JP2000290787A - Method for suppressing gaseous nox by hydrogen peroxide - Google Patents

Method for suppressing gaseous nox by hydrogen peroxide

Info

Publication number
JP2000290787A
JP2000290787A JP11101676A JP10167699A JP2000290787A JP 2000290787 A JP2000290787 A JP 2000290787A JP 11101676 A JP11101676 A JP 11101676A JP 10167699 A JP10167699 A JP 10167699A JP 2000290787 A JP2000290787 A JP 2000290787A
Authority
JP
Japan
Prior art keywords
nitric acid
hydrogen peroxide
current value
containing liquid
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11101676A
Other languages
Japanese (ja)
Other versions
JP3901382B2 (en
Inventor
Tadashi Shimomura
正 下村
Hide Oto
秀 大戸
Hiroya Watanabe
広也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10167699A priority Critical patent/JP3901382B2/en
Priority to US09/542,847 priority patent/US6475373B1/en
Priority to DE60003743T priority patent/DE60003743T2/en
Priority to EP00107103A priority patent/EP1043422B1/en
Publication of JP2000290787A publication Critical patent/JP2000290787A/en
Application granted granted Critical
Publication of JP3901382B2 publication Critical patent/JP3901382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to automatically control the generation amount of gas corresponding to a current value by electrolyzing a nitric acid-containing liquid, such as a stainless steel pickling liquid containing hydrofluoric acid, at a specified potential and regulating the addition amount of the hydrogen peroxide to oxidize NOx to nitric acid in accordance with this electrolytic current value. SOLUTION: The nitric acid-containing liquid, for example, nitric acid-containing liquid 2 of a stainless steel pickling bath 1 consisting of mixed acids containing, for example, nitric acid and hydrofluoric acid is electrolyzed with a specified voltage via a three electrode type voltage controller 6 having a platinum electrode 4 and a reference electrode 5. The electrolytic current value having a proportional relation with the generation amount of the gaseous NOx of the nitric acid-containing liquid 2 is then detected. A supply pump drive control signal 8 is transmitted from the voltage controller 6 to a hydrogen peroxide supply pump 3 to add a prescribed amount of hydrogen peroxide to the pickling bath 1. As a result, the NOx formed in the nitric acid-containing liquid 2 is oxidized as the nitric acid and the generation amount thereof is automatically maintained at a prescribed level and the excessive consumption of hydrogen peroxide can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過酸化水素を添加
することによって、硝酸含有液中で金属を処理する場合
におけるNOx ガスの発生を抑制する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing the generation of NOx gas when a metal is treated in a nitric acid-containing solution by adding hydrogen peroxide.

【0002】[0002]

【従来の技術】工業分野において硝酸は広く使われてい
るが、その中で硝酸含有液を用いて金属を処理する場合
には、しばしば環境および人体に対して悪影響を及ぼす
NOxガスが発生する。例えば、硝酸と弗酸との混酸に
よるステンレス鋼の酸洗処理の場合、処理液中ではステ
ンレス鋼の溶解とともに溶液中に亜硝酸が生じる。亜硝
酸は溶液中で種々の反応を経てNOやNO2 となり、N
Ox ガスとして系外へ放出される。ここでNOx ガスの
処理にスクラバー等を用いる場合、排ガス処理装置の設
備コストがかかり、定期的なメンテナンスも必要とな
る。
2. Description of the Related Art Nitric acid is widely used in the industrial field, and when a metal is treated with a nitric acid-containing liquid, NOx gas which often has an adverse effect on the environment and the human body is generated. For example, in the case of pickling treatment of stainless steel with a mixed acid of nitric acid and hydrofluoric acid, nitrous acid is generated in the solution together with dissolution of the stainless steel in the treatment solution. Nitric acid undergoes various reactions in a solution to become NO or NO 2 ,
It is released outside the system as Ox gas. Here, when a scrubber or the like is used for the treatment of NOx gas, the equipment cost of the exhaust gas treatment device is increased, and periodic maintenance is also required.

【0003】これに対して、硝酸含有液に過酸化水素を
添加して、NOx ガスを抑制する方法があるが(米国特
許第3,945,865号)、過酸化水素の添加量を適
切に調製することが問題となる。過剰な添加は、金属イ
オンの存在する硝酸、弗酸液中では、自ら分解するだけ
であり、過酸化水素を無駄に消費させることになるから
である。特開昭55−134694号公報では、亜硝酸
含有液の酸化還元電位に基づいて、過酸化水素の添加を
調整する方法が開示されているが、酸化還元電位と亜硝
酸濃度との相関が一定せず、過酸化水素の添加量の調整
が難しい。
On the other hand, there is a method of suppressing NOx gas by adding hydrogen peroxide to a nitric acid-containing liquid (US Pat. No. 3,945,865). Preparation is problematic. This is because excessive addition only decomposes itself in a nitric acid or hydrofluoric acid solution in which metal ions are present, and wastefully consumes hydrogen peroxide. Japanese Patent Application Laid-Open No. 55-134694 discloses a method of adjusting the addition of hydrogen peroxide based on the oxidation-reduction potential of a nitrite-containing solution. Without this, it is difficult to adjust the amount of added hydrogen peroxide.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
技術における上記したような課題を解決し、硝酸含有液
のNOx ガスの発生を効果的に抑制させる方法を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a method for effectively suppressing the generation of NOx gas in a nitric acid-containing liquid.

【0005】[0005]

【課題を解決するための手段】本発明者らは、過酸化水
素の添加量の調整について鋭意研究を重ねた結果、硝酸
含有液を定電位電解した場合、電解電流値と液中の亜硝
酸イオン濃度および発生するNOx ガス量との間に一定
の関係があることを見出し、本発明に到達した。
The present inventors have conducted intensive studies on the adjustment of the amount of added hydrogen peroxide. As a result, when a nitric acid-containing solution was subjected to constant potential electrolysis, the electrolytic current value and the amount of nitrous acid in the solution were measured. The inventors have found that there is a certain relationship between the ion concentration and the amount of generated NOx gas, and have reached the present invention.

【0006】すなわち、本発明は、過酸化水素の添加に
よって硝酸含有液からのNOx ガスの放出を抑制する方
法において、硝酸含有液を一定電位で電解し、電解電流
値に基づいて、過酸化水素の添加量を調整することを特
徴とするNOx ガスの抑制方法に関するものである。
That is, the present invention provides a method for suppressing the release of NOx gas from a nitric acid-containing liquid by adding hydrogen peroxide. In the method, the nitric acid-containing liquid is electrolyzed at a constant potential, and hydrogen peroxide is added based on the electrolytic current value. The present invention relates to a method for suppressing NOx gas, characterized by adjusting the amount of NOx added.

【0007】[0007]

【発明の実施の形態】本発明は、ステンレス鋼の酸洗処
理に用いられる硝酸と弗酸との混酸、および銅、真鍮等
の表面処理に用いられる硝酸含有液に好適に用いられ
る。例えば、ステンレス鋼の酸洗は、バッチまたは連続
で処理され、硝酸含有液の温度や金属溶解量も変化する
ため、NOx 発生量も変化する。従って、必要な過酸化
水素の添加量も時間によって変化することになる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is suitably used for a mixed acid of nitric acid and hydrofluoric acid used for pickling stainless steel and a nitric acid-containing liquid used for surface treatment of copper, brass and the like. For example, pickling of stainless steel is performed in a batch or continuous manner, and the temperature of the nitric acid-containing solution and the amount of dissolved metal also change, so that the amount of generated NOx also changes. Therefore, the required amount of added hydrogen peroxide also changes with time.

【0008】また、本発明は、NOx の吸収溶液として
使用される硝酸含有液に過酸化水素を添加することによ
り、酸化されて硝酸になる場合にも適用できる。例え
ば、石炭、オイルまたは他の燃料を燃焼して生じるNO
x ガス、硝酸を用いた有機化合物の硝化・酸化のための
設備から生じるNOx ガスを吸収・酸化する場合であ
る。
The present invention can also be applied to a case in which nitric acid is oxidized to nitric acid by adding hydrogen peroxide to a nitric acid-containing solution used as a NOx absorbing solution. For example, NO from combustion of coal, oil or other fuels
In this case, NOx gas generated from equipment for nitrification and oxidation of organic compounds using x gas and nitric acid is absorbed and oxidized.

【0009】本発明の定電位電解法は、陰極の電位を一
定に保ちながら電解する方法であり、具体的には作用
極、対極、参照電極を具備したいわゆる3電極式電位制
御装置を用い、硝酸、弗酸液を電解し電流値を検出する
方法である。作用極および対極の材質は安定で溶解しな
いことが必要であり、電解液が硝酸、弗酸であることか
ら白金が好ましい。参照電極は特に限定しないが、取り
扱いやすさと弗酸液中ではガラスは溶解してしまうこと
から樹脂製の銀/塩化銀電極で、かつ、電解液の汚染を
起こさないダブルジャンクション型が好ましい。
The constant potential electrolysis method of the present invention is a method of performing electrolysis while keeping the potential of a cathode constant. Specifically, a so-called three-electrode potential control device having a working electrode, a counter electrode, and a reference electrode is used. In this method, a nitric acid or hydrofluoric acid solution is electrolyzed and a current value is detected. It is necessary that the material of the working electrode and the counter electrode is stable and does not dissolve, and platinum is preferable because the electrolytic solution is nitric acid or hydrofluoric acid. The reference electrode is not particularly limited, but is preferably a silver / silver chloride electrode made of resin and a double junction type which does not cause contamination of the electrolytic solution because the glass is dissolved in a hydrofluoric acid solution because it is easy to handle.

【0010】また、2極式電位制御装置を用い、作用極
と対極に白金を用い、両極間にかかる電位を一定に保ち
ながら電解し電流値を検出しても3極式電位制御装置を
用いた場合と同様の相関が得られる。第1図は、3極式
電位制御装置を用いた場合の装置の概略図、第2図は、
2極式電位制御装置を用いた場合の装置の概略図であ
る。
In addition, a three-electrode potential control device is used even if a two-electrode potential control device is used, platinum is used for the working electrode and the counter electrode, and the current is detected while the potential applied between the two electrodes is kept constant. The same correlation is obtained as in the case where FIG. 1 is a schematic diagram of an apparatus using a three-electrode potential controller, and FIG.
It is the schematic of an apparatus at the time of using a bipolar potential control apparatus.

【0011】電極の表面積については特に制限はない
が、検出電流値に影響するものであるから、求める電流
の大きさに応じて決められる。NOx ガスの発生量を一
定レベルに制御しようとする場合、得られた電流値に応
じて亜硝酸イオンと反応させるための過酸化水素を自動
供給するのが好ましく、このような場合には、自動供給
装置を制御させるに必要な電解電流値を取り出すことの
できる大きさの電極表面が必要となる。電極間距離およ
び電解温度は、安定した電解電流値を検出するために一
定であることが好ましい。
The surface area of the electrode is not particularly limited, but affects the detected current value, and is determined according to the magnitude of the current to be obtained. When it is desired to control the generation amount of NOx gas to a constant level, it is preferable to automatically supply hydrogen peroxide for reacting with nitrite ions in accordance with the obtained current value. An electrode surface having a size capable of extracting an electrolytic current value necessary for controlling the supply device is required. The distance between the electrodes and the electrolysis temperature are preferably constant in order to detect a stable electrolysis current value.

【0012】第3図は、2極式電位制御装置を用いた場
合の酸洗液の電位と電流値との関係を示すグラフであ
る。亜硝酸イオンはイオンクロマトグラフで測定した。
この硝酸、弗酸液は一般にステンレス鋼を酸洗する際に
用いられる液であり、測定条件は以下のとおりである。 被測定酸洗液:硝酸10重量%、弗酸4重量%、 電解温度:40℃(スターラー攪拌状態)、 作用極および対極:白金線(表面積4.7cm2 )、 極間距離:4cm、 液量:400ml。 建浴直後の電位−電流値曲線とステンレス鋼(SUS4
30)を浸漬した後の電位−電流値曲線を比較すると、
常に浸漬後の電流値のほうが大きい。また、電圧が0.
20Vから1.25Vの間では、建浴後の電流値が約1
0mAで一定している。
FIG. 3 is a graph showing the relationship between the potential of the pickling liquid and the current value when a bipolar potential control device is used. Nitrite ion was measured by ion chromatography.
The nitric acid and hydrofluoric acid solutions are generally used when pickling stainless steel, and the measurement conditions are as follows. Pickling solution to be measured: nitric acid 10% by weight, hydrofluoric acid 4% by weight, electrolysis temperature: 40 ° C. (stirred with stirring), working electrode and counter electrode: platinum wire (surface area 4.7 cm 2 ), distance between electrodes: 4 cm, liquid Volume: 400 ml. Potential-current curve immediately after bathing and stainless steel (SUS4
Comparing the potential-current curve after immersion of 30),
The current value after immersion is always larger. When the voltage is 0.
Between 20V and 1.25V, the current after bathing is about 1
It is constant at 0 mA.

【0013】第4図は、電解電位0.5Vでの電解電流
値と、イオンクロマトグラフによる亜硝酸イオン濃度の
測定値および硝酸、弗酸液面上部でのNOx ガス検知管
による測定値との関係を示すグラフである。このことよ
りNOx ガス発生量と電解電流値との間に比例関係があ
ることが明瞭である。そして、この比例関係を利用すれ
ば、一定の電解電流値以下になるように過酸化水素を添
加することによって、NOx ガスの発生量を抑制するこ
とができる。
FIG. 4 shows the relationship between the electrolysis current value at an electrolysis potential of 0.5 V, the measured value of the nitrite ion concentration by ion chromatography, and the measured value by a NOx gas detector tube above the nitric acid and hydrofluoric acid liquid levels. It is a graph which shows a relationship. From this, it is clear that there is a proportional relationship between the NOx gas generation amount and the electrolytic current value. By utilizing this proportional relationship, the amount of NOx gas generated can be suppressed by adding hydrogen peroxide so as to be equal to or less than a certain electrolytic current value.

【0014】本発明においては、電解電流の最大値の設
定値は、上限とするNOx ガス濃度によって適宜選択さ
れる。例えば、NOx ガス濃度を80ppm以下にする
場合は、電解電位0.5Vでは、第4図より電流値が2
0mAになるまで過酸化水素を添加すればよい。この電
解電流値の設定に応じてNOx ガス発生量を、ある基準
値に一定に保つことができる。また、過酸化水素の添加
方法は、簡便なオンオフ制御を用いることができる。
In the present invention, the set value of the maximum value of the electrolytic current is appropriately selected according to the upper limit of the NOx gas concentration. For example, when the NOx gas concentration is 80 ppm or less, the current value is 2
Hydrogen peroxide may be added until the current reaches 0 mA. According to the setting of the electrolytic current value, the NOx gas generation amount can be kept constant at a certain reference value. Further, as a method for adding hydrogen peroxide, simple on / off control can be used.

【0015】[0015]

【実施例】以下に本発明を実施例によって詳細に説明す
るが、本発明は実施例によって制限されるものでない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to the examples.

【0016】実施例1 第2図に示す2電極式電圧制御装置を用いて、硝酸(1
0重量%)、弗酸(4重量%)からなる酸洗液(1L、
40℃)でSUS430(3×5cm角板)を浸漬処理
し溶解した。電解電位を0.5Vとし、電解電流値が2
0mAを越えると過酸化水素が添加されるように制御し
た。過酸化水素の添加による電解電流値の挙動は、第5
図に示す変化であった。この場合、酸洗液の液面上部の
NOxガス量は常に約80ppm以下であった。
Example 1 Using a two-electrode voltage controller shown in FIG.
0% by weight) and a pickling solution (1 L,
SUS430 (3 × 5 cm square plate) was immersed at 40 ° C.) and dissolved. When the electrolytic potential is 0.5 V and the electrolytic current value is 2
When it exceeded 0 mA, it was controlled so that hydrogen peroxide was added. The behavior of the electrolytic current value due to the addition of hydrogen peroxide is the fifth.
The change was as shown in the figure. In this case, the amount of NOx gas above the liquid level of the pickling solution was always about 80 ppm or less.

【0017】実施例2 電解電流値が5mAを越えると過酸化水素が添加される
よう制御した以外は、実施例1と同様の処理を行った。
この場合、酸洗液の液面上部のNOx ガス量は常に約1
0ppm以下であった。
Example 2 The same processing as in Example 1 was performed except that the hydrogen peroxide was added when the electrolytic current value exceeded 5 mA.
In this case, the amount of NOx gas above the liquid level of the pickling solution is always about 1
It was 0 ppm or less.

【0018】実施例3 第1図に示す3電極式電圧制御装置(参照電極に銀/塩
化銀ダブルジャンクション電極)を用いて、硝酸(10
重量%)、弗酸(4重量%)からなる酸洗液(1L、4
0℃)でSUS430(3×5cm角板)を浸漬処理し
溶解した。電解電位を1.1V(vsAg/AgCl)と
し、電解電流値が20mAを越えると過酸化水素が添加
されるように制御した。この場合、酸洗液の液面上部の
NOx ガス量は常に約70ppm以下であった。
Example 3 Using a three-electrode voltage controller (a silver / silver chloride double junction electrode as a reference electrode) shown in FIG.
%) And hydrofluoric acid (4% by weight).
At 0 ° C.), SUS430 (3 × 5 cm square plate) was immersed and dissolved. The electrolytic potential was set to 1.1 V (vsAg / AgCl), and control was performed so that hydrogen peroxide was added when the electrolytic current value exceeded 20 mA. In this case, the amount of NOx gas above the liquid level of the pickling solution was always about 70 ppm or less.

【0019】比較例1 硝酸(10重量%)、弗酸(4重量%)からなる酸洗液
(1L、40℃)でSUS430(3×5cm角板)を
浸漬処理し溶解した。この場合、酸洗液の液面上部のN
Ox ガス量はステンレス鋼の処理毎に増加し、最大10
00ppmに達した。
Comparative Example 1 SUS430 (3 × 5 cm square plate) was immersed and dissolved in an acid washing solution (1 L, 40 ° C.) composed of nitric acid (10% by weight) and hydrofluoric acid (4% by weight). In this case, the N
Ox gas volume increases with each treatment of stainless steel, up to 10
00 ppm was reached.

【0020】[0020]

【発明の効果】本発明によれば、NOx ガス量に応じた
必要最小限の過酸化水素添加量を制御することが可能と
なる。
According to the present invention, it is possible to control the required minimum amount of hydrogen peroxide added according to the amount of NOx gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】3電極式電圧制御を用いた装置の概略図。FIG. 1 is a schematic diagram of an apparatus using three-electrode voltage control.

【図2】2電極式電圧制御を用いた装置の概略図。FIG. 2 is a schematic diagram of an apparatus using two-electrode voltage control.

【図3】2極式電位制御装置を用いた場合の酸洗液の電
位と電流値との関係。
FIG. 3 shows the relationship between the potential of the pickling solution and the current value when a two-electrode potential controller is used.

【図4】電解電位0.5V印可時の電解電流値と亜硝酸
イオン濃度およびNOx ガス発生濃度との関係。
FIG. 4 shows a relationship between an electrolytic current value when an electrolytic potential of 0.5 V is applied, a nitrite ion concentration, and a NOx gas generation concentration.

【図5】実施例1の電解電流値の挙動。FIG. 5 shows the behavior of the electrolytic current value in Example 1.

【符号の説明】[Explanation of symbols]

1:酸洗い浴 2:硝酸含有液 3:過酸化水素供給ポンプ 4:白金電極 5:参照電極 6:3電極式電圧制御装置(ポテンシオスタット) 7:2電極式電圧制御装置 8:供給ポンプ駆動制御信号 9:亜硝酸イオンが存在しない場合の電位−電流値曲線 10:亜硝酸イオンが0.55g/Lの場合の電位−電
流値曲線 11:電流値とNOxガス発生濃度の関係 12:電流値と亜硝酸イオン濃度の関係
1: Pickling bath 2: Nitric acid-containing liquid 3: Hydrogen peroxide supply pump 4: Platinum electrode 5: Reference electrode 6: 3-electrode voltage controller (potentiostat) 7: 2-electrode voltage controller 8: Supply pump Drive control signal 9: Potential-current curve when nitrite ion does not exist 10: Potential-current curve when nitrite ion is 0.55 g / L 11: Relationship between current value and NOx gas generation concentration 12: Relationship between current value and nitrite ion concentration

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D050 AA13 AA20 AB34 BB09 BD08 CA10 4K053 PA03 PA06 PA13 QA01 RA13 RA16 RA17 SA06 TA16 XA50 YA04 YA28 4K057 WA01 WB02 WE02 WE07 WE25 WG07 WM01 WN10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D050 AA13 AA20 AB34 BB09 BD08 CA10 4K053 PA03 PA06 PA13 QA01 RA13 RA16 RA17 SA06 TA16 XA50 YA04 YA28 4K057 WA01 WB02 WE02 WE07 WE25 WG07 WM01 WN10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 過酸化水素の添加によって硝酸含有液か
らのNOx ガスの放出を抑制する方法において、硝酸含
有液を一定電位で電解し、電解電流値に基づいて、過酸
化水素の添加量を調整することを特徴とするNOx ガス
の抑制方法。
In a method for suppressing the release of NOx gas from a nitric acid-containing liquid by adding hydrogen peroxide, the nitric acid-containing liquid is electrolyzed at a constant potential, and the amount of hydrogen peroxide added is determined based on the electrolytic current value. A method for suppressing NOx gas, comprising adjusting.
【請求項2】 硝酸含有液が、弗素を含有するステンレ
ス鋼用酸洗浴である請求項1記載の方法。
2. The method according to claim 1, wherein the nitric acid-containing liquid is a fluorine-containing pickling bath for stainless steel.
JP10167699A 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide Expired - Lifetime JP3901382B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10167699A JP3901382B2 (en) 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide
US09/542,847 US6475373B1 (en) 1999-04-08 2000-04-04 Method of controlling NOx gas emission by hydrogen peroxide
DE60003743T DE60003743T2 (en) 1999-04-08 2000-04-06 Process for controlling NOx gas emissions by hydrogen peroxide
EP00107103A EP1043422B1 (en) 1999-04-08 2000-04-06 Method of controlling NOx gas emission by hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10167699A JP3901382B2 (en) 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2000290787A true JP2000290787A (en) 2000-10-17
JP3901382B2 JP3901382B2 (en) 2007-04-04

Family

ID=14306966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10167699A Expired - Lifetime JP3901382B2 (en) 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP3901382B2 (en)

Also Published As

Publication number Publication date
JP3901382B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US4268397A (en) Method of treating waste water
EP0881989B1 (en) Electrochemical treatment of water contaminated with nitrogenous compounds
CA1119248A (en) Voltammetric monitoring of coating solutions
EP0236354B1 (en) Method for the acid etching of stainless steel products
US20170253502A1 (en) System and method for oxidation of ammonia
US5690748A (en) Process for the acid pickling of stainless steel products
KR960001599B1 (en) Process for electrolytic pickling of chrome containing stainless
JP2000290787A (en) Method for suppressing gaseous nox by hydrogen peroxide
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
Shah et al. Electrochemical sensing of nitrite at aminophenol-formaldehyde polymer/phosphomolybdic acid nanocomposite modified electrode
JP2001250804A (en) Method of controlling nitrite ion with hydrogen peroxide
US6475373B1 (en) Method of controlling NOx gas emission by hydrogen peroxide
JPH0663567A (en) Method for automatically controllable reduction of nitrite content of nitrite-containing aqueous solution
JP2001009477A (en) NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDE
JP4431203B2 (en) Ferric chloride etchant management system
Niese et al. Cyclic voltammetry of neptunium in different media
JP2008058025A (en) Residual chlorine concentration meter
JPH0746090B2 (en) Method for measuring dissolved chlorine dioxide
JP2020037063A (en) Method and device of treating hydrogen peroxide-containing water
JP7178833B2 (en) Hydrogen peroxide-containing water treatment equipment
JP4227784B2 (en) Method for suppressing NOx gas generation from nitric acid-containing pickling solution
KR830002447B1 (en) Treatment method of drainage
Kariuki et al. Diffusion coefficients of gallium (III) in potassium nitrate and potassium chloride supporting electrolytes
Tamamushi et al. Effect of methylviologen on the hydrogen evolution at mercury electrodes in aqueous buffer solutions
JP3150483B2 (en) Pickling method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

EXPY Cancellation because of completion of term