a battery by storing electricity by charging a lithium ion battery, a nickel metal hydride battery, or the like. Since the power supply 20 can be repeatedly charged and discharged, it can be used repeatedly.

キャパシタ30は、電源20と並列に接続された、例えば、電気二重層キャパシタ等である。キャパシタ30は、充電を行うことにより電気を蓄えて電源20の補助として機能する。   The capacitor 30 is, for example, an electric double layer capacitor connected in parallel with the power supply 20. The capacitor 30 stores electricity by charging and functions as an auxiliary to the power source 20.

負荷(図示せず)は、端子40a,40bに接続される。負荷は、例えば、直流モータ等である。負荷としての直流モータは、加速時などで多くの電力が必要であるときは、電源20及びキャパシタ30に蓄積されている電力が双方から供給される。そして、負荷としての直流モータが定常状態となったときには、電源20のみから電力が供給される。また、負荷は、発電機として動作したときには回生電流(電力)を発生させる。回生電流は、電源20及びキャパシタ30に蓄積される。   A load (not shown) is connected to the terminals 40a and 40b. The load is, for example, a DC motor. When the DC motor as a load requires a large amount of power during acceleration or the like, the power stored in the power source 20 and the capacitor 30 is supplied from both. When the DC motor as the load is in a steady state, power is supplied only from the power source 20. Further, the load generates a regenerative current (electric power) when operating as a generator. The regenerative current is accumulated in the power supply 20 and the capacitor 30.

第1電圧変換装置(DCDCコンバータ)10は、電源20とキャパシタ30との間で並列に設けられる。第1電圧変換装置10は、キャパシタ30の端子間電圧を検知して、キャパシタ30の端子間電圧が所定値より低くなった場合に昇圧動作を行い、キャパシタ30の端子間電圧が所定値より高くなった場合に降圧動作を行う。キャパシタ30の端子間電圧における所定値とは、キャパシタ30の定格電圧(通常使用電圧)や耐電圧等によって予め定められる値をいう。   The first voltage converter (DCDC converter) 10 is provided in parallel between the power supply 20 and the capacitor 30. The first voltage conversion device 10 detects the voltage between the terminals of the capacitor 30 and performs a boost operation when the voltage between the terminals of the capacitor 30 is lower than a predetermined value. The voltage between the terminals of the capacitor 30 is higher than the predetermined value. When this happens, step-down operation is performed. The predetermined value in the voltage between the terminals of the capacitor 30 refers to a value determined in advance by the rated voltage (normal use voltage), the withstand voltage, or the like of the capacitor 30.

第1電圧変換装置10の力行時の動作について、図2及び図3を参照しながら説明する。力行時であって、キャパシタ30から負荷に電力を供給した場合、キャパシタ30の端子間電圧Vcapが低下する。第1電圧変換装置10は、図2のステップS11において、キャパシタ30の端子間電圧Vcapを検知して、キャパシタ30の端子間電圧Vcapが所定値V’capより低くなったか否かを判断する。第1電圧変換装置10は、キャパシタ30の端子間電圧Vcapが所定値V’capより低くなったと判断した場合、ステップS12において、昇圧動作を行う。第1電圧変換装置10は、図3に示すように、昇圧動作を行って電源20からキャパシタ30に電力を供給する。 The operation during powering of the first voltage converter 10 will be described with reference to FIGS. 2 and 3. When power is supplied from the capacitor 30 to the load during power running, the inter-terminal voltage V cap of the capacitor 30 decreases. In step S11 of FIG. 2, the first voltage converter 10 detects the inter-terminal voltage V cap of the capacitor 30 and determines whether or not the inter-terminal voltage V cap of the capacitor 30 has become lower than a predetermined value V ′ cap. To do. When determining that the voltage V cap between the terminals of the capacitor 30 has become lower than the predetermined value V ′ cap , the first voltage converter 10 performs a boosting operation in step S12. As shown in FIG. 3, the first voltage converter 10 performs a step-up operation to supply power from the power supply 20 to the capacitor 30.

第1電圧変換装置10の回生時の動作について、図2及び図4を参照しながら説明する。回生時であって、負荷からキャパシタ30に回生電流を供給した場合、キャパシタ30の端子間電圧Vcapが上昇する。第1電圧変換装置10は、図2のステップS11において、キャパシタ30の端子間電圧を検知して、キャパシタ30の端子間電圧Vcapが所定値V’capより高くなったか否かを判断する。第1電圧変換装置10は、キャパシタ30の端子間電圧Vcapが所定値V’capより高くなったと判断した場合、ステップS13において、降圧動作を行う。第1電圧変換装置10は、図4に示すように、降圧動作を行ってキャパシタ30から電源20に電力を供給する。 An operation during regeneration of the first voltage converter 10 will be described with reference to FIGS. 2 and 4. When regenerative current is supplied from the load to the capacitor 30 during regeneration, the inter-terminal voltage V cap of the capacitor 30 increases. In step S11 of FIG. 2, the first voltage converter 10 detects the voltage between the terminals of the capacitor 30 and determines whether or not the voltage V cap between the terminals of the capacitor 30 is higher than a predetermined value V ′ cap . When determining that the voltage V cap between the terminals of the capacitor 30 has become higher than the predetermined value V ′ cap , the first voltage conversion device 10 performs a step-down operation in step S13. As shown in FIG. 4, the first voltage converter 10 performs a step-down operation and supplies power from the capacitor 30 to the power supply 20.

第2電圧変換装置(DCDCコンバータ)11は、キャパシタ30と負荷に接続される端子40a,40bとの間で並列に設けられる。第2電圧変換装置11は、第1電圧変換装置10とも並列に設けられる。第2電圧変換装置11は、端子40a,40bの電圧を検知して、端子40a,40bの電圧が所定値より低くなった場合に昇圧動作を行い、端子40a,40bの電圧が所定値より高くなった場合に降圧動作を行う。端子40a,40bの電圧における所定値とは、端子40a,40bと接続される負荷の定格電圧等によって予め定められる値をいう。   The second voltage converter (DCDC converter) 11 is provided in parallel between the capacitor 30 and the terminals 40a and 40b connected to the load. The second voltage conversion device 11 is also provided in parallel with the first voltage conversion device 10. The second voltage converter 11 detects the voltages at the terminals 40a and 40b, performs a boost operation when the voltages at the terminals 40a and 40b are lower than a predetermined value, and the voltages at the terminals 40a and 40b are higher than the predetermined value. When this happens, step-down operation is performed. The predetermined value in the voltage of the terminals 40a and 40b is a value determined in advance by the rated voltage of the load connected to the terminals 40a and 40b.

第2電圧変換装置11の力行時の動作について、図5及び図6を参照しながら説明する。力行時であって、キャパシタ30から負荷に電力を供給した場合、端子40a,40b間の電圧Voutが低下する。第2電圧変換装置11は、図5のステップS21において、端子40a,40b間の電圧Voutを検知して、端子40a,40b間の電圧Voutが所定値V’outより低くなったか否かを判断する。第2電圧変換装置11は、端子40a,40b間の電圧Voutが所定値V’outより低くなったと判断した場合、ステップS22において、昇圧動作を行う。第2電圧変換装置11は、図6に示すように、昇圧動作を行ってキャパシタ30から負荷に電力を供給する。 The operation at the time of power running of the second voltage converter 11 will be described with reference to FIGS. 5 and 6. When power is supplied from the capacitor 30 to the load during power running, the voltage Vout between the terminals 40a and 40b decreases. The second voltage converting device 11 in step S21 in FIG. 5, the terminal 40a, and detects the voltage V out between 40b, whether the terminal 40a, the voltage V out between 40b becomes lower than a predetermined value V 'out Judging. When determining that the voltage V out between the terminals 40a and 40b has become lower than the predetermined value V ′ out , the second voltage conversion device 11 performs a boosting operation in step S22. As shown in FIG. 6, the second voltage converter 11 performs a step-up operation and supplies power from the capacitor 30 to the load.

第2電圧変換装置11の回生時の動作について、図5及び図7を参照しながら説明する。回生時であって、負荷からキャパシタ30に回生電流を供給した場合、端子40a,40b間の電圧Voutが上昇する。第2電圧変換装置11は、図5のステップS21において、端子40a,40b間の電圧Voutを検知して、端子40a,40b間の電圧Voutが所定値V’outより高くなったか否かを判断する。第2電圧変換装置11は、端子40a,40b間の電圧Voutが所定値V’outより高くなったと判断した場合、ステップS23において、降圧動作を行う。第2電圧変換装置11は、図7に示すように、降圧動作を行って負荷からキャパシタ30に電力を供給する。 The operation at the time of regeneration of the second voltage converter 11 will be described with reference to FIGS. 5 and 7. When regenerative current is supplied from the load to the capacitor 30 during regeneration, the voltage Vout between the terminals 40a and 40b increases. The second voltage converting device 11 in step S21 in FIG. 5, the terminal 40a, and detects the voltage V out between 40b, whether the terminal 40a, the voltage V out between 40b becomes higher than a predetermined value V 'out Judging. When determining that the voltage V out between the terminals 40a and 40b has become higher than the predetermined value V ′ out , the second voltage conversion device 11 performs a step-down operation in step S23. As shown in FIG. 7, the second voltage conversion device 11 performs a step-down operation and supplies power from the load to the capacitor 30.

以下に、本発明の実施の形態に係る電力供給安定化装置を用いた力行時の電力供給安定化装置制御方法を図8及び図9のフローチャートを参照しながら説明する。   Hereinafter, a power supply stabilization device control method during powering using the power supply stabilization device according to the embodiment of the present invention will be described with reference to the flowcharts of FIGS. 8 and 9.

まず、図9のステップS31において、直流モータ等が起動させる(力行状態)。直流モータ等が起動することによって、負荷が大きくなる。負荷が大きくなるということは、図8に示す端子40a,40b間の電圧Voutが低下する(ステップS32)。 First, in step S31 of FIG. 9, a DC motor or the like is activated (powering state). The load increases when the DC motor or the like is started. When the load increases, the voltage Vout between the terminals 40a and 40b shown in FIG. 8 decreases (step S32).

次に、ステップS33において、キャパシタ30側のDCDCコンバータである第2電圧変換装置11は、端子40a,40b間の電圧Voutを直接検知しているので、端子40a,40b間の電圧Voutが低くなったことにより、キャパシタ30から供給される電圧の昇圧動作を行う。尚、キャパシタ30は、負荷に電力を供給するので、キャパシタ30の端子間電圧Vcapが下がることになる(ステップS34)。 Next, in step S33, the second voltage converter 11 is a DCDC converter the capacitor 30 side terminals 40a, since the detection voltage V out between 40b directly, the terminal 40a, the voltage V out between 40b Due to the low voltage, the voltage supplied from the capacitor 30 is boosted. Since the capacitor 30 supplies power to the load, the inter-terminal voltage V cap of the capacitor 30 decreases (step S34).

次に、ステップS35において、電源20側のDCDCコンバータである第1電圧変換装置10は、キャパシタ30の端子間電圧Vcapを直接検知しているので、キャパシタ30の端子間電圧Vcapが低くなったことにより、電源20から供給される電圧の昇圧動作を行う。 Next, in step S35, the first voltage conversion device 10 which is a DCDC converter on the power source 20 side directly detects the inter-terminal voltage V cap of the capacitor 30, so the inter-terminal voltage V cap of the capacitor 30 becomes low. As a result, the voltage supplied from the power supply 20 is boosted.

以下に、本発明の実施の形態に係る電力供給安定化装置を用いた回生時の電力供給安定化装置制御方法を図8及び図10のフローチャートを参照しながら説明する。   Hereinafter, a method for controlling the power supply stabilization apparatus during regeneration using the power supply stabilization apparatus according to the embodiment of the present invention will be described with reference to the flowcharts of FIGS. 8 and 10.

まず、図10のステップS41において、直流モータ等がブレーキすることにより、負荷が発電機として動作して回生電流を発生させる(回生状態)。直流モータ等が回生電流を発生させることによって、図8に示す端子40a,40b間の電圧Voutが上昇する(ステップS42)。 First, in step S41 of FIG. 10, the DC motor or the like brakes, so that the load operates as a generator to generate a regenerative current (regenerative state). When the DC motor or the like generates a regenerative current, the voltage Vout between the terminals 40a and 40b shown in FIG. 8 increases (step S42).

次に、ステップS43において、キャパシタ30側のDCDCコンバータである第2電圧変換装置11は、端子40a,40b間の電圧Voutを直接検知しているので、端子40a,40b間の電圧Voutが高くなったことにより、キャパシタ30へ供給される電圧の降圧動作を行う。尚、キャパシタ30は、負荷から電力を供給されるので、キャパシタ30の端子間電圧Vcapが上がることになる(ステップS44)。 Next, in step S43, the second voltage converter 11 is a DCDC converter the capacitor 30 side terminals 40a, since the detection voltage V out between 40b directly, the terminal 40a, the voltage V out between 40b Due to the increase, the voltage supplied to the capacitor 30 is stepped down. Since the capacitor 30 is supplied with power from the load, the inter-terminal voltage V cap of the capacitor 30 increases (step S44).

次に、ステップS45において、電源20側のDCDCコンバータである第1電圧変換装置10は、キャパシタ30の電圧Vcapを直接検知しているので、キャパシタ30の端子間電圧Vcapが高くなったことにより、電源20へ供給される電圧の降圧動作を行う。 Next, in step S45, the first voltage conversion device 10 which is a DCDC converter on the power supply 20 side directly detects the voltage V cap of the capacitor 30, so that the terminal voltage V cap of the capacitor 30 has increased. Thus, the voltage supplied to the power supply 20 is stepped down.

実施の形態に係る電力供給安定化装置及び電力供給安定化装置制御方法によれば、第1電圧変換装置10及び第2電圧変換装置11を並列に接続し、2段昇圧型又は2段降圧型にすることで、第1電圧変換装置10及び第2電圧変換装置11は、それぞれの電圧値を直接検知することができる。したがって、必要なデータを直接取り込むことが可能である第1電圧変換装置10及び第2電圧変換装置11は、通信を用いたデータのやりとりが必要なくなり、データの遅れ等が無く処理を行うことができる。また、第1電圧変換装置10及び第2電圧変換装置11は、配線処理や外部センサ等が必要なくなり、配線の簡略化をすることができ、部品点数を少なくすることもできる。   According to the power supply stabilization device and the power supply stabilization device control method according to the embodiment, the first voltage conversion device 10 and the second voltage conversion device 11 are connected in parallel, and the two-stage step-up type or the two-step step-down type. By doing, the 1st voltage converter 10 and the 2nd voltage converter 11 can detect each voltage value directly. Accordingly, the first voltage conversion device 10 and the second voltage conversion device 11 that can directly capture necessary data do not need to exchange data using communication, and can perform processing without data delay or the like. it can. In addition, the first voltage conversion device 10 and the second voltage conversion device 11 do not require wiring processing, an external sensor, or the like, so that wiring can be simplified and the number of components can be reduced.

更に、実施の形態に係る電力供給安定化装置及び電力供給安定化装置制御方法によれば、電源(二次電池)20やキャパシタ30のそれぞれに第1電圧変換装置10及び第2電圧変換装置11を用いることで、それぞれで昇圧動作及び降圧動作を行うことができるので、あらゆる負荷変動にも対応して負荷側電圧を一定にすることができる。   Furthermore, according to the power supply stabilization device and the power supply stabilization device control method according to the embodiment, the first voltage conversion device 10 and the second voltage conversion device 11 are respectively connected to the power source (secondary battery) 20 and the capacitor 30. By using this, it is possible to perform a step-up operation and a step-down operation, respectively, so that the load side voltage can be made constant in response to any load fluctuation.

(その他の実施の形態)
上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art.

例えば、実施の形態において電源20は、二次電池として記載したが、図11に示すように、交流の系統電源21と、系統電源21から発生した交流を直流に変換する整流器22とからなる電源であっても構わない。この場合、回生電流は、系統電源21に供給されることになる。整流器22としては、ダイオード及び保護ダイオードを有するスイッチ回路等を利用することができる。   For example, although the power supply 20 is described as a secondary battery in the embodiment, as shown in FIG. 11, a power supply including an AC system power supply 21 and a rectifier 22 that converts AC generated from the system power supply 21 into DC. It does not matter. In this case, the regenerative current is supplied to the system power supply 21. As the rectifier 22, a switch circuit having a diode and a protection diode can be used.

このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。   Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

10…第1電圧変換装置
11…第2電圧変換装置
20…電源
21…系統電源
22…整流器
30…キャパシタ
40a,40b…端子
DESCRIPTION OF SYMBOLS 10 ... 1st voltage converter 11 ... 2nd voltage converter 20 ... Power supply 21 ... System power supply 22 ... Rectifier 30 ... Capacitor 40a, 40b ... Terminal

Claims (6)

負荷に対して電力を供給する電源と、
前記電源と並列に接続され、前記負荷に対して電力を供給し、前記負荷で発生した回生電力を充電により蓄えることが可能なキャパシタと、
前記電源と前記キャパシタとの間で前記電源と並列に接続され、前記キャパシタの端子間電圧を検知して、前記キャパシタの端子間電圧に基づいて前記電源の電圧を変換制御する第1電圧変換装置と、
前記キャパシタと前記負荷に接続される端子との間で前記キャパシタ及び前記第1電圧変換装置と並列に接続され、前記端子の電圧を検知して、前記端子の電圧に基づいて前記キャパシタの端子間電圧を変換制御する第2電圧変換装置
とを備えることを特徴とする電力供給安定化装置。
A power source for supplying power to the load;
A capacitor connected in parallel with the power source, supplying power to the load, and capable of storing regenerative power generated by the load by charging;
A first voltage converter connected in parallel with the power source between the power source and the capacitor, detecting a voltage between terminals of the capacitor, and converting and controlling the voltage of the power source based on the voltage between terminals of the capacitor. When,
Connected in parallel with the capacitor and the first voltage converter between the capacitor and a terminal connected to the load, detects the voltage of the terminal, and based on the voltage of the terminal, between the terminals of the capacitor A power supply stabilization device comprising: a second voltage conversion device that converts and controls voltage.
前記第1電圧変換装置は、前記キャパシタの端子間電圧が所定値より低くなった場合に昇圧動作を行い、前記キャパシタの端子間電圧が所定値より高くなった場合に降圧動作を行うことを特徴とする請求項1に記載の電力供給安定化装置。   The first voltage converter performs a step-up operation when a voltage between terminals of the capacitor becomes lower than a predetermined value, and performs a step-down operation when the voltage between terminals of the capacitor becomes higher than a predetermined value. The power supply stabilization device according to claim 1. 前記第2電圧変換装置は、前記端子の電圧が所定値より低くなった場合に昇圧動作を行い、前記端子の電圧が所定値より高くなった場合に降圧動作を行うことを特徴とする請求項1又は2に記載の電力供給安定化装置。   The second voltage conversion device performs a step-up operation when a voltage at the terminal becomes lower than a predetermined value, and performs a step-down operation when the voltage at the terminal becomes higher than a predetermined value. The power supply stabilization device according to 1 or 2. 前記電源は、前記負荷で発生した回生電力を充電により蓄えることが可能な二次電池であることを特徴とする請求項1〜3のいずれか1項に記載の電力供給安定化装置。   The power supply stabilization device according to any one of claims 1 to 3, wherein the power source is a secondary battery capable of storing regenerative power generated by the load by charging. 前記電源は、交流の系統電源と、前記系統電源から発生した交流を直流に変換する整流器とからなることを特徴とする請求項1〜3のいずれか1項に記載の電力供給安定化装置。   The power supply stabilization device according to any one of claims 1 to 3, wherein the power source includes an AC system power source and a rectifier that converts AC generated from the system power source into DC. 請求項1〜5のいずれか1項に記載の電力供給安定化装置の電力供給安定化装置制御方法であって、
力行時において、第2電圧変換装置が負荷に接続される端子の電圧を検知して、前記端子の電圧に基づいてキャパシタの端子間電圧を昇圧する工程と、第1電圧変換装置が前記キャパシタの電圧を検知して、前記キャパシタの端子間電圧に基づいて電源の電圧を昇圧する工程とを含み、
回生時において、前記第2電圧変換装置が前記端子の電圧を検知して、前記端子の電圧に基づいてキャパシタの端子間電圧を降圧する工程と、前記第1電圧変換装置が前記キャパシタの端子間電圧を検知して、前記キャパシタの端子間電圧に基づいて電源の電圧を降圧する工程とを含むことを特徴とする電力供給安定化装置制御方法。
A power supply stabilization device control method for a power supply stabilization device according to any one of claims 1 to 5,
During power running, the second voltage converter detects a voltage of a terminal connected to a load and boosts the voltage across the terminals of the capacitor based on the voltage of the terminal; Detecting the voltage and boosting the voltage of the power source based on the voltage between the terminals of the capacitor,
In regeneration, the second voltage converter detects the voltage of the terminal and reduces the voltage across the terminals of the capacitor based on the voltage of the terminal; and the first voltage converter between the terminals of the capacitor And a step of detecting a voltage and stepping down the voltage of the power source based on the voltage across the terminals of the capacitor.
JP2011003868A 2011-01-12 2011-01-12 Power supply stabilization device and power supply stabilization device control method Active JP5664251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003868A JP5664251B2 (en) 2011-01-12 2011-01-12 Power supply stabilization device and power supply stabilization device control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003868A JP5664251B2 (en) 2011-01-12 2011-01-12 Power supply stabilization device and power supply stabilization device control method

Publications (2)

Publication Number Publication Date
JP2012147563A true JP2012147563A (en) 2012-08-02
JP5664251B2 JP5664251B2 (en) 2015-02-04

Family

ID=46790551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003868A Active JP5664251B2 (en) 2011-01-12 2011-01-12 Power supply stabilization device and power supply stabilization device control method

Country Status (1)

Country Link
JP (1) JP5664251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023522412A (en) * 2020-04-24 2023-05-30 オカド・イノベーション・リミテッド Energy storage system for load handling equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276787B1 (en) 2016-07-29 2019-01-02 Ford Global Technologies, LLC On-board electrical system for motor vehicles comprising a converter and a high-load consumer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022A (en) * 1843-03-30 Machine for bending stibrups for paddle-wheels of steam and other
JP2000295715A (en) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd Power source system of electric automobile
JP2004056995A (en) * 2002-05-30 2004-02-19 Nec Tokin Corp Hybrid power supply system
JP2006232102A (en) * 2005-02-25 2006-09-07 Meidensha Corp Transportation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022A (en) * 1843-03-30 Machine for bending stibrups for paddle-wheels of steam and other
JP2000295715A (en) * 1999-04-01 2000-10-20 Fuji Electric Co Ltd Power source system of electric automobile
JP2004056995A (en) * 2002-05-30 2004-02-19 Nec Tokin Corp Hybrid power supply system
JP2006232102A (en) * 2005-02-25 2006-09-07 Meidensha Corp Transportation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023522412A (en) * 2020-04-24 2023-05-30 オカド・イノベーション・リミテッド Energy storage system for load handling equipment

Also Published As

Publication number Publication date
JP5664251B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5641144B2 (en) Power converter
JP5082339B2 (en) Power converter
JP2007082375A (en) Power supply device for vehicles
JP2010045889A (en) Electric power system and fuel cell vehicle
JP6228059B2 (en) DC / DC converter and battery system
JP2018148637A (en) Charger and on-vehicle power supply
JP2015115982A (en) Electric power output apparatus
JP5182788B2 (en) Power supply apparatus and power supply system using the same
JP2009225568A (en) Fuel cell electric vehicle system
JP2016116362A (en) Electric vehicle
JP2012065534A (en) Power supply device, power supply system, and power supply system control method
JP5664251B2 (en) Power supply stabilization device and power supply stabilization device control method
JP2008079436A (en) Power supply control unit
JP6520745B2 (en) Fuel cell system
JP2011199996A (en) Motor drive
JP5152505B2 (en) Vehicle power supply system
JP2011211797A (en) Step-up dc-dc converter
JP4870040B2 (en) Fuel cell vehicle
JP4769262B2 (en) Hybrid DC power supply system and fuel cell vehicle
JP2018014808A (en) Power supply system
JP2014014235A (en) Fuel cell vehicle
JP6241074B2 (en) Fuel cell power regulation system
JP5644131B2 (en) Power supply device and power supply device control method
JP5687431B2 (en) Power supply circuit and power supply system
JP5906153B2 (en) Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R151 Written notification of patent or utility model registration

Ref document number: 5664251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250