JP2000290789A - Production of electrode for electrolysis and device therefor - Google Patents

Production of electrode for electrolysis and device therefor

Info

Publication number
JP2000290789A
JP2000290789A JP11100567A JP10056799A JP2000290789A JP 2000290789 A JP2000290789 A JP 2000290789A JP 11100567 A JP11100567 A JP 11100567A JP 10056799 A JP10056799 A JP 10056799A JP 2000290789 A JP2000290789 A JP 2000290789A
Authority
JP
Japan
Prior art keywords
electrode
discharge
coating
electrode substrate
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11100567A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Koki Sasaki
幸記 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP11100567A priority Critical patent/JP2000290789A/en
Publication of JP2000290789A publication Critical patent/JP2000290789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably and easily form an electrolysis catalytic layer having tight adhesion on the wide surface of an electrode substrate by holding an electrode substrate and a coating material at a prescribed interval and relatively moving the coating material along the surface of the electrode substrate while generating a spark discharge under CNC control. SOLUTION: An electrode substrate of titanium or the like and a coating material of platinum or the like are held at a interval capable of discharging on the space therebetween. While spark discharge is generated on the space therebetween, the coating material is relatively moved along the surface of the electrode substrate while it is vibrated or rotated at need. At this time, it is possible that plural coating materials are used, and they are respectively moved by servo-operation. In this way, a sufficient liq. phase condition is formed on the surfaces of both, and thermal diffusing treatment is executed to form a coating layer composed of the coating material on the surface of the electrode substrate. At this time, it is possible that powder having a desired compsn. is fed to the discharge part, and the compsn. of this powder is incorporated into the coating layer. All these operations are executed under CNC control, thereby, this coating working can stably be executed with high controllability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電解用電極、特に電極基
体へ中間被覆層及び電解触媒被覆層を形成して成る電解
用電極を製造する方法及び装置に関する。尚、本明細書
で言う被覆層には、電解触媒による表面被覆層の他、そ
の下地処理として施される総ての中間被覆層が含まれる
ものとし、又、電解電極と言うときは、電極基体の表面
に形成された電解触媒層及び中間層、並びにそれらの複
合層の総てを含むものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing an electrode for electrolysis, and more particularly to an electrode for electrolysis formed by forming an intermediate coating layer and an electrocatalyst coating layer on an electrode substrate. It should be noted that the coating layer referred to in the present specification includes, in addition to the surface coating layer formed by the electrolytic catalyst, all intermediate coating layers that are applied as a base treatment thereof. It shall include all of the electrocatalyst layer and intermediate layer formed on the surface of the substrate, and their composite layers.

【0002】[0002]

【従来の技術】電極基体へ電解触媒を被覆して成る電解
用電極は、主に陽極において多く用いられている。例え
ば、チタン等のバルブ金属から成る電極基体の表面に白
金族の金属又は酸化物を主成分とする電解触媒を被覆し
て成る電極の被覆層は、主にめっき法や熱分解法によっ
て形成されている。又、電極基体がチタン材の場合、チ
タン材と電極触媒層との境界部の耐食性や密着性を高め
るために、タンタルやニオブを含むバルブ金属の中間層
が設けられる場合もあり、その中間層の形成方法とし
て、PVD法や溶射法の利用が試みられている。更に又、
最近になって、特開平6-200391号または特開平8-199384
号によって、放電法を利用した中間層の形成技術の開示
がなされた。
2. Description of the Related Art Electrolytic electrodes formed by coating an electrode substrate with an electrolytic catalyst are widely used mainly in anodes. For example, a coating layer of an electrode in which a surface of an electrode substrate made of a valve metal such as titanium is coated with an electrocatalyst containing a platinum group metal or oxide as a main component is mainly formed by a plating method or a thermal decomposition method. ing. When the electrode substrate is made of a titanium material, an intermediate layer of a valve metal containing tantalum or niobium may be provided in order to enhance corrosion resistance and adhesion at the boundary between the titanium material and the electrode catalyst layer. As a forming method of the PVD, use of a PVD method or a thermal spraying method has been attempted. Furthermore,
Recently, JP-A-6-200391 or JP-A-8-199384
Disclosed a technique for forming an intermediate layer using a discharge method.

【0003】然しながら、PVD 法や溶射法では、電極基
体の材料として用いられているバルブ金属が高い融点を
有し、電極基体と中間被覆層との間の金属拡散が充分に
行われないことから、電極の耐久性に限界があった。
又、溶射法では、中間被覆層が厚くなり過ぎたり、緻密
な中間被覆層が得られないと言う問題があり、電極の耐
久性の大幅な改善は望み得なかった。更に又、PVD法や
溶射法では、被覆層を形成するときの被覆材の損失が大
きく、材料の無駄が多く、経済的な問題もあった。
[0003] However, in the PVD method and the thermal spraying method, the valve metal used as the material of the electrode substrate has a high melting point, and metal diffusion between the electrode substrate and the intermediate coating layer is not sufficiently performed. However, the durability of the electrode was limited.
In addition, the thermal spraying method has a problem that the intermediate coating layer becomes too thick or a dense intermediate coating layer cannot be obtained, so that a significant improvement in electrode durability cannot be expected. Furthermore, in the PVD method and the thermal spraying method, the loss of the coating material when forming the coating layer is large, the material is wasteful, and there are also economic problems.

【0004】又、一般に放電を利用した種々の装置は比
較的安定な放電を利用したものが多く、溶接用のアーク
放電やグロー放電は、その安定放電の部類に入るもの
で、特に溶接加工は工業的に利用されている。然しなが
ら、このような安定な放電でも、人手で加工するのには
極めて高い熟練を要するので、これらはロボット(NC)
とかCNC 制御による自動制御加工で実用化されている
が、放電の中でも特に不安定な火花放電を主体にした放
電を利用して、広い電極面積を有する電極基体に対し
て、安定して全面に被覆を施すこと、然も大量の電極を
安価に提供することは非常に困難であった。また、放電
処理によるときは被覆効率が悪いことも問題であった。
In general, various devices using electric discharge often use relatively stable electric discharge, and arc discharge and glow discharge for welding fall into the category of stable electric discharge. Used industrially. However, even with such stable electric discharges, machining by hand requires extremely high skill.
Or automatic control machining by CNC control, but it uses a discharge mainly composed of spark discharge, which is particularly unstable among discharges, to stably cover the entire electrode substrate with a large electrode area. It has been very difficult to apply a coating and to provide a large amount of electrodes at a low cost. Another problem is that the coating efficiency is poor when the discharge treatment is used.

【0005】更に、チタンから成る電極基体に、従来の
放電法でタンタルやニオブを含む被覆材を被覆する場
合、電極基体のチタンと被覆材のタンタルやニオブを十
分に合金化させることが困難で、中間層の組成が被覆材
と略同様のものに留まると言う問題もあった。例えば、
特開平8-199384で開示されているチタンとタンタルの合
金中間層を得る方法では、被覆材のタンタルを電極基体
のチタン成分中へ拡散させ合金化させるため必要な放電
条件の許容範囲が極めて狭く、その放電状態を安定に継
続保持することが難しく、このことからも改善すべき課
題があった。特に、タンタルやニオブは極めて高い融点
を有する上、容易に酸化されることなどから、望ましい
組成分布を有する合金を得るための放電制御は困難を極
めていた。
Further, when a coating material containing tantalum or niobium is coated on an electrode substrate made of titanium by a conventional discharge method, it is difficult to sufficiently alloy titanium of the electrode substrate with tantalum or niobium as a coating material. In addition, there is also a problem that the composition of the intermediate layer remains substantially the same as that of the coating material. For example,
In the method of obtaining an alloy intermediate layer of titanium and tantalum disclosed in Japanese Patent Application Laid-Open No. 8-199384, the allowable range of discharge conditions required for diffusing the tantalum of the coating material into the titanium component of the electrode substrate and alloying the same is extremely narrow. However, it is difficult to stably maintain the discharge state, and there is a problem to be solved. In particular, since tantalum and niobium have an extremely high melting point and are easily oxidized, it has been extremely difficult to control discharge for obtaining an alloy having a desirable composition distribution.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的とすると
ころは、上記の諸問題を解決し、広い電極基体表面に渡
って、CNC制御等で その範囲や放電条件等を制御しつ
つ、電解反応中に剥離しない強固な接着性を有する電解
用電極の中間層、被覆層を形成するための方法と装置、
特に、安定した加工ができ、更に被覆状態の制御も容易
にできる方法と装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to control the range and discharge conditions over a wide electrode substrate surface by CNC control or the like. Method and apparatus for forming an intermediate layer of an electrode for electrolysis having strong adhesiveness that does not peel off during the reaction, a coating layer,
In particular, it is an object of the present invention to provide a method and an apparatus capable of performing stable processing and easily controlling a coating state.

【0007】[0007]

【課題を解決するための手段】被覆材と電極基体の間に
CNC制御等によって均一な火花放電を起こさせ、被覆材
及び電極基体の表面に充分な液相状態を形成させ、熱拡
散処理を施し、且つ電界拡散を起こさせて、部分的な放
電に伴う高温、高圧力、高電界が放電点に集中作用する
ようにすると共に、希望する放電位置をX、Y、Z 方向に
制御して電解用電極の被覆層を形成する。
Means for Solving the Problems Between the coating material and the electrode substrate
A uniform spark discharge is generated by CNC control, etc., a sufficient liquid phase state is formed on the surface of the coating material and the electrode substrate, a heat diffusion process is performed, and an electric field diffusion is caused. A high pressure and a high electric field are concentrated on the discharge point, and the desired discharge position is controlled in the X, Y and Z directions to form a coating layer for the electrode for electrolysis.

【0008】実施例について説明する前に、電極基体へ
の被覆形成について説明する。充分高温状態で被覆材と
電極基体材料とを反応させる手段として、両者の間に、
CNC制御で被覆材と電極基体間の間隙(Z)、相対位置
(X、Y)及び 相対移動速度を制御すると共に、放電エ
ネルギーを制御しつつ供給して火花放電を発生させ、媒
体の種類や、供給量を制御することにより、電極基体の
必要な部分に強固な接合被覆や合金化状態を得ようとす
る。一般に放電時に発生する温度をTとすれば、
Before describing the embodiments, the formation of a coating on the electrode substrate will be described. As means for reacting the coating material and the electrode base material in a sufficiently high temperature state,
Controlling the gap (Z), relative position (X, Y), and relative moving speed between the coating material and the electrode substrate by CNC control, and controlling the supply of discharge energy to generate spark discharge, By controlling the amount of supply, an attempt is made to obtain a strong bonding coating or an alloyed state on a necessary portion of the electrode substrate. In general, if the temperature generated during discharge is T,

【数1】 ここで、 K:放電条件によって定まる定数 κ :熱伝導度 ρ :比抵抗 E:放電電圧(Equation 1) Here, K: constant determined by discharge conditions κ: thermal conductivity ρ: specific resistance E: discharge voltage

【0009】通常利用する放電電圧を 50V程度として計
算しても、放電点は被覆材と電極基体の蒸発温度程度以
上の充分高い温度となる。このため被覆材と電極基体の
間でその構成材料が溶融し、その温度における溶融金属
内の粘性の低い方の材料が、粘性の高い方の側へ移転す
ることになり、電解用電極の形成ができることになる。
その移転特性は、
[0009] Even if the calculation is made with a normally used discharge voltage of about 50 V, the discharge point is a sufficiently high temperature which is about the evaporation temperature of the coating material and the electrode substrate. As a result, the constituent material is melted between the coating material and the electrode substrate, and the lower viscosity material in the molten metal at that temperature is transferred to the higher viscosity side to form an electrode for electrolysis. Can be done.
Its transfer characteristics are:

【数2】 ここで、 α:被覆材の移動重量 K:材料による定数 I:放電電流時間積分量 となり、放電電流の平方根に比例した移動量特性を示
す。もし放電電流が時間的に変化するものであれば、放
電電流時間特性を、必要とする被覆形成に合わせて制御
することが必要となる。
(Equation 2) Here, α: the moving weight of the coating material, K 1 : a constant depending on the material, I: the discharge current time integration amount, and shows a moving amount characteristic proportional to the square root of the discharge current. If the discharge current changes with time, it is necessary to control the discharge current time characteristic according to the required coating formation.

【0010】放電直後も被覆材と電極基体の両電極間の
電圧は瞬間には零とならないので、この電圧によって両
電極間でイオン平衡に達するまで金属イオン拡散作用が
起こる。そのときの深さ方向のイオン濃度を Cとすれ
ば、
[0010] Immediately after the discharge, the voltage between the two electrodes of the coating material and the electrode substrate does not become zero instantaneously, and this voltage causes a metal ion diffusion action until the ion equilibrium is reached between the two electrodes. If the ion concentration in the depth direction at that time is C,

【数3】 ここで、 C0 :表面のイオン濃度(被覆材) D :拡散係数 U :イオンモビリティー E :電界強度 η :拡散速度 である。これは放電点における拡散を表わす。一般的に
溶融状態でのイオンモビリティーを10−7m/v・sと
したとき、拡散係数は10−8m/s程度となる。これは
電界が加わるときは、単なる熱拡散のみの場合に比べ
て、計算上拡散速度が150〜1000倍に向上することを意
味する。
(Equation 3) Here, C 0 : surface ion concentration (coating material) D: diffusion coefficient U: ion mobility E: electric field strength η: diffusion speed This represents diffusion at the point of discharge. Generally, when the ion mobility in the molten state is 10 −7 m 2 / v · s, the diffusion coefficient is about 10 −8 m 2 / s. This means that when an electric field is applied, the diffusion speed is calculated to be 150 to 1000 times higher than in the case of only thermal diffusion.

【0011】また、放電点においては、放電電流のため
磁界が発生するので、放電熱のため生じた被覆材と電極
基体の溶融部分に対して、H=130〜150kA/m程度の磁界
が作用することになり、このときの磁界のために溶融金
属の粘度は高くなる。いま溶融金属の粘度をσ とす
れば、
At the discharge point, a magnetic field is generated due to the discharge current, so that a magnetic field of about H = 130 to 150 kA / m acts on the coating material and the molten portion of the electrode substrate generated by the discharge heat. In this case, the viscosity of the molten metal increases due to the magnetic field at this time. Assuming now that the viscosity of the molten metal is σ m ,

【数4】 となる。但し、ここで、 H:磁界 ρ:比抵抗 μ:透磁率 ν:溶融金属の拡散速度 である。(Equation 4) Becomes Here, H: magnetic field ρ: specific resistance μ: magnetic permeability ν: diffusion rate of the molten metal.

【0012】従って、放電溶融部分では高い温度に係わ
らず、その放電点での溶融金属の粘性は高く、そのた
め、繰り返しパルス放電によって、電極基体表面には被
覆が形成される。放電休止時の冷却効果により、溶融金
属は更に粘度が上昇し、溶融時の粘度に比して、103〜1
04倍程度の高い粘度となるので、放電点での被覆材は、
融液に内圧力が作用しても、余り被覆材の融液は飛散し
ないで、放電柱によってできたクレータの廻りに堆積さ
れて拡散被覆形成されることになる。一般的に温度は熱
容量が小さい被覆材側が熱容量の大きい電極基体側より
高い状態になるので、被覆材は電極基体表層に容易に拡
散し、接合されることになる。
Accordingly, the viscosity of the molten metal at the discharge point is high irrespective of the high temperature in the discharge melting portion, and therefore, a coating is formed on the surface of the electrode substrate by repeated pulse discharge. Due to the cooling effect when the discharge is stopped, the viscosity of the molten metal further increases, and it is 10 3 to 1 in comparison with the viscosity at the time of melting.
Since the viscosity is about 4 times higher, the coating material at the discharge point is
Even if the internal pressure acts on the melt, the melt of the coating material does not scatter so much, but is deposited around the crater formed by the discharge column to form a diffusion coating. Generally, the temperature is higher on the side of the coating material having a lower heat capacity than on the side of the electrode substrate having a higher heat capacity, so that the coating material is easily diffused and joined to the surface layer of the electrode substrate.

【0013】そして、放電条件を適切に制御することに
より、被覆材の拡散深さを制御し、電極基体表面に被覆
材と電極基体との合金層を形成することができる。
[0013] By appropriately controlling the discharge conditions, the diffusion depth of the coating material can be controlled, and an alloy layer of the coating material and the electrode substrate can be formed on the surface of the electrode substrate.

【0014】しかし、拡散を高めようとすると、例え
ば、放電点において、放電電流波高値が通常の堆積条件
より高い場合は、放電点で溶融金属の内圧が高くなり、
爆発的な飛散が生じ、そのため合金層の堆積、形成が妨
げられることになる。又、放電部分に不活性化ガス体や
液体を供給しながら被覆を形成するときは、その圧力に
より溶融金属を飛散させることのないよう、その供給量
や圧力を制御することが必要となる場合もある。今、こ
の放電圧力をPとすればガス定数をRとしたとき、
However, in order to increase the diffusion, for example, when the peak value of the discharge current is higher than the normal deposition condition at the discharge point, the internal pressure of the molten metal increases at the discharge point,
Explosive scattering occurs, which hinders the deposition and formation of the alloy layer. In addition, when forming a coating while supplying an inert gas or liquid to the discharge part, it is necessary to control the supply amount and pressure so that the molten metal is not scattered by the pressure. There is also. Now, if this discharge pressure is P, and the gas constant is R,

【数5】 M:金属の分子量 xi:電離度 T:媒体温度 ν:放電終了時の気体体積 となる。(Equation 5) M: molecular weight of metal x i : degree of ionization T: medium temperature v: gas volume at the end of discharge

【0015】従って、放電部分に被覆形成に必要な量以
上の余分なエネルギーが注入されると、放電点では爆発
的な気化が生じ、溶融金属を飛散させ放電被覆量を減少
させることになる。例えば100μsオーダーの放電時間で
0.3 Joule程度の放電エネルギーパルスを用いるとし
て、Ti電極について計算をしてみると、溶融点の内圧は
0.1GPa程度となる。これは、放電点の溶融金属を飛散さ
せるのに充分な圧力である。
[0015] Therefore, when extra energy is injected into the discharge portion beyond the amount necessary for forming the coating, explosive vaporization occurs at the discharge point, and the molten metal is scattered to reduce the discharge coating amount. For example, with a discharge time on the order of 100 μs
Assuming that a discharge energy pulse of about 0.3 Joule is used, the calculation for the Ti electrode shows that the internal pressure of the melting point is
It will be about 0.1GPa. This is a pressure sufficient to scatter the molten metal at the discharge point.

【0016】溶融は一般的には350A/mm程度以上で起
こり始めるので、被覆に使用する放電の放電点での電流
密度は、一般的に1000A/mm程度に維持される。この
程度であればディンプル形成圧力に充分で、ディンプル
を形成すると同時に被覆材を電極基体の表層に堆積する
ことができる。電極基体の放電被覆前の前処理にディン
プル形成を行った電解用電極表面又はその中間層の望ま
しい表面荒さは150μm以下であり、更に望ましくは120
μm以下である。電解用電極の中間層の場合には、表面
荒さが大きい方が望ましいが、表面荒さが150μmを超
えると、電極触媒層の厚さの均一性が失われたり、均一
な放電被覆が得られない等の問題が生じる。また、ディ
ンプル形成を行った場合、その表面荒さを10μm以下に
することは困難である。電解用電極の用途から見た場
合、その用途によってさまざまな表面荒さが求められる
が、通常、150μm以下の範囲で自由に制御できれば、
広い範囲で対応が可能となる。
Since the melting generally starts at about 350 A / mm 2 or more, the current density at the discharge point of the discharge used for coating is generally maintained at about 1000 A / mm 2 . This level is sufficient for the dimple formation pressure, and the coating material can be deposited on the surface layer of the electrode substrate at the same time as the dimples are formed. Desirable surface roughness of the electrode surface for electrolysis or the intermediate layer in which dimple formation is performed in the pretreatment before the discharge coating of the electrode substrate is 150 μm or less, more preferably 120 μm or less.
μm or less. In the case of the intermediate layer of the electrode for electrolysis, it is desirable that the surface roughness is large, but if the surface roughness exceeds 150 μm, the uniformity of the thickness of the electrode catalyst layer is lost or uniform discharge coating cannot be obtained. And the like. When dimple formation is performed, it is difficult to reduce the surface roughness to 10 μm or less. When viewed from the application of the electrode for electrolysis, various surface roughness is required depending on the application, but if it can be freely controlled in a range of usually 150 μm or less,
It is possible to respond in a wide range.

【0017】一つの被覆層(堆積層)の上に重ねて放電
をするときも、始めの堆積層は次の放電被覆層に対し
て、錨留効果があり、重ね被覆によって電極基体に強大
な接着強度で重層被覆を施すことができる。放電を繰り
返しながら、電極基体に被覆を形成するので、放電部分
は、それぞれの放電条件に応じて、急速加熱、急速拡
散、急速冷却を繰り返し、これにより所望の組成分布、
厚み及び特性を有する被覆が形成される。この加熱特
性、拡散特性、冷却特性を所望の条件に安定に保って、
所望の被覆を形成するためには、CNC制御等により精密
に各々の条件を制御することが重要な要件となる。
When a discharge is caused to be superposed on one coating layer (deposited layer), the first deposited layer has an anchoring effect with respect to the next discharge coated layer, and the superposed coating has a strong effect on the electrode substrate. Multilayer coating can be applied with adhesive strength. Since the coating is formed on the electrode substrate while repeating the discharge, the discharge portion repeats rapid heating, rapid diffusion, and rapid cooling according to the respective discharge conditions, thereby providing a desired composition distribution,
A coating having a thickness and properties is formed. By keeping the heating characteristics, diffusion characteristics, and cooling characteristics stable under the desired conditions,
In order to form a desired coating, it is important to precisely control each condition by CNC control or the like.

【0018】而して、電解用電極又はその中間層を安定
して形成するためには次の項目が制御の対象となる。 a)放電を開始するときの放電間隙(Z) b)被覆材と電極基体との相対移動速度(dX/dt,dY/dt) c)放電開始後放電電流が最大になるまでの時間 d)放電時間中に放出されるエネルギー(放電面のエネ
ルギー密度) e)放電を発生する放電媒体条件(気体、液体、固体、
それらの流量、圧力等) f)繰り返し放電の周期 g)放電点の放電前の温度 h)放電を発生するときの電極温度 i)放電堆積層の厚さ、組成 j)被覆材と電極基体間の振動、相対回転 本発明において、「a)放電を開始するときの放電間隙
(Z)」はCNC制御対象の必須項目となる。通常、本発明
による電解用電極又はその中間層を形成するためには、
制御項目a)だけに就いてCNC制御を行えば足り、他の制
御対象項目に就いてはNC等の他の制御方法を用いること
ができる。然しながら、制御対象項目b)、c)及びd)
に就いは、CNC制御は有功であり、これを採用すればよ
り安定な加工が可能となる。e)乃至j)の制御対象項目
に就いては他の簡便な制御で充分である。
In order to stably form the electrode for electrolysis or its intermediate layer, the following items are controlled. a) Discharge gap (Z) at the start of discharge b) Relative moving speed (dX / dt, dY / dt) between coating material and electrode substrate c) Time from start of discharge to maximum discharge current d) Energy released during discharge time (energy density of discharge surface) e) Discharge medium conditions for generating discharge (gas, liquid, solid,
F) cycle of repetitive discharge g) temperature before discharge at discharge point h) electrode temperature at which discharge occurs i) thickness and composition of discharge deposition layer j) between coating material and electrode substrate In the present invention, "a) discharge gap at the time of starting discharge
(Z) "is an essential item for CNC control. Usually, in order to form an electrode for electrolysis according to the present invention or an intermediate layer thereof,
It is sufficient to perform the CNC control only on the control item a), and other control methods such as NC can be used for other control target items. However, the controlled items b), c) and d)
In the case of, CNC control is effective, and if it is adopted, more stable machining is possible. Other simple controls are sufficient for the control items e) to j).

【0019】このような方法で電解用電極を製造すると
きは、火花放電を利用するときの問題点が総て解消す
る。即ち、本発明によるときは、先に示したように、放
電の中で特に不安定な火花放電を主体として利用して、
電極基体の広い表面積に渡って、均一に、安定した被覆
層を形成し、然も、安価且つ大量に提供することは非常
に困難であり、また放電処理による被覆効率が悪いとい
う問題点が解消する。又、電解の用途又は条件に合わせ
て、電解用電極のディンプル形状又はその状態を制御で
きると言う作用効果も得られた。更に、本発明によると
きは、CNC制御によって電極使用時の電解条件に合わせ
て様々な特性の放電被覆層の形成が可能となり、次のよ
うな作用効果も齎された。 1)部分的な放電被覆を有する微小の電解用電極及び複
雑な部分被覆を有する電解用電極の製造が容易にできる
ようになった。 2)様々な高機能を有する陰極も容易かつ低価格で製造
可能となった。 これらの例としては、例えば、 ニッケルを電極基体とし、ルテニウムとニッケルの
合金を被覆した低水素過電圧陰極。 海水や食塩を無隔膜で電解し、有効塩素を製造する
場合、有効塩素の還元が生じにくい陰極として、ステン
レスを電極基体とし、銀を被覆した電解用電極等。 を挙げることができる。
When the electrode for electrolysis is manufactured by such a method, all problems when using spark discharge are eliminated. That is, according to the present invention, as described above, a particularly unstable spark discharge is mainly used in the discharge,
It is very difficult to form a uniform and stable coating layer over a large surface area of the electrode substrate, and it is very difficult to provide it inexpensively and in large quantities, and the problem that the coating efficiency by the discharge treatment is poor is solved. I do. In addition, the effect of controlling the dimple shape or the state of the electrode for electrolysis according to the use or condition of electrolysis was obtained. Further, according to the present invention, it becomes possible to form a discharge coating layer having various characteristics according to the electrolysis conditions when the electrode is used by the CNC control, and the following operational effects are also brought about. 1) The production of minute electrolysis electrodes having a partial discharge coating and electrolysis electrodes having a complicated partial coating can be easily performed. 2) Various high performance cathodes can be manufactured easily and at low cost. Examples of these are a low-hydrogen overvoltage cathode in which nickel is used as an electrode substrate and an alloy of ruthenium and nickel is coated. When producing effective chlorine by electrolyzing seawater or salt with a diaphragm, a stainless steel electrode substrate and a silver-coated electrode for electrolysis are used as a cathode that does not easily reduce effective chlorine. Can be mentioned.

【0020】実施例−1 CNC制御に依って、被覆材の位置を電極基体表面に対し
法線(Z軸)方向にサーボ制御して被覆材と電極基体と
の間隙を放電発生可能な範囲に保つと共に、電極基体を
載せるテーブルのX−Y軸方向への移動及びその移動速度
をNC制御し、更に、最大放電電流及びそれに達するまで
の時間、放電のエネルギー密度、繰返し放電のオフタイ
ム並びに被覆材の回転数をそれぞれ任意に制御条件を設
定することができる装置に依り制御し、本発明方法に従
って電解用電極を製造した。電極基体には、JIS2種相当
チタン板をアルコール溶液で脱脂した後、25℃の5重量
%HF水溶液で1分間処理し、次いで120℃の50重量%H2S
O4溶液中で1分間処理したものを用い、被覆材には直径2
mmの白金棒を使用し、放電時の白金電極と電極基体間の
平均電圧を 45V、電極基体の移動速度を60mm/分、ピー
ク電流Ipを100A、τONを100μs、繰返し周波数を200H
z、最大電流密度を105A/cm2とし、白金電極を240rpmで
回転させる条件で、様々な形状を有する電解用白金被覆
チタン電極を製作した。その結果、種々な被覆面形状を
有する白金電極が得られた。それらの電極の白金被覆量
は被覆形状に関係なく安定し、また白金膜厚も均一であ
った。このようにして製作した様々な電解用電極の中か
ら、触媒電極面がL型形状を有し、その主体部が幅20mm
×長さ50mm、腕部が幅2mm×長さ50mmで、白金被覆層の
厚さが0.5μmのものを選び、実施例電極−1とし、後
述の比較例電極−1と対比するため電解試験を行った。
Embodiment 1 The position of the coating material is servo-controlled in the direction of the normal line (Z-axis) with respect to the surface of the electrode substrate by CNC control so that the gap between the coating material and the electrode substrate is within a range in which discharge can be generated. While maintaining, the NC of the movement of the table on which the electrode substrate is placed in the X-Y axis direction and the movement speed are further controlled. An electrode for electrolysis was manufactured according to the method of the present invention by controlling the number of revolutions of the material using an apparatus capable of setting control conditions arbitrarily. The electrode substrate is prepared by degreased a titanium plate equivalent to JIS type 2 with an alcohol solution, treated with a 5% by weight HF aqueous solution at 25 ° C. for 1 minute, and then with a 50% by weight H 2 S
Use a material treated for 1 minute in an O 4 solution.
Using a platinum rod of mm, the average voltage between the platinum electrode and the electrode substrate during discharge is 45 V, the moving speed of the electrode substrate is 60 mm / min, the peak current Ip is 100 A, τ ON is 100 μs, and the repetition frequency is 200 H.
z, platinum-coated titanium electrodes for electrolysis having various shapes were manufactured under the conditions that the maximum current density was 10 5 A / cm 2 and the platinum electrode was rotated at 240 rpm. As a result, platinum electrodes having various covering surface shapes were obtained. The platinum coating amount of those electrodes was stable irrespective of the coating shape, and the platinum film thickness was uniform. Among the various electrolysis electrodes manufactured in this manner, the catalyst electrode surface has an L-shape, and the main portion has a width of 20 mm.
× length 50 mm, arm width 2 mm × length 50 mm, the thickness of the platinum coating layer is 0.5 μm was selected, and was used as an example electrode-1, and an electrolytic test was performed for comparison with a comparative example electrode-1 described later. Was done.

【0021】比較例−1 実施例−1と同じチタンを電極基体とし、アルコール等
で脱脂した後、120℃の50重量%H2SO4溶液中で1分間処
理し、次に25℃の0.5重量%弗化水素酸に1分間浸漬
し、白金めっき前処理を行った。前処理を行ったチタン
板に硫酸酸性の白金めっき液中で電気めっきを施し、比
較例電極−1を作製した。蛍光X線膜厚計で白金めっき
層の厚さを計測し0.5μmの値を得た。
Comparative Example-1 The same titanium substrate as in Example-1 was used as an electrode substrate, degreased with an alcohol or the like, and then treated in a 50% by weight H 2 SO 4 solution at 120 ° C. for 1 minute. It was immersed in 1% by weight hydrofluoric acid for 1 minute to perform pretreatment of platinum plating. The pre-treated titanium plate was subjected to electroplating in a sulfuric acid acidic platinum plating solution to prepare Comparative Example Electrode-1. The thickness of the platinum plating layer was measured with a fluorescent X-ray film thickness meter to obtain a value of 0.5 μm.

【0022】実施例電極−1及び比較例電極−1に就い
て、下記の条件で電解試験を行い、白金の消耗速度を比
較した。 電解試験条件 電解液 :1 mol H2SO4+1mol Na2SO4水溶液 液 温 :40℃ 電流密度 :18A/dm2 対 極 :Ni 極間距離 :10mm その結果、白金の消耗速度は、実施例電極−1が4μg/
AHであったのに対して、比較例電極−1は5μg/AHであ
り、本発明に依るときは寿命が25%延びることが確認さ
れた。
Electrolysis tests were performed on the electrode of Example 1 and the electrode of Comparative Example 1 under the following conditions, and the consumption rates of platinum were compared. Electrolysis test conditions Electrolyte: 1 mol H 2 SO 4 +1 mol Na 2 SO 4 aqueous solution Temperature: 40 ° C. Current density: 18 A / dm 2 Counter electrode: Ni Distance between electrodes: 10 mm Electrode-1 is 4 μg /
Compared to AH, Comparative Example Electrode-1 was 5 μg / AH, and it was confirmed that according to the present invention, the life was extended by 25%.

【0023】実施例−2 X−Y駆動軸テーブルにCNC制御動作を行う上下(Z軸)用
サーボ駆動機8台を搭載し、それらのサーボ駆動機の相
互間隔を 任意に調整できるよう構成し、X−Y軸駆動に
よる位置移動及びその移動速度がNC制御される様に構
成した他は、実施例−1と同じである本発明装置を使用
し、電極基体としては実施例−1と同じチタンから成る
幅400mm×長さ500mm×厚さ3mmのブロックを用い、実施
例−1と同様な方法で酸処理を行い、上記の装置に取付
けた。被覆材は直径3mmのTa棒とし、上記サーボ駆動機8
基にそれぞれ各1本宛取り付けた。Ta被覆材間のピッチ
を50mmとし、平均放電電圧を45V、Ta被覆材の移動速度
を60mm/分、ピーク電流Ipを100A、τONを100μs、
パルス繰返周波数を200Hz、最大電流密度を105A/cm2
し、Arガスを1cc/minの速度で噴射し、Taを240rpmで回
転させる条件でTa中間層を形成した。得られた間層はEP
MAによる元素分析及び表面荒さ計による荒さ測定を行っ
た結果、TiとTaの合金層を含み、また、その荒さは45μ
mRmaxであることが判明した。また、8基のサーボ駆動
機で形成した中間層のTa被覆率を求めた結果、表−1の
通りの値が得られた。これによればTaの被覆が極めて均
一で安定していることが解る。
Embodiment 2 Eight vertical (Z-axis) servo drives for performing the CNC control operation are mounted on the XY drive axis table, and the mutual intervals between the servo drives can be adjusted arbitrarily. , Except that the position movement by the XY axis drive and the movement speed were controlled by NC, the same apparatus of the present invention as in Example-1 was used, and the electrode base was the same as in Example-1. Using a block made of titanium having a width of 400 mm, a length of 500 mm and a thickness of 3 mm, acid treatment was performed in the same manner as in Example 1, and attached to the above apparatus. The coating material is a Ta bar with a diameter of 3 mm.
Each one was attached to the base. The pitch between the Ta coating materials is 50 mm, the average discharge voltage is 45 V, the moving speed of the Ta coating material is 60 mm / min, the peak current Ip is 100 A, τ ON is 100 μs,
The pulse repetition frequency was 200 Hz, the maximum current density was 10 5 A / cm 2 , Ar gas was injected at a rate of 1 cc / min, and Ta was rotated at 240 rpm to form a Ta intermediate layer. The resulting interlayer is EP
As a result of elemental analysis by MA and roughness measurement by a surface roughness meter, it contains an alloy layer of Ti and Ta, and the roughness is 45μ.
It was found to be mRmax. Further, as a result of obtaining the Ta coverage of the intermediate layer formed by the eight servo drives, the values shown in Table 1 were obtained. According to this, it is understood that the coating of Ta is extremely uniform and stable.

【表1】 尚、Ta被覆率Sは蛍光X線膜厚計で測定し以下の式で算出
した値である。
[Table 1] The Ta coverage S is a value measured by a fluorescent X-ray film thickness meter and calculated by the following equation.

【数6】 ここで、 N:総測定点数 Np:所定の被覆膜厚を示した測定点の数 又、塩化イリジウム酸のブタノール溶液と塩化タンタル
のエタノール溶液を混合し、Ir5.0g/l及びTa50.0g/
lを含有する塗布液を調整した後、上記で得られた電解
用電極の中間層上に、マイクロピペットで1cm2当たり3.
0μlの割合で計り取り、それを上記Ta被覆に塗布した
後、室温で30分間乾燥させ、更に500℃の大気中で10分
間焼成し、この工程を3回繰り返した。次いで触媒層を
得るため、塩化イリジウム酸のブタノール溶液と塩化タ
ンタルのエタノール溶液を混合し、Ir50.0g/l及びTa2
0.2g/lを含有する塗布液を調整した後、この塗布液を
用いて前記と同様の工程を8回繰り返して、本発明方法
に依り形成された上記の電解用電極の中間層を評価する
ための実施例電極−2を作製した。
(Equation 6) Here, N: the total number of measurement points Np: the number of measurement points showing a predetermined coating film thickness In addition, a butanol solution of iridic acid chloride and an ethanol solution of tantalum chloride are mixed, and Ir 5.0 g / l and Ta 50.0 g are mixed. /
After adjusting the coating solution containing a l, on the intermediate layer of the electrode for electrolysis obtained in the above, 1 cm 2 per 3 with a micropipette.
It was weighed out at a rate of 0 μl, applied to the above Ta coating, dried at room temperature for 30 minutes, baked in air at 500 ° C. for 10 minutes, and this process was repeated three times. Then, in order to obtain a catalyst layer, a butanol solution of iridium chloride and an ethanol solution of tantalum chloride were mixed, and Ir50.0 g / l and Ta2
After preparing a coating solution containing 0.2 g / l, the same steps as described above are repeated eight times using this coating solution to evaluate the intermediate layer of the electrode for electrolysis formed by the method of the present invention. Example 2 was manufactured.

【0024】実施例−3 実施例−1と同様にチタンを電極基体とし、鋳鉄グリッ
ト#80によるブラスト処理を行った後、王水処理を行
い、 次いで25℃の5重量%HF水溶液で1分間処理し、次
いで120℃の50重量% H2SO4溶液中に1分間浸漬し、粗面
化処理した。次に、粉末粒径が325メッシュ以下のTaとT
i粉末を重量比1:1とした混合粉末を上記粗面化した面上
にふりかけ凹部に該粉末を固定した電極基体を得た。こ
の電極基体を実施例−1と同じ本発明装置に取付け、被
覆材として直径3mmのTi棒を使用し、平均電圧を40V、T
i被覆材の移動速度を90mm/分、ピーク電流Ipを100A、
τONを100μs、パルス繰返し周波数を200Hz、最大電
流密度を105A/cm2とし、Arガスを1cc/minの流量で噴
射し、Ti電極を120rpmで回転させる条件で、Ti中間層を
得た。得られた中間層はEPMAで元素分析を行った結果、
TiとTaの合金層であることが判明した。又、荒さ測定を
行った結果、85μm Rmaxの値が得られた。次に、本中
間層上に上記実施例電極−2と同様の方法でIr−Taの酸
化物コーティング層を上記のTa−Ti合金層上に形成し、
この中間層を評価するための実施例電極−3を作製し
た。
Example 3 As in Example 1, titanium was used as an electrode substrate, blasting was performed with cast iron grit # 80, aqua regia treatment was performed, and then an aqueous solution of 5% by weight HF at 25 ° C. for 1 minute. Then, it was immersed in a 50% by weight H 2 SO 4 solution at 120 ° C. for 1 minute to perform a roughening treatment. Next, Ta and T having a powder particle size of 325 mesh or less
The mixed powder having a powder ratio of 1: 1 was sprinkled on the roughened surface to obtain an electrode substrate in which the powder was fixed in the concave portions. This electrode substrate was mounted on the same apparatus of the present invention as in Example 1, a Ti rod having a diameter of 3 mm was used as a coating material, and the average voltage was 40 V and T
i The moving speed of the coating material is 90 mm / min, the peak current Ip is 100 A,
The tau ON 100 [mu] s, 200 Hz pulse repetition frequency, the maximum current density and 10 5 A / cm 2, injecting Ar gas at a flow rate of 1 cc / min, under conditions of rotating the Ti electrode at 120 rpm, to obtain a Ti intermediate layer Was. The obtained intermediate layer was subjected to elemental analysis by EPMA,
It turned out to be an alloy layer of Ti and Ta. As a result of the roughness measurement, a value of 85 μm Rmax was obtained. Next, on the intermediate layer, an Ir-Ta oxide coating layer was formed on the Ta-Ti alloy layer in the same manner as in Example electrode-2,
Example electrode-3 for evaluating this intermediate layer was produced.

【0025】実施例4 Niからなる電極基体をアルコール溶液で脱脂した後、実
施例−1で使用した本発明装置に取り付け、被覆材とし
て直径2.0mmで90Ru−10Ni合金を使用し、被覆材と電極
基体間の平均電圧を45V、被覆材の移動速度を120mm/
分、ピーク電流Ipを120A、τONを100μs、パルスの繰返
し周波数を200Hz、最大電流密度を105A/cm2とし、Arガ
スを1cc/minの速度で噴射しつつ、被覆材を240rpmで回
転させる条件で放電を行い、Ni板上にRu−Ni合金被覆層
を有する実施例電極−4を得た。得られた実施例−4電
極について、下記条件で水素過電圧を測定した結果、Ni
の水素過電圧に対して約200mV低い過電圧となり、陰極
用電極として使用できるものであることが確認された。 電解試験条件 電解液:3 mol NaOH 液温 :80℃ 電流密度:12.5A/dm2(水素過電圧を比較参照した条件)
Example 4 After the electrode substrate made of Ni was degreased with an alcohol solution, it was attached to the apparatus of the present invention used in Example 1, and a 90 mm Ru-10Ni alloy having a diameter of 2.0 mm was used as a coating material. The average voltage between the electrode substrates is 45 V, and the moving speed of the coating material is 120 mm /
Min, 120A peak current I p, 100 [mu] s to tau ON, pulse 200Hz repetition frequency of the maximum current density and 10 5 A / cm 2, while injecting an Ar gas at a rate of 1 cc / min, 240 rpm the coating material The electrode was discharged under the conditions of rotating at a speed of, thereby obtaining Example electrode-4 having a Ru-Ni alloy coating layer on a Ni plate. With respect to the obtained Example-4 electrode, the hydrogen overvoltage was measured under the following conditions.
The overvoltage was lower by about 200 mV than the hydrogen overvoltage, and it was confirmed that the overvoltage was usable as a cathode electrode. Electrolysis test conditions Electrolyte solution: 3 mol NaOH Solution temperature: 80 ° C Current density: 12.5 A / dm 2 (conditions with reference to hydrogen overvoltage)

【0026】比較例−2 実施例−1と同じチタンからなる電極基体を実施例−1
と同様な方法で酸処理した後、直径3.0mmのTa棒を被覆
材として市販の放電被覆装置(スパークデポ)に取り付
け、手動で被覆材を電極基体表面に接触させながら移動
させて放電処理を行い、0.1dm2/minの速度で放電処理
を行い、電極基体表面に中間被覆層を形成した。得られ
た中間被覆層の厚みを蛍光X線膜厚計で測定し、前記式
6によりTaの被覆率を求めた結果、得られた被覆率は70
%と言う低い値であった。また、Ta被覆量のバラツキも
大きく不均一であった。また、上記実施例電極−2と同
様の方法で、上記中間被覆層の上にIr−Taの酸化物コー
ティング層を形成し、比較例電極−2を製作した。
Comparative Example 2 The same electrode base made of titanium as in Example 1 was used.
After the acid treatment in the same manner as described above, a 3.0 mm diameter Ta rod is used as a coating material and attached to a commercially available discharge coating device (Spark Depot), and the coating material is manually moved while being in contact with the electrode substrate surface to perform the discharge treatment. Then, a discharge treatment was performed at a rate of 0.1 dm 2 / min to form an intermediate coating layer on the surface of the electrode substrate. The thickness of the obtained intermediate coating layer was measured with a fluorescent X-ray film thickness meter, and the coverage of Ta was determined by the above formula 6, and as a result, the obtained coverage was 70%.
%. Also, the variation in the amount of Ta coating was large and uneven. In addition, an Ir-Ta oxide coating layer was formed on the intermediate coating layer in the same manner as in Example electrode-2, to produce Comparative example electrode-2.

【0027】比較例−3 実施例−1と同じチタンからなる電極基体に実施例−1
と同様な方法で酸処理を施し酸化物を除去した。次に、
その酸化物を除去した電極基体表面に、上記実施例電極
−2と同様の方法でIr−Taの酸化物コーティング層を形
成し、比較例電極−3を作製した。
Comparative Example 3 Example 1 was applied to the same electrode substrate made of titanium as in Example 1.
Acid treatment was performed in the same manner as described above to remove oxides. next,
An Ir-Ta oxide coating layer was formed on the surface of the electrode substrate from which the oxide had been removed in the same manner as in Example electrode-2, to produce comparative example electrode-3.

【0028】実施例電極−2、実施例電極−3、比較例
電極−2、比較例電極−3の各電極を次の条件で電解試
験を行い、それらの中間被覆層の耐久度を比較した。そ
の結果を表−2に示す。表−2から本発明方法に依って
作製された中間被覆層は、従来公知の方法に依って作製
されたものに比して耐久性が高いことが解る。 <電解条件> 電解液 :1 mol H2SO4+1 mol Na2SO4水溶液 電流密度 :4A/cm2 対極 :Pt 極間距離 :10 mm 以上の電解条件で試験を行い、初期の電解電圧に対して
10%の電圧上昇で電極の寿命とし、寿命に達するまでの
電解時間によって中間層の耐久性を評価した。
The electrodes of Example electrode-2, Example electrode-3, Comparative example electrode-2 and Comparative example electrode-3 were subjected to an electrolytic test under the following conditions, and the durability of the intermediate coating layer was compared. . Table 2 shows the results. From Table 2, it can be seen that the intermediate coating layer produced by the method of the present invention has higher durability than those produced by a conventionally known method. <Electrolysis conditions> electrolyte: 1 mol H 2 SO 4 +1 mol Na 2 SO 4 aqueous Current Density: 4A / cm 2 counter: Pt distance between target were tested at 10 mm or more electrolysis conditions, the initial electrolytic voltage for
The life of the electrode was determined by a 10% voltage rise, and the durability of the intermediate layer was evaluated by the electrolysis time until the life was reached.

【表2】 [Table 2]

【0029】以上から明かなように、本発明によるとき
は、被覆材と電極基体との間隙をCNC制御して、全自動
でかつ安定した火花放電を発生させ、これに依り電極基
体表面へ均一かつ目的に適合した被覆層を形成すること
ができ、種々様々な特性を有し、耐久力に優れた電解用
電極を安価かつ大量に提供し得るようになる。
As is apparent from the above, according to the present invention, the gap between the coating material and the electrode substrate is controlled by CNC, and a fully automatic and stable spark discharge is generated, whereby the surface of the electrode substrate is uniformly formed. In addition, a coating layer suitable for the purpose can be formed, and an electrode for electrolysis having various characteristics and excellent durability can be provided inexpensively and in large quantities.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25C 7/02 307 C25C 7/02 307 C25D 17/10 101 C25D 17/10 101A 17/12 17/12 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C25C 7/02 307 C25C 7/02 307 C25D 17/10 101 C25D 17/10 101A 17/12 17/12 B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 CNC制御により、加工すべき電極基体との
間に放電発生可能な距離を介して被覆材を保持し、両者
間に放電を発生させつつ、電極基体表面に沿って被覆材
を相対移動させ、電極基体表面に被覆材から成る被覆層
を形成する工程を含むことを特徴とする電解用電極の製
造方法。
1. A coating material is held by a CNC control with a distance capable of generating a discharge between the electrode material to be processed and a discharge material between the two, and the coating material is formed along the surface of the electrode substrate while generating a discharge between the two. A method for producing an electrode for electrolysis, comprising a step of forming a coating layer made of a coating material on a surface of an electrode substrate by relatively moving the electrode layer.
【請求項2】 複数の被覆材を用い、その各々をサーボ
駆動して被覆層を形成する請求項1に記載の電解用電極
製造方法。
2. The method for producing an electrode for electrolysis according to claim 1, wherein a plurality of coating materials are used, and each of them is servo-driven to form a coating layer.
【請求項3】 表面の被覆層形成と共にディンプル化を
同時に行い、表面荒さを10μm以上150μmRmax以下に
なるようにした請求項1に記載の電解用電極を製造する
方法。
3. The method for producing an electrode for electrolysis according to claim 1, wherein dimple formation is performed simultaneously with formation of the surface coating layer so that the surface roughness is not less than 10 μm and not more than 150 μm Rmax.
【請求項4】 被覆材を振動させつつ被覆層を形成する
請求項1に記載の電解用電極を製造する装置。
4. The apparatus for producing an electrode for electrolysis according to claim 1, wherein the coating layer is formed while vibrating the coating material.
【請求項5】 被覆材を回転させつつ被覆層を形成する
請求項1に記載の電解用電極を製造する装置。
5. The apparatus for producing an electrode for electrolysis according to claim 1, wherein the coating layer is formed while rotating the coating material.
【請求項6】 所望の組成を有する粉体を被覆材と電極
基体の間の放電部分に供給しつつ、その粉体の組成物の
少なくとも一部を含む被覆層を形成する請求項1に記載
の電解用電極を製造する方法。
6. The coating layer according to claim 1, wherein a coating layer containing at least a part of the composition of the powder is formed while supplying a powder having a desired composition to a discharge portion between the coating material and the electrode substrate. A method for producing an electrode for electrolysis of
【請求項7】 電極基体を着脱自在に保持する装置と、
上記装置により保持された電極基体との間に放電発生可
能な距離を介して被覆材を保持し、電極基体表面に沿っ
て相対移動させる装置と、電極基体と被覆材との間に放
電を発生させる装置と、上記の装置の総てを制御するCN
C制御とから成り、請求項1に記載の方法により電解用電
極を製造する装置。
7. An apparatus for detachably holding an electrode base,
A device that holds the coating material through a distance capable of generating a discharge between the electrode substrate and the electrode substrate held by the above device, and relatively moves along the surface of the electrode substrate, and generates a discharge between the electrode substrate and the coating material. Device to control and CN controlling all of the above devices
2. An apparatus for producing an electrode for electrolysis by the method according to claim 1, comprising C control.
JP11100567A 1999-04-07 1999-04-07 Production of electrode for electrolysis and device therefor Pending JP2000290789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11100567A JP2000290789A (en) 1999-04-07 1999-04-07 Production of electrode for electrolysis and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11100567A JP2000290789A (en) 1999-04-07 1999-04-07 Production of electrode for electrolysis and device therefor

Publications (1)

Publication Number Publication Date
JP2000290789A true JP2000290789A (en) 2000-10-17

Family

ID=14277500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11100567A Pending JP2000290789A (en) 1999-04-07 1999-04-07 Production of electrode for electrolysis and device therefor

Country Status (1)

Country Link
JP (1) JP2000290789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105598A (en) * 2001-09-27 2003-04-09 Tdk Corp Electrode device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105598A (en) * 2001-09-27 2003-04-09 Tdk Corp Electrode device

Similar Documents

Publication Publication Date Title
US4169025A (en) Process for making catalytically active Raney nickel electrodes
US4116804A (en) Catalytically active porous nickel electrodes
US5578176A (en) Method of preparing electrodes of improved service life
US4349581A (en) Method for forming an anticorrosive coating on a metal substrate
EP0163410B1 (en) Electrolysis of halide-containing solutions with platinum based amorphous metal alloy anodes
JP2012504192A (en) Alloy coating apparatus and metal riding method
JP2761751B2 (en) Electrode for durable electrolysis and method for producing the same
JPS5944392B2 (en) Electrolytic cathode with cobalt/zirconium dioxide fused spray coating
US4240895A (en) Raney alloy coated cathode for chlor-alkali cells
CN101235531B (en) Method of reactivating electrode for electrolysis
USRE28820E (en) Method of making an electrode having a coating containing a platinum metal oxide thereon
US5324407A (en) Substrate of improved plasma sprayed surface morphology and its use as an electrode in an electrolytic cell
JPH04301062A (en) Base material having improved plasma flame spray coated surface type
US4518457A (en) Raney alloy coated cathode for chlor-alkali cells
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
JP2000290789A (en) Production of electrode for electrolysis and device therefor
JP2979691B2 (en) Manufacturing method of anode for oxygen generation
JP3430479B2 (en) Anode for oxygen generation
JP3045031B2 (en) Manufacturing method of anode for oxygen generation
JP3332264B2 (en) Electrode for electrolysis
JP3044797B2 (en) Manufacturing method of anode for oxygen generation
JP3422885B2 (en) Electrode substrate
JPH062194A (en) Electroplating method
JP3463966B2 (en) Manufacturing method of electrode for electrolysis
JP3069696B1 (en) Corrosion-resistant sprayed coating and its manufacturing method