JP3552087B2 - Electric vehicle power system - Google Patents

Electric vehicle power system Download PDF

Info

Publication number
JP3552087B2
JP3552087B2 JP09453499A JP9453499A JP3552087B2 JP 3552087 B2 JP3552087 B2 JP 3552087B2 JP 09453499 A JP09453499 A JP 09453499A JP 9453499 A JP9453499 A JP 9453499A JP 3552087 B2 JP3552087 B2 JP 3552087B2
Authority
JP
Japan
Prior art keywords
storage device
chopper
power storage
vehicle
main power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09453499A
Other languages
Japanese (ja)
Other versions
JP2000295715A (en
Inventor
繁則 木下
淳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
UD Trucks Corp
Original Assignee
UD Trucks Corp
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp, Fuji Electric Holdings Ltd filed Critical UD Trucks Corp
Priority to JP09453499A priority Critical patent/JP3552087B2/en
Publication of JP2000295715A publication Critical patent/JP2000295715A/en
Application granted granted Critical
Publication of JP3552087B2 publication Critical patent/JP3552087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size and weight of a vehicle-mounted apparatus, make the voltage of a main charge storing device changeable, and improve system efficiency, in an electric automobile in which electric double layer capacitor cells are used in the main charge storing device. SOLUTION: This electric automobile drives a vehicle driving motor via a power converter by the electric power of a vehicle-mounted engine generator and a vehicle-mounted main charge storing device 40 or the power of the vehicle-mounted main charge storing device 40. The main charge storing device 40 consists of at least two battery blocks 10, 11 constituted by connecting a plurality of electric double layer capacitor cells in series, and a current bidirectional type stepping-up chopper 12 connected between the battery blocks 10 and 11.

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層キャパシタ電池を主蓄電装置に使用したハイブリッド電気自動車、その他、主蓄電装置を有する電気自動車一般に適用可能な電源システムに関する。
【0002】
【従来の技術】
図10は、主蓄電装置として電気二重層キャパシタ電池を使用したハイブリッド電気自動車の公知の電源システムを示している。従来では、蓄電装置として化学二次電池を使用していたが、化学二次電池は充放電サイクル寿命が短く、しかも高出力作動時の効率が悪いため、最近では電気二重層キャパシタ電池が適用されてきている。
【0003】
図10において、1はエンジン、2は発電機、3は整流器、4は主蓄電装置、5は車両駆動電動機6を駆動する電力変換器としてのインバータであり、これらの要素がパワートレインを構成している。7は補助蓄電装置8を充電するDCーDCコンバータ、9は補機である。なお、ここでは電動機6以降の駆動機構の図示を省略してある。
主蓄電装置4は、電気二重層キャパシタセル41,42,43,……を複数直列接続して構成された電気二重層キャパシタ電池である。
図示していないが、主蓄電装置4の容量を増大させるため、必要に応じて電気二重層キャパシタセル41,42,43,……の直列回路を複数、並列接続することも行われる。
【0004】
図10に示したものはシリーズハイブリッド方式の電気自動車であり、エンジン1及び発電機2により発生させた電力の一部または全部を使用して主蓄電装置4を充電する。そして、エンジン1及び発電機2により発生させた電力と主蓄電装置4の電力とを用いて、インバータ5を介し電動機6により車両を駆動する。
更に、発電機2及び主蓄電装置4の電力、または主蓄電装置4の電力のみを用いて、インバータ5を介し電動機6により車両を駆動する。
制動時は、電動機6から発生した制動電力を、インバータ5を介して主蓄電装置4に回生する。
発電機を搭載せずに主蓄電装置の電力のみを用いて車両を駆動する電気自動車の電気システムは、図10においてエンジン1、発電機2及び整流器3が無いシステムと同じ構成であるため、詳述を省略する。
【0005】
前述したように、主蓄電装置4は車両の加速時及び定速走行時には放電、制動時には充電の繰り返し動作となり、その回数は数万回にも達する。電気自動車用の主蓄電装置は、この充放電サイクル回数に耐えるものでなくてはならない。前述した電気二重層キャパシタ電池はこの性能を有しており、電気自動車用として優れた蓄電装置と言うことができる。
図10に示した主蓄電装置4も、従来の化学二次電池を多数直列接続してなる組電池と同様に、電気二重層キャパシタセル41,42,43,……を多数直列接続して構成されており、従来の化学二次電池を電気二重層キャパシタ電池に置き替えたシステムとなっている。
【0006】
さて、電気二重層キャパシタセルの蓄積エネルギはキャパシタセルの電圧の2乗に比例する。言い換えれば、直流電源として使用した場合、放電エネルギの増大に応じて電気二重層キャパシタセルの電圧は低下して行く。エネルギの75%を放電すると、電圧は1/2に低下する。図10に示す電気システムでは、放電電力によってインバータ5の入力電圧が大きく変化する。特に電気自動車の場合、電圧が低下すると、中高速域の車両性能が大きく低下する。
このため、実際には、図11に示すように電気二重層キャパシタ電池としての主蓄電装置4とインバータ5との間にチョッパ44を挿入し、このチョッパ44の動作によりインバータ5の入力電圧を一定にする方法がとられている。
【0007】
図12は、図11のチョッパ44の詳細な回路構成を示したもので、電流双方向形(電流2象限)昇降圧チョッパの回路例である。図12において、図10、図11と同一構成要素は同一番号を付してある。
図12において、441,442はトランジスタからなる半導体スイッチ、443,444は半導体スイッチ441,442に逆並列接続されたダイオード、445は電流平滑リアクトル、446,447はフィルタコンデンサである。
【0008】
車両の加速時及び定速走行時は、主蓄電装置(電気二重層キャパシタ電池)4の電圧はインバータ5の入力電圧より低下するので、チョッパ44を主蓄電装置4側から見て昇圧チョッパとして動作させる。この場合、半導体スイッチ441をスイッチングし、半導体スイッチ442をオフする。
図13は、この昇圧チョッパの等価回路であり、図12における半導体スイッチ442及びダイオード443を除去した構成となる。
【0009】
次に、回生制動時の動作を述べる。回生制動時は、インバータ5の入力電圧が主蓄電装置4より高いので、チョッパ44をインバータ5側から見て降圧チョッパとして動作させる。この場合、半導体スイッチ442をスイッチングし、半導体スイッチ441をオフする。
図14は、この降圧チョッパの等価回路であり、図12における半導体スイッチ441及びダイオード444を除去した構成となる。
【0010】
次に、図15は図11のチョッパ44の動作を説明する図である。モードIは加速・定速走行時、モードIIは惰行時、モードIIIは回生制動時の動作を示す。 加速・定速走行時(モードI)は、主蓄電装置4が放電するので電圧Vcは減少するが、チョッパ44の昇圧動作(主蓄電装置4側から見て)により、インバータ5の入力電圧Viは一定に保たれる。この間、チョッパ44の電流Ic(図12におけるリアクトル445の電流)は、主蓄電装置4の電圧低下に伴って増大する。
【0011】
回生制動時(モードIII)には、チョッパ44の降圧動作(インバータ5側から見て)により、チョッパ44の入力電圧を一定に保ちながら、回生電力を主蓄電装置4に供給して充電する。この間、チョッパ44の電流Icは、主蓄電装置4の電圧上昇に伴って減少する。
【0012】
【発明が解決しようとする課題】
前述のように、電気二重層キャパシタ電池は化学二次電池と異なり、蓄積エネルギが電圧の2乗に比例する。すなわち、蓄積エネルギの変化でキャパシタ電圧が大きく変動する。このため、図11に示した従来のシステムでは、電気二重層キャパシタ電池からなる主蓄電装置4の出力側に電流双方向形昇降圧チョッパ44を接続し、あたかも主蓄電装置4の電圧が一定であるようにしている。
このようなチョッパ方式の場合、図12に示したごとくチョッパ44には電流平滑リアクトル445が必須である。更に、図15から明らかなように、リアクトル445を流れる電流Icは主蓄電装置4の電圧Vcに反比例するので、主蓄電装置4の電圧Vcが半減するとリアクトル445の電流Icは2倍にもなる。
【0013】
このチョッパ44の最大動作電圧はインバータ5と同じであり、最大動作電流はインバータ5より大きくなるので、チョッパ44の電力変換容量はインバータ5より大きくなる。
一方、電気自動車用の場合、車載機器はできるだけ小形・軽量、高効率であることが強く求められるので、電気自動車の主蓄電装置として電気二重層キャパシタ電池を使用する場合、このチョッパの小形・軽量化、高効率化が大きな課題となっていた。
【0014】
前述のように、電気二重層キャパシタ電池は従来の化学二次電池と異なり、電池電圧が電池の使用状態に応じて大きく変化する。化学二次電池の場合の放電終止に相当する放電状態では、キャパシタ電池の電圧はほぼ零となってしまう。このため、電気二重層キャパシタ電池を使用する場合、電圧がほぼ零からの充電(初期充電)を容易に行えることが望ましい。
【0015】
図10に示した従来の電源システムでは、主蓄電装置4の電圧がほぼ零からの充電(初期充電)または規定値以下からの充電(予備充電)は、車載のエンジン発電機から行うことができない。これは、エンジン1はアイドリング回転数以下では回転できないため、整流器3の出力電圧の最小値が決まってしまい、主蓄電装置4の電圧が規定値以上でないと充電できないためである。従ってこの場合には、図16に示すように外部電源を使用して充電している。
すなわち図16において、200は主蓄電装置4に接続された外部の充電用電源装置である。この充電用電源装置200の詳細な構成は本発明の要旨ではないため、ここでは説明を省略する。
以上のように従来の電源システムでは、初期充電等に当たって外部の充電用電源装置が必要であり、充電作業が煩わしいという問題があった。
【0016】
【課題を解決するための手段】
本発明は上記の課題を解決するためになされたもので、請求項1記載の発明は、車載エンジン発電機及び車載主蓄電装置の電力、または、車載主蓄電装置の電力により電力変換器を介し車両駆動電動機を駆動する電気自動車において、前記主蓄電装置を、電気二重層キャパシタセルを複数個直列接続してなる少なくとも2個の電池ブロックと、これらの電池ブロック間に接続されたチョッパとから構成すると共に、前記チョッパの制御により、前記主蓄電装置の電圧を負荷の大小に応じて可変とするものである。
また、請求項2記載の発明は、前記電力変換器に対して、主蓄電装置を複数、並列に接続したものである。
更に、請求項3記載の発明は、前記チョッパが電流双方向形昇降圧チョッパであることを特徴とし、請求項4記載の発明は、前記電池ブロックを、接続ケーブルまたは前記チョッパを介して車載の補助蓄電装置の電力により初期充電するものである。
【0017】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。まず、図1は本発明の第1実施形態であり、請求項1,3に記載した発明の実施形態に相当する。図10と同一の構成要素は同一の番号を付してある。
図1において、40は前述の主蓄電装置4に相当する主蓄電装置であり、電気二重層キャパシタ電池ブロック10,11と、これらの電池ブロック10,11の間に接続された電流双方向形昇降圧チョッパ12とから構成されている。なお、電池ブロック10,11は何れも電気二重層キャパシタセル100,110を複数、直列接続して構成されている。図示されていないが、各電池ブロックは、複数の電気二重層キャパシタセルの直列回路をそれぞれ複数、並列接続して構成しても良い。
前記電池ブロック11の両端には、DC−DCコンバータ7及びインバータ5が互いに並列に接続されている。
【0018】
チョッパ12は電流二象限動作により電池ブロック10,11の相互間で昇降圧可能となっている。このチョッパ12の構成及び動作については後述する。
【0019】
図2は本発明の第2実施形態であり、請求項2の発明の実施形態に相当する。図1と同一構成要素は同一番号を付してある。
この実施形態は、図1に示した主蓄電装置をインバータ5に対して並列接続した例であり、図2における40a,40bは図1の主蓄電装置40と同一の構成である。
【0020】
図3は本発明の第3実施形態であり、請求項1の発明の実施形態を図10に示したシリーズハイブリッド方式の電気自動車に適用した場合の実施形態に相当する。図3において、図1や図10と同一の構成要素は同一番号を付してあり、図10における主蓄電装置4を主蓄電装置40に置き換えた構成となっている。
【0021】
次に、図4は図1〜図3におけるチョッパ12の詳細な構成を示した回路図である。なお、図1〜図3に示したDC−DCコンバータ7及び補助蓄電装置8は図示を省略してある。
図4に示したチョッパ12の回路構成は請求項3に記載した発明の実施形態に相当し、電流双方向形の昇降圧チョッパとなっている。
【0022】
図4において、121〜124は半導体スイッチ部、125は半導体スイッチ部121,122の相互接続点と半導体スイッチ部123,124の相互接続点との間に接続された電流平滑リアクトル、126,127は電池ブロック10,11にそれぞれ並列接続されるフィルタコンデンサである。前記半導体スイッチ部121〜124は、トランジスタからなる半導体スイッチ121a〜124aとこれらに逆並列接続されたダイオード121b〜124bとから構成されている。
【0023】
次いで、図5は、図1の回路構成において電池ブロック10を一定電力で放電させた時の主蓄電装置40の電圧の挙動を示したものである。図5において、aは主蓄電装置40の電圧、bは電池ブロック10の電圧を示す。また、cは図10の従来方式における主蓄電装置4の電圧を示す。
【0024】
図5におけるモードIは、チョッパ12を昇圧動作させて、電力を一方の電池ブロック10から供給し、主蓄電装置40全体の出力電圧を一定に保つ運転域である。また、モードIIは、チョッパ動作を停止して、電力を他方の電池ブロック11から供給する運転域を示す。
【0025】
図6は、図5の動作モードI,IIに対応した動作を示した図であり、(a)は図5のモードIの電力の流れを、(b)は図5のモードIIの電力の流れをそれぞれ矢印で示してある。動作モードIに対応する図6(a)では、電池ブロック10の有する電力がチョッパ12を介してインバータ5側に供給され、動作モードIIに対応する図6(b)では、電池ブロック11の有する電力が直接、インバータ5側に供給される。図5に示したように、動作モードIでは電池ブロック10の電圧(特性b)は次第に低下するが、チョッパ12の昇圧動作により、主蓄電装置40全体としての出力電圧(特性a)は一定値を保っている。また、動作モードIIでは、電池ブロック11の電圧低下に伴って主蓄電装置40の出力電圧(特性a)も次第に低下することとなる。
なお、電池ブロック10,11から同時に電力を供給することも可能であり、この場合の電力の流れを図6(c)に矢印で示す。
【0026】
図7は図4に示したチョッパ12の詳細な動作説明図であり、図4と同一構成要素は同一番号を付してある。回路構成要素の番号は、煩雑になるのを避けるため図7(a)だけに付すこととし、(b),(c),(d)については省略する。
【0027】
図7(a)は、チョッパ12を昇圧動作させて電池ブロック10から電池ブロック11側へ電力を供給する場合であり、半導体スイッチ121aがオン、半導体スイッチ122a,123aがオフ、半導体スイッチ124aがスイッチングする。半導体スイッチ124aをオンした時の電流通路を実線で、オフした時の電流通路を破線で示してある。
【0028】
図7(b)は、チョッパ12を降圧動作させて電池ブロック11から電池ブロック10側へ電力を供給する場合であり、半導体スイッチ121a,122a,124aがオフ、半導体スイッチ123aがスイッチングする。半導体スイッチ123aをオンした時の電流通路を実線で、オフした時の電流通路を破線で示してある。
【0029】
図7(c)は、チョッパ12を降圧動作させて電池ブロック10から電池ブロック11側へ電力を供給する場合であり、半導体スイッチ122a,123a,124aがオフ、半導体スイッチ121aがスイッチングする。半導体スイッチ121aをオンした時の電流通路を実線で、オフした時の電流通路を破線で示してある。
【0030】
図7(d)は、チョッパ12を昇圧動作させて電池ブロック11から電池ブロック10側へ電力を供給する場合であり、半導体スイッチ123aがオン、半導体スイッチ121a,124aがオフ、半導体スイッチ122aがスイッチングする。半導体スイッチ122aをオンした時の電流通路を実線で、オフした時の電流通路を破線で示してある。
【0031】
更に、図1に示した電源システムでは、チョッパ12の制御によって主蓄電装置40の電圧を可変にすることが可能である。
車両が都市内の平坦路を定速走行する場合の走行電力は、最大出力の1/10程度である。電気自動車の場合、このような運転域でもパワートレインの効率が高いことが望まれる。このような運転域で効率を高める有効な手段の一つとして、インバータの入力電圧を下げることが考えられる。
【0032】
図8は、上記の点に着目した本発明の動作説明図である。
図8において、負荷の大小(走行電力の大小)に応じて予め設定されたインバータ5の入力電圧に対し、チョッパ12を昇降圧動作させて電池ブロック11の電圧を変化させ、これによってインバータ5の入力電圧を設定値に保つ。例えば、加速時のようにインバータ5の電圧(電池ブロック11の電圧)を高く保つ場合には、放電によってその電圧が初期電圧から次第に低下する電池ブロック10側から見てチョッパ12を昇圧動作させ、電池ブロック11の電圧を所定値まで上昇させる。回生制動時には、電池ブロック11側から見てチョッパ12を降圧動作させ、電池ブロック10を充電する。
【0033】
図9は、本発明の第実施形態を示す回路構成図である。この実施形態は、電池ブロック10,11をチョッパ12により初期充電するための構成である。
電池ブロック10の電圧がほぼ零の時、一方の電池ブロック10と補助蓄電装置8とを接続ケーブル300によって接続する。この接続ケーブル300には、従来のエンジン自動車に使用されているブースターケーブルを用いることができる。
【0034】
補助蓄電装置8と電池ブロック10とを接続ケーブル300により接続し、電池ブロック10を補助蓄電装置8の電圧に充電する。この時の充電電流は、電池ブロック10と補助蓄電装置8との内部抵抗及び接続ケーブル300の抵抗によって制限された電流となり、補助蓄電装置8、電池ブロック10共に許容される値となる。
電池ブロック10の電圧が規定値(チョッパ12の制御動作が可能となる電圧)に達したら、電池ブロック10側から見てチョッパ12を昇圧動作させ、補助蓄電装置8により他方の電池ブロック11を充電すればよい。
【0035】
【発明の効果】
以上のように本発明によれば、主蓄電装置を動力源とする一般の電気自動車またはハイブリッド電気自動車の主蓄電装置として、電気二重層キャパシタセルを直列接続した電池ブロックを複数備え、これらのブロック間を電流双方向形昇降圧チョッパにより接続すると共に、このチョッパの動作により電池ブロック間の電力の授受を行うようにしたので、次の効果が期待される。
【0036】
(1)電気二重層キャパシタ電池を使用した小形・軽量かつ長寿命な主蓄電装置の実現が可能となり、ハイブリッド形を含む種々の実用的な電気自動車を提供することができる。
(2)前記チョッパにより、主蓄電装置の電圧を可変にしてシステム効率の高い電圧で運転できるので、燃費向上が可能になる。
【0037】
なお、前記実施形態では本発明をシリーズハイブリッド電気自動車に適用した場合を説明したが、本発明は、主蓄電装置のみを動力源とする電気自動車やパラレルハイブリッド電気自動車、主蓄電装置以外に燃料電池を備えた電気自動車等、種々の電気自動車の電源システムに適用可能である。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す回路構成図である。
【図2】本発明の第2実施形態を示す回路構成図である。
【図3】本発明の第1実施形態をシリーズハイブリッド電気自動車に適用した場合の構成例である。
【図4】図1〜図3におけるチョッパの詳細な回路構成図である。
【図5】図1〜図4における主蓄電装置及び電池ブロックの電圧の挙動を示す図である。
【図6】図5の動作モードに応じた動作説明図である。
【図7】図4に示したチョッパの詳細な動作説明図である。
【図8】本発明の動作説明図である。
【図9】本発明の第実施形態を示す回路構成図である。
【図10】従来技術としてのシリーズハイブリッド電気自動車の電源システムを示す図である。
【図11】従来技術としてのシリーズハイブリッド電気自動車の電源システムを示す図である。
【図12】図11のチョッパの詳細な回路構成図である。
【図13】図12の等価回路図である。
【図14】図12の等価回路図である。
【図15】図11のチョッパの動作説明図である。
【図16】従来技術としてのシリーズハイブリッド電気自動車の初期充電システムの構成図である。
【符号の説明】
1 エンジン
2 発電機
3 整流器
5 インバータ
6 車両駆動電動機
7 DC−DCコンバータ
8 補助蓄電装置
9 補機
10,11 電気二重層キャパシタ電池ブロック
12 電流双方向形昇降圧チョッパ
40 主蓄電装置
100,110 電気二重層キャパシタセル
121,122,123,124 半導体スイッチ部
121a,122a,123a,124a 半導体スイッチ
121b,122b,123b,124b ダイオード
125 電流平滑リアクトル
126,127 フィルタコンデンサ
300 接続ケーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply system applicable to a hybrid electric vehicle using an electric double-layer capacitor battery as a main power storage device, and other electric vehicles having a main power storage device in general.
[0002]
[Prior art]
FIG. 10 shows a known power supply system of a hybrid electric vehicle using an electric double layer capacitor battery as a main power storage device. In the past, chemical secondary batteries were used as power storage devices.Chemical secondary batteries have a short charge-discharge cycle life and are inefficient at high output operation. Is coming.
[0003]
In FIG. 10, 1 is an engine, 2 is a generator, 3 is a rectifier, 4 is a main power storage device, 5 is an inverter as a power converter for driving a vehicle drive motor 6, and these elements constitute a power train. ing. Reference numeral 7 denotes a DC-DC converter for charging the auxiliary power storage device 8, and reference numeral 9 denotes an auxiliary machine. Here, the illustration of the drive mechanism after the electric motor 6 is omitted.
The main power storage device 4 is an electric double layer capacitor battery configured by connecting a plurality of electric double layer capacitor cells 41, 42, 43,.
Although not shown, in order to increase the capacity of the main power storage device 4, a plurality of series circuits of the electric double layer capacitor cells 41, 42, 43,...
[0004]
FIG. 10 shows a series hybrid electric vehicle, in which main power storage device 4 is charged using part or all of the electric power generated by engine 1 and generator 2. Then, the vehicle is driven by the electric motor 6 via the inverter 5 using the electric power generated by the engine 1 and the electric generator 2 and the electric power of the main power storage device 4.
Further, the vehicle is driven by the electric motor 6 via the inverter 5 using only the electric power of the generator 2 and the main power storage device 4 or only the electric power of the main power storage device 4.
During braking, the braking power generated from the electric motor 6 is regenerated to the main power storage device 4 via the inverter 5.
The electric system of the electric vehicle that drives the vehicle using only the power of the main power storage device without a generator is the same as the system without the engine 1, the generator 2, and the rectifier 3 in FIG. The description is omitted.
[0005]
As described above, the main power storage device 4 performs a repetitive operation of discharging and charging at the time of acceleration and constant speed traveling of the vehicle, and reaches tens of thousands of times. The main power storage device for an electric vehicle must be able to withstand this number of charge / discharge cycles. The electric double layer capacitor battery described above has this performance, and can be said to be an excellent power storage device for electric vehicles.
The main power storage device 4 shown in FIG. 10 is also configured by connecting a number of electric double layer capacitor cells 41, 42, 43,... In a similar manner to a battery pack formed by connecting a number of conventional chemical secondary batteries in series. In this system, a conventional chemical secondary battery is replaced with an electric double layer capacitor battery.
[0006]
The stored energy of the electric double layer capacitor cell is proportional to the square of the voltage of the capacitor cell. In other words, when used as a DC power supply, the voltage of the electric double layer capacitor cell decreases as the discharge energy increases. Discharging 75% of the energy reduces the voltage by half. In the electric system shown in FIG. 10, the input voltage of the inverter 5 changes greatly depending on the discharge power. In particular, in the case of an electric vehicle, when the voltage is reduced, the vehicle performance in a middle to high speed region is significantly reduced.
Therefore, actually, as shown in FIG. 11, a chopper 44 is inserted between the main power storage device 4 as an electric double layer capacitor battery and the inverter 5, and the operation of the chopper 44 keeps the input voltage of the inverter 5 constant. Is taken.
[0007]
FIG. 12 shows a detailed circuit configuration of the chopper 44 of FIG. 11, and is a circuit example of a current bidirectional type (two-quadrant current) step-up / step-down chopper. 12, the same components as those in FIGS. 10 and 11 are denoted by the same reference numerals.
In FIG. 12, reference numerals 441 and 442 denote semiconductor switches composed of transistors, 443 and 444 denote diodes connected in antiparallel to the semiconductor switches 441 and 442, 445 denotes a current smoothing reactor, and 446 and 447 denote filter capacitors.
[0008]
When the vehicle is accelerating and traveling at a constant speed, the voltage of the main power storage device (electric double layer capacitor battery) 4 is lower than the input voltage of the inverter 5, so that the chopper 44 operates as a boost chopper when viewed from the main power storage device 4 side. Let it. In this case, the semiconductor switch 441 is switched and the semiconductor switch 442 is turned off.
FIG. 13 shows an equivalent circuit of the boost chopper, which has a configuration in which the semiconductor switch 442 and the diode 443 in FIG. 12 are removed.
[0009]
Next, the operation at the time of regenerative braking will be described. At the time of regenerative braking, the input voltage of the inverter 5 is higher than that of the main power storage device 4, so that the chopper 44 is operated as a step-down chopper when viewed from the inverter 5 side. In this case, the semiconductor switch 442 is switched and the semiconductor switch 441 is turned off.
FIG. 14 shows an equivalent circuit of the step-down chopper, which has a configuration in which the semiconductor switch 441 and the diode 444 in FIG. 12 are removed.
[0010]
Next, FIG. 15 is a diagram for explaining the operation of the chopper 44 in FIG. Mode I indicates an operation during acceleration / constant speed running, mode II indicates an operation during coasting, and mode III indicates an operation during regenerative braking. During acceleration / constant speed traveling (mode I), the voltage Vc decreases because the main power storage device 4 discharges, but the input voltage Vi of the inverter 5 is increased by the boosting operation of the chopper 44 (as viewed from the main power storage device 4 side). Is kept constant. During this time, current Ic of chopper 44 (current of reactor 445 in FIG. 12) increases as the voltage of main power storage device 4 decreases.
[0011]
During regenerative braking (mode III), the regenerative power is supplied to the main power storage device 4 and charged by the step-down operation of the chopper 44 (as viewed from the inverter 5 side) while keeping the input voltage of the chopper 44 constant. During this time, the current Ic of the chopper 44 decreases as the voltage of the main power storage device 4 increases.
[0012]
[Problems to be solved by the invention]
As described above, the electric double layer capacitor battery differs from the chemical secondary battery in that the stored energy is proportional to the square of the voltage. That is, the capacitor voltage greatly fluctuates due to the change in the stored energy. For this reason, in the conventional system shown in FIG. 11, the current bidirectional buck-boost chopper 44 is connected to the output side of the main power storage device 4 composed of an electric double layer capacitor battery, as if the voltage of the main power storage device 4 is constant. I have to be.
In the case of such a chopper system, a current smoothing reactor 445 is indispensable for the chopper 44 as shown in FIG. Further, as is apparent from FIG. 15, current Ic flowing through reactor 445 is inversely proportional to voltage Vc of main power storage device 4, and therefore, if voltage Vc of main power storage device 4 is reduced by half, current Ic of reactor 445 also doubles. .
[0013]
Since the maximum operating voltage of the chopper 44 is the same as that of the inverter 5 and the maximum operating current is larger than that of the inverter 5, the power conversion capacity of the chopper 44 is larger than that of the inverter 5.
On the other hand, in the case of electric vehicles, the on-board equipment is required to be as small, lightweight and highly efficient as possible, so when using an electric double layer capacitor battery as the main power storage device of an electric vehicle, the chopper is small and lightweight. And high efficiency have been major issues.
[0014]
As described above, the electric double layer capacitor battery differs from the conventional chemical secondary battery in that the battery voltage greatly changes according to the use state of the battery. In the discharge state corresponding to the end of discharge in the case of a chemical secondary battery, the voltage of the capacitor battery becomes almost zero. For this reason, when an electric double layer capacitor battery is used, it is desirable that charging (initial charging) from a voltage of almost zero can be easily performed.
[0015]
In the conventional power supply system shown in FIG. 10, charging (initial charging) from a voltage of main power storage device 4 substantially equal to zero or charging (preliminary charging) from a specified value or less cannot be performed by an onboard engine generator. . This is because the engine 1 cannot rotate below the idling speed, so that the minimum value of the output voltage of the rectifier 3 is determined, and charging cannot be performed unless the voltage of the main power storage device 4 is equal to or higher than a specified value. Therefore, in this case, charging is performed using an external power supply as shown in FIG.
That is, in FIG. 16, reference numeral 200 denotes an external charging power supply device connected to the main power storage device 4. Since the detailed configuration of the charging power supply device 200 is not the gist of the present invention, the description is omitted here.
As described above, the conventional power supply system requires an external charging power supply device for initial charging and the like, and has a problem that the charging operation is troublesome.
[0016]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is based on the power of a vehicle-mounted engine generator and a vehicle-mounted main power storage device or the power of a vehicle-mounted main power storage device via a power converter. In an electric vehicle that drives a vehicle drive motor, the main power storage device includes at least two battery blocks formed by connecting a plurality of electric double layer capacitor cells in series, and a chopper connected between these battery blocks. In addition, by controlling the chopper, the voltage of the main power storage device is made variable according to the magnitude of the load.
According to a second aspect of the present invention, a plurality of main power storage devices are connected in parallel to the power converter.
Further, the invention according to claim 3 is characterized in that the chopper is a current bidirectional buck-boost chopper, and the invention according to claim 4 is configured such that the battery block is mounted on a vehicle via a connection cable or the chopper. Initial charging is performed using the power of the auxiliary power storage device.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, which corresponds to the first and third embodiments of the present invention. The same components as those in FIG. 10 are given the same numbers.
In FIG. 1, reference numeral 40 denotes a main power storage device corresponding to the above-described main power storage device 4, which includes electric double layer capacitor battery blocks 10, 11, and a current bidirectional type lifting device connected between these battery blocks 10, 11. And a pressure chopper 12. Each of the battery blocks 10 and 11 is configured by connecting a plurality of electric double layer capacitor cells 100 and 110 in series. Although not shown, each battery block may be configured by connecting a plurality of series circuits of a plurality of electric double layer capacitor cells in parallel.
At both ends of the battery block 11, a DC-DC converter 7 and an inverter 5 are connected in parallel with each other.
[0018]
The chopper 12 can be stepped up and down between the battery blocks 10 and 11 by a current two-quadrant operation. The configuration and operation of the chopper 12 will be described later.
[0019]
FIG. 2 shows a second embodiment of the present invention, which corresponds to the second embodiment of the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals.
This embodiment is an example in which the main power storage device shown in FIG. 1 is connected in parallel to the inverter 5, and 40a and 40b in FIG. 2 have the same configuration as the main power storage device 40 in FIG.
[0020]
FIG. 3 shows a third embodiment of the present invention, which corresponds to an embodiment in which the first embodiment of the present invention is applied to the series hybrid electric vehicle shown in FIG. 3, the same components as those in FIGS. 1 and 10 are denoted by the same reference numerals, and have a configuration in which main power storage device 4 in FIG.
[0021]
Next, FIG. 4 is a circuit diagram showing a detailed configuration of the chopper 12 in FIGS. The DC-DC converter 7 and the auxiliary power storage device 8 shown in FIGS. 1 to 3 are not shown.
The circuit configuration of the chopper 12 shown in FIG. 4 corresponds to the embodiment of the invention described in claim 3, and is a current bidirectional buck-boost chopper.
[0022]
In FIG. 4, 121 to 124 are semiconductor switch parts, 125 is a current smoothing reactor connected between the interconnection point of the semiconductor switch parts 121 and 122 and the interconnection point of the semiconductor switch parts 123 and 124, and 126 and 127 are The filter capacitors are connected in parallel to the battery blocks 10 and 11, respectively. The semiconductor switch units 121 to 124 are composed of semiconductor switches 121a to 124a composed of transistors and diodes 121b to 124b connected in anti-parallel to these switches.
[0023]
Next, FIG. 5 shows the behavior of the voltage of the main power storage device 40 when the battery block 10 is discharged with constant power in the circuit configuration of FIG. 5, a indicates the voltage of the main power storage device 40, and b indicates the voltage of the battery block 10. Further, c indicates the voltage of the main power storage device 4 in the conventional system of FIG.
[0024]
Mode I in FIG. 5 is an operation region in which the chopper 12 is stepped up to supply power from one of the battery blocks 10 and keeps the output voltage of the entire main power storage device 40 constant. Mode II indicates an operation range in which chopper operation is stopped and power is supplied from the other battery block 11.
[0025]
6A and 6B are diagrams showing an operation corresponding to the operation modes I and II in FIG. 5, wherein FIG. 6A shows the flow of power in mode I in FIG. 5, and FIG. 6B shows the power flow in mode II in FIG. The flows are indicated by arrows, respectively. In FIG. 6A corresponding to the operation mode I, the electric power of the battery block 10 is supplied to the inverter 5 side via the chopper 12, and in FIG. 6B corresponding to the operation mode II, the electric power of the battery block 11 is provided. Electric power is directly supplied to the inverter 5 side. As shown in FIG. 5, in the operation mode I, the voltage (characteristic b) of the battery block 10 gradually decreases, but the output voltage (characteristic a) of the entire main power storage device 40 becomes constant by the boosting operation of the chopper 12. Is kept. In operation mode II, the output voltage (characteristic a) of main power storage device 40 also gradually decreases as the voltage of battery block 11 decreases.
In addition, it is also possible to simultaneously supply power from the battery blocks 10 and 11, and the flow of power in this case is indicated by arrows in FIG. 6C.
[0026]
FIG. 7 is a detailed operation explanatory view of the chopper 12 shown in FIG. 4, and the same components as those in FIG. 4 are denoted by the same reference numerals. The numbers of the circuit components are assigned only to FIG. 7A to avoid complication, and the descriptions of (b), (c), and (d) are omitted.
[0027]
FIG. 7A shows a case in which the chopper 12 is stepped up to supply power from the battery block 10 to the battery block 11 side. The semiconductor switch 121a is on, the semiconductor switches 122a and 123a are off, and the semiconductor switch 124a is switching. I do. The current path when the semiconductor switch 124a is turned on is shown by a solid line, and the current path when the semiconductor switch 124a is turned off is shown by a broken line.
[0028]
FIG. 7B shows a case in which the chopper 12 is operated to lower the voltage to supply power from the battery block 11 to the battery block 10, and the semiconductor switches 121a, 122a, and 124a are turned off and the semiconductor switch 123a is switched. The current path when the semiconductor switch 123a is turned on is shown by a solid line, and the current path when the semiconductor switch 123a is turned off is shown by a broken line.
[0029]
FIG. 7C shows a case where the chopper 12 is operated to lower the voltage to supply power from the battery block 10 to the battery block 11 side. The semiconductor switches 122a, 123a, and 124a are turned off, and the semiconductor switch 121a switches. The current path when the semiconductor switch 121a is turned on is shown by a solid line, and the current path when the semiconductor switch 121a is turned off is shown by a broken line.
[0030]
FIG. 7D shows a case where the chopper 12 is operated to step up to supply power from the battery block 11 to the battery block 10 side. The semiconductor switch 123a is turned on, the semiconductor switches 121a and 124a are turned off, and the semiconductor switch 122a is switched. I do. The current path when the semiconductor switch 122a is turned on is indicated by a solid line, and the current path when the semiconductor switch 122a is turned off is indicated by a broken line.
[0031]
Further, in the power supply system shown in FIG. 1, the voltage of main power storage device 40 can be made variable by controlling chopper 12.
The traveling power when the vehicle travels at a constant speed on a flat road in a city is about 1/10 of the maximum output. In the case of an electric vehicle, it is desired that the efficiency of the power train be high even in such an operating range. As one of effective means for increasing the efficiency in such an operation range, it is conceivable to lower the input voltage of the inverter.
[0032]
FIG. 8 is an operation explanatory diagram of the present invention focusing on the above points .
In FIG. 8, the voltage of the battery block 11 is changed by raising and lowering the chopper 12 with respect to the input voltage of the inverter 5 set in advance according to the magnitude of the load (the magnitude of the traveling power). Keep the input voltage at the set value. For example, when the voltage of the inverter 5 (the voltage of the battery block 11) is kept high as during acceleration, the chopper 12 is stepped up when viewed from the battery block 10 where the voltage gradually decreases from the initial voltage due to discharge. The voltage of the battery block 11 is raised to a predetermined value. At the time of regenerative braking, the chopper 12 is stepped down when viewed from the battery block 11 side, and the battery block 10 is charged.
[0033]
FIG. 9 is a circuit diagram showing a fourth embodiment of the present invention . This embodiment is a configuration for initially charging the battery blocks 10 and 11 by the chopper 12.
When the voltage of the battery block 10 is substantially zero, one battery block 10 and the auxiliary power storage device 8 are connected by the connection cable 300. As the connection cable 300, a booster cable used in a conventional engine automobile can be used.
[0034]
The auxiliary power storage device 8 and the battery block 10 are connected by the connection cable 300, and the battery block 10 is charged to the voltage of the auxiliary power storage device 8. The charging current at this time is a current limited by the internal resistance between the battery block 10 and the auxiliary power storage device 8 and the resistance of the connection cable 300, and is a value allowed for both the auxiliary power storage device 8 and the battery block 10.
When the voltage of the battery block 10 reaches a specified value (a voltage at which the control operation of the chopper 12 can be performed), the chopper 12 is boosted when viewed from the battery block 10 side, and the other battery block 11 is charged by the auxiliary power storage device 8. do it.
[0035]
【The invention's effect】
As described above, according to the present invention, as a main power storage device of a general electric vehicle or a hybrid electric vehicle powered by the main power storage device, a plurality of battery blocks in which electric double layer capacitor cells are connected in series are provided. The connection between them is made by a current bidirectional buck-boost chopper, and the operation of this chopper exchanges power between the battery blocks, so that the following effects are expected.
[0036]
(1) A small, lightweight and long-life main power storage device using an electric double layer capacitor battery can be realized, and various practical electric vehicles including a hybrid type can be provided.
(2) The chopper can be operated at a voltage with high system efficiency by changing the voltage of the main power storage device, so that fuel efficiency can be improved.
[0037]
In the above embodiment, the case where the present invention is applied to a series hybrid electric vehicle has been described. However, the present invention is not limited to an electric vehicle or a parallel hybrid electric vehicle that uses only the main power storage device as a power source, and a fuel cell other than the main power storage device. The present invention can be applied to a power supply system of various electric vehicles such as an electric vehicle including
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a circuit configuration diagram showing a second embodiment of the present invention.
FIG. 3 is a configuration example when the first embodiment of the present invention is applied to a series hybrid electric vehicle.
FIG. 4 is a detailed circuit configuration diagram of the chopper in FIGS. 1 to 3;
FIG. 5 is a diagram showing a behavior of voltages of a main power storage device and a battery block in FIGS. 1 to 4;
FIG. 6 is an operation explanatory diagram according to the operation mode of FIG. 5;
FIG. 7 is a detailed operation explanatory view of the chopper shown in FIG. 4;
FIG. 8 is an operation explanatory diagram of the present invention.
FIG. 9 is a circuit configuration diagram showing a fourth embodiment of the present invention.
FIG. 10 is a diagram showing a power supply system of a series hybrid electric vehicle as a prior art.
FIG. 11 is a diagram showing a power supply system of a series hybrid electric vehicle as a prior art.
FIG. 12 is a detailed circuit configuration diagram of the chopper of FIG. 11;
FIG. 13 is an equivalent circuit diagram of FIG.
FIG. 14 is an equivalent circuit diagram of FIG.
FIG. 15 is an operation explanatory view of the chopper of FIG. 11;
FIG. 16 is a configuration diagram of an initial charging system of a series hybrid electric vehicle as a conventional technique.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 engine 2 generator 3 rectifier 5 inverter 6 vehicle drive motor 7 DC-DC converter 8 auxiliary power storage device 9 auxiliary device 10, 11 electric double layer capacitor battery block 12 current bidirectional buck-boost chopper 40 main power storage device 100, 110 electricity Double-layer capacitor cells 121, 122, 123, 124 Semiconductor switch sections 121a, 122a, 123a, 124a Semiconductor switches 121b, 122b, 123b, 124b Diode 125 Current smoothing reactor 126, 127 Filter capacitor 300 Connection cable

Claims (4)

車載エンジン発電機及び車載主蓄電装置の電力、または、車載主蓄電装置の電力により電力変換器を介し車両駆動電動機を駆動する電気自動車において、
前記主蓄電装置を、電気二重層キャパシタセルを複数個直列接続してなる少なくとも2個の電池ブロックと、これらの電池ブロック間に接続されたチョッパとから構成すると共に、
前記チョッパの制御により、前記主蓄電装置の電圧を負荷の大小に応じて可変とすることを特徴とする電気自動車の電源システム。
In an electric vehicle that drives a vehicle drive motor via a power converter with the power of the vehicle-mounted engine generator and the vehicle-mounted main power storage device, or the power of the vehicle-mounted main power storage device,
The main power storage device includes at least two battery blocks each having a plurality of electric double layer capacitor cells connected in series, and a chopper connected between these battery blocks ,
A power supply system for an electric vehicle , wherein the voltage of the main power storage device is made variable according to the magnitude of a load by controlling the chopper .
請求項1記載の電気自動車の電源システムにおいて、
前記電力変換器に対して、前記主蓄電装置を複数、並列に接続したことを特徴とする電気自動車の電源システム。
The power supply system for an electric vehicle according to claim 1,
A power supply system for an electric vehicle, wherein a plurality of the main power storage devices are connected in parallel to the power converter.
請求項1または2記載の電気自動車の電源システムにおいて、
前記チョッパが電流双方向形昇降圧チョッパであることを特徴とする電気自動車の電源システム。
The power supply system for an electric vehicle according to claim 1 or 2,
A power supply system for an electric vehicle, wherein the chopper is a current bidirectional buck-boost chopper.
請求項1,2または3記載の電気自動車の電源システムにおいて、
前記電池ブロックを、接続ケーブルまたは前記チョッパを介して車載の補助蓄電装置の電力により初期充電することを特徴とする電気自動車の電源システム。
The power supply system for an electric vehicle according to claim 1 , 2, or 3 ,
A power supply system for an electric vehicle, wherein the battery block is initially charged with electric power of a vehicle-mounted auxiliary power storage device via a connection cable or the chopper .
JP09453499A 1999-04-01 1999-04-01 Electric vehicle power system Expired - Lifetime JP3552087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09453499A JP3552087B2 (en) 1999-04-01 1999-04-01 Electric vehicle power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09453499A JP3552087B2 (en) 1999-04-01 1999-04-01 Electric vehicle power system

Publications (2)

Publication Number Publication Date
JP2000295715A JP2000295715A (en) 2000-10-20
JP3552087B2 true JP3552087B2 (en) 2004-08-11

Family

ID=14113007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09453499A Expired - Lifetime JP3552087B2 (en) 1999-04-01 1999-04-01 Electric vehicle power system

Country Status (1)

Country Link
JP (1) JP3552087B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683366B2 (en) * 2001-03-09 2011-05-18 Tdk株式会社 Grid interconnection inverter
JP4683365B2 (en) * 2001-03-09 2011-05-18 Tdk株式会社 Grid interconnection inverter
JP3963302B2 (en) * 2001-03-29 2007-08-22 日産ディーゼル工業株式会社 Driving method of parallel hybrid vehicle
JP3896258B2 (en) 2001-04-25 2007-03-22 株式会社日立製作所 Automotive power supply
JP3874344B2 (en) 2002-01-17 2007-01-31 株式会社小松製作所 Hybrid power system
US20030222502A1 (en) * 2002-05-30 2003-12-04 Nec Tokin Corporation Hybrid power supply system
US7436150B2 (en) * 2005-04-04 2008-10-14 Aerovironment Inc. Energy storage apparatus having a power processing unit
US7568537B2 (en) * 2006-01-09 2009-08-04 General Electric Company Vehicle propulsion system
JP2007323997A (en) * 2006-06-01 2007-12-13 Equos Research Co Ltd Fuel cell system, and its operation method
JP5077295B2 (en) * 2009-06-16 2012-11-21 トヨタ自動車株式会社 On-vehicle fuel cell system
US8736239B2 (en) 2009-07-30 2014-05-27 Yanmar Co., Ltd. DC-DC converter circuit
JP5355284B2 (en) * 2009-07-30 2013-11-27 ヤンマー株式会社 DC-DC converter circuit
JP5355283B2 (en) * 2009-07-30 2013-11-27 ヤンマー株式会社 DC-DC converter circuit
FR2963508B1 (en) * 2010-07-30 2012-08-31 IFP Energies Nouvelles QUADRATIC DC / DC CONVERTER DOUBLE BOOST BIDIRECTIONAL CURRENT
JP5492040B2 (en) * 2010-09-22 2014-05-14 株式会社豊田中央研究所 Power system
JP5664251B2 (en) * 2011-01-12 2015-02-04 株式会社Ihi Power supply stabilization device and power supply stabilization device control method
JP5832162B2 (en) 2011-06-29 2015-12-16 株式会社豊田中央研究所 Power system
JP5713453B2 (en) * 2011-11-14 2015-05-07 東洋電機製造株式会社 Power identification method for power conversion device
JP5714528B2 (en) 2012-03-19 2015-05-07 株式会社豊田中央研究所 Power converter and power system
JP6292801B2 (en) 2013-09-04 2018-03-14 株式会社豊田中央研究所 Power system
JP2015105045A (en) 2013-11-29 2015-06-08 トヨタ自動車株式会社 Power converter control apparatus
JP5841212B1 (en) 2014-09-04 2016-01-13 トヨタ自動車株式会社 Power system
JP7044687B2 (en) * 2018-11-09 2022-03-30 トヨタ自動車株式会社 Vehicle power supply
CN113315375A (en) * 2021-05-10 2021-08-27 江苏阿诗特能源科技有限公司 Bidirectional BUCK-BOOST circuit and method based on battery charging and discharging

Also Published As

Publication number Publication date
JP2000295715A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP3552087B2 (en) Electric vehicle power system
JP3219039B2 (en) Electric vehicle electric system
US8039987B2 (en) Power source device and vehicle with power source device
US8274173B2 (en) Auxiliary drive apparatus and method of manufacturing same
US7568537B2 (en) Vehicle propulsion system
JP3655277B2 (en) Electric motor power management system
US10044312B2 (en) Modular stacked DC architecture traction system and method of making same
KR20030077625A (en) Motor vehicle electric system
CA2430357A1 (en) Hybrid power supply system
CA3005188A1 (en) Apparatus for energy transfer using converter and method of manufacturing same
CN102299655A (en) Electric device for driving mechanical equipment and associated method
JP2007174867A (en) Power supply unit for vehicle
JP2004056995A (en) Hybrid power supply system
JP3827935B2 (en) Vehicle power supply
JP5931366B2 (en) Power converter
Park et al. Charge equalization with series coupling of multiple primary windings for hybrid electric vehicle li-ion battery system
JP3558546B2 (en) Electric vehicle power system
JP3558159B2 (en) Electric vehicle power system
JPH08251711A (en) Battery apparatus for hybrid automobile
JP2004236384A (en) Power supply system for fuel cell vehicle
JP2012023803A (en) Dc-dc converter for driving motor
WO2007060958A1 (en) Electrical storage system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term