JP3901382B2 - NOx gas suppression method using hydrogen peroxide - Google Patents

NOx gas suppression method using hydrogen peroxide Download PDF

Info

Publication number
JP3901382B2
JP3901382B2 JP10167699A JP10167699A JP3901382B2 JP 3901382 B2 JP3901382 B2 JP 3901382B2 JP 10167699 A JP10167699 A JP 10167699A JP 10167699 A JP10167699 A JP 10167699A JP 3901382 B2 JP3901382 B2 JP 3901382B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
nox gas
current value
nitric acid
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10167699A
Other languages
Japanese (ja)
Other versions
JP2000290787A (en
Inventor
正 下村
秀 大戸
広也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10167699A priority Critical patent/JP3901382B2/en
Priority to US09/542,847 priority patent/US6475373B1/en
Priority to DE60003743T priority patent/DE60003743T2/en
Priority to EP00107103A priority patent/EP1043422B1/en
Publication of JP2000290787A publication Critical patent/JP2000290787A/en
Application granted granted Critical
Publication of JP3901382B2 publication Critical patent/JP3901382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過酸化水素を添加することによって、硝酸含有液中で金属を処理する場合におけるNOx ガスの発生を抑制する方法に関する。
【0002】
【従来の技術】
工業分野において硝酸は広く使われているが、その中で硝酸含有液を用いて金属を処理する場合には、しばしば環境および人体に対して悪影響を及ぼすNOx ガスが発生する。例えば、硝酸と弗酸との混酸によるステンレス鋼の酸洗処理の場合、処理液中ではステンレス鋼の溶解とともに溶液中に亜硝酸が生じる。亜硝酸は溶液中で種々の反応を経てNOやNO2 となり、NOx ガスとして系外へ放出される。ここでNOx ガスの処理にスクラバー等を用いる場合、排ガス処理装置の設備コストがかかり、定期的なメンテナンスも必要となる。
【0003】
これに対して、硝酸含有液に過酸化水素を添加して、NOx ガスを抑制する方法があるが(米国特許第3,945,865号)、過酸化水素の添加量を適切に調製することが問題となる。過剰な添加は、金属イオンの存在する硝酸、弗酸液中では、自ら分解するだけであり、過酸化水素を無駄に消費させることになるからである。特開昭55−134694号公報では、亜硝酸含有液の酸化還元電位に基づいて、過酸化水素の添加を調整する方法が開示されているが、酸化還元電位と亜硝酸濃度との相関が一定せず、過酸化水素の添加量の調整が難しい。
【0004】
【発明が解決しようとする課題】
本発明の目的は、従来技術における上記したような課題を解決し、硝酸含有液のNOx ガスの発生を効果的に抑制させる方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、過酸化水素の添加量の調整について鋭意研究を重ねた結果、硝酸含有液を定電位電解した場合、電解電流値と液中の亜硝酸イオン濃度および発生するNOx ガス量との間に一定の関係があることを見出し、本発明に到達した。
【0006】
すなわち、本発明は、過酸化水素の添加によって硝酸含有液からのNOx ガスの放出を抑制する方法において、硝酸含有液を一定電位で電解し、電解電流値に基づいて、過酸化水素の添加量を調整することを特徴とするNOx ガスの抑制方法に関するものである。
【0007】
【発明の実施の形態】
本発明は、ステンレス鋼の酸洗処理に用いられる硝酸と弗酸との混酸、および銅、真鍮等の表面処理に用いられる硝酸含有液に好適に用いられる。例えば、ステンレス鋼の酸洗は、バッチまたは連続で処理され、硝酸含有液の温度や金属溶解量も変化するため、NOx 発生量も変化する。従って、必要な過酸化水素の添加量も時間によって変化することになる。
【0008】
また、本発明は、NOx の吸収溶液として使用される硝酸含有液に過酸化水素を添加することにより、酸化されて硝酸になる場合にも適用できる。例えば、石炭、オイルまたは他の燃料を燃焼して生じるNOx ガス、硝酸を用いた有機化合物の硝化・酸化のための設備から生じるNOx ガスを吸収・酸化する場合である。
【0009】
本発明の定電位電解法は、陰極の電位を一定に保ちながら電解する方法であり、具体的には作用極、対極、参照電極を具備したいわゆる3電極式電位制御装置を用い、硝酸、弗酸液を電解し電流値を検出する方法である。作用極および対極の材質は安定で溶解しないことが必要であり、電解液が硝酸、弗酸であることから白金が好ましい。参照電極は特に限定しないが、取り扱いやすさと弗酸液中ではガラスは溶解してしまうことから樹脂製の銀/塩化銀電極で、かつ、電解液の汚染を起こさないダブルジャンクション型が好ましい。
【0010】
また、2極式電位制御装置を用い、作用極と対極に白金を用い、両極間にかかる電位を一定に保ちながら電解し電流値を検出しても3極式電位制御装置を用いた場合と同様の相関が得られる。第1図は、3極式電位制御装置を用いた場合の装置の概略図、第2図は、2極式電位制御装置を用いた場合の装置の概略図である。
【0011】
電極の表面積については特に制限はないが、検出電流値に影響するものであるから、求める電流の大きさに応じて決められる。NOx ガスの発生量を一定レベルに制御しようとする場合、得られた電流値に応じて亜硝酸イオンと反応させるための過酸化水素を自動供給するのが好ましく、このような場合には、自動供給装置を制御させるに必要な電解電流値を取り出すことのできる大きさの電極表面が必要となる。電極間距離および電解温度は、安定した電解電流値を検出するために一定であることが好ましい。
【0012】
第3図は、2極式電位制御装置を用いた場合の酸洗液の電位と電流値との関係を示すグラフである。亜硝酸イオンはイオンクロマトグラフで測定した。この硝酸、弗酸液は一般にステンレス鋼を酸洗する際に用いられる液であり、測定条件は以下のとおりである。
被測定酸洗液:硝酸10重量%、弗酸4重量%、
電解温度:40℃(スターラー攪拌状態)、
作用極および対極:白金線(表面積4.7cm2 )、
極間距離:4cm、
液量:400ml。
建浴直後の電位−電流値曲線とステンレス鋼(SUS430)を浸漬した後の電位−電流値曲線を比較すると、常に浸漬後の電流値のほうが大きい。また、電圧が0.20Vから1.25Vの間では、建浴後の電流値が約10mAで一定している。
【0013】
第4図は、電解電位0.5Vでの電解電流値と、イオンクロマトグラフによる亜硝酸イオン濃度の測定値および硝酸、弗酸液面上部でのNOx ガス検知管による測定値との関係を示すグラフである。このことよりNOx ガス発生量と電解電流値との間に比例関係があることが明瞭である。そして、この比例関係を利用すれば、一定の電解電流値以下になるように過酸化水素を添加することによって、NOx ガスの発生量を抑制することができる。
【0014】
本発明においては、電解電流の最大値の設定値は、上限とするNOx ガス濃度によって適宜選択される。例えば、NOx ガス濃度を80ppm以下にする場合は、電解電位0.5Vでは、第4図より電流値が20mAになるまで過酸化水素を添加すればよい。この電解電流値の設定に応じてNOx ガス発生量を、ある基準値に一定に保つことができる。また、過酸化水素の添加方法は、簡便なオンオフ制御を用いることができる。
【0015】
【実施例】
以下に本発明を実施例によって詳細に説明するが、本発明は実施例によって制限されるものでない。
【0016】
実施例1
第2図に示す2電極式電圧制御装置を用いて、硝酸(10重量%)、弗酸(4重量%)からなる酸洗液(1L、40℃)でSUS430(3×5cm角板)を浸漬処理し溶解した。電解電位を0.5Vとし、電解電流値が20mAを越えると過酸化水素が添加されるように制御した。過酸化水素の添加による電解電流値の挙動は、第5図に示す変化であった。この場合、酸洗液の液面上部のNOxガス量は常に約80ppm以下であった。
【0017】
実施例2
電解電流値が5mAを越えると過酸化水素が添加されるよう制御した以外は、実施例1と同様の処理を行った。この場合、酸洗液の液面上部のNOx ガス量は常に約10ppm以下であった。
【0018】
実施例3
第1図に示す3電極式電圧制御装置(参照電極に銀/塩化銀ダブルジャンクション電極)を用いて、硝酸(10重量%)、弗酸(4重量%)からなる酸洗液(1L、40℃)でSUS430(3×5cm角板)を浸漬処理し溶解した。電解電位を1.1V(vsAg/AgCl)とし、電解電流値が20mAを越えると過酸化水素が添加されるように制御した。この場合、酸洗液の液面上部のNOx ガス量は常に約70ppm以下であった。
【0019】
比較例1
硝酸(10重量%)、弗酸(4重量%)からなる酸洗液(1L、40℃)でSUS430(3×5cm角板)を浸漬処理し溶解した。この場合、酸洗液の液面上部のNOx ガス量はステンレス鋼の処理毎に増加し、最大1000ppmに達した。
【0020】
【発明の効果】
本発明によれば、NOx ガス量に応じた必要最小限の過酸化水素添加量を制御することが可能となる。
【図面の簡単な説明】
【図1】3電極式電圧制御を用いた装置の概略図。
【図2】2電極式電圧制御を用いた装置の概略図。
【図3】2極式電位制御装置を用いた場合の酸洗液の電位と電流値との関係。
【図4】電解電位0.5V印可時の電解電流値と亜硝酸イオン濃度およびNOx ガス発生濃度との関係。
【図5】実施例1の電解電流値の挙動。
【符号の説明】
1:酸洗い浴
2:硝酸含有液
3:過酸化水素供給ポンプ
4:白金電極
5:参照電極
6:3電極式電圧制御装置(ポテンシオスタット)
7:2電極式電圧制御装置
8:供給ポンプ駆動制御信号
9:亜硝酸イオンが存在しない場合の電位−電流値曲線
10:亜硝酸イオンが0.55g/Lの場合の電位−電流値曲線
11:電流値とNOxガス発生濃度の関係
12:電流値と亜硝酸イオン濃度の関係
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for suppressing the generation of NOx gas when a metal is treated in a nitric acid-containing liquid by adding hydrogen peroxide.
[0002]
[Prior art]
Although nitric acid is widely used in the industrial field, when a metal is treated using a nitric acid-containing liquid, NOx gas is often generated that adversely affects the environment and the human body. For example, in the case of pickling treatment of stainless steel with a mixed acid of nitric acid and hydrofluoric acid, nitrous acid is generated in the solution as the stainless steel is dissolved in the treatment solution. Nitrous acid undergoes various reactions in the solution to become NO and NO 2 and is released out of the system as NOx gas. Here, when a scrubber or the like is used for the treatment of NOx gas, the equipment cost of the exhaust gas treatment device is required, and regular maintenance is also required.
[0003]
On the other hand, there is a method for suppressing NOx gas by adding hydrogen peroxide to a nitric acid-containing liquid (US Pat. No. 3,945,865). Is a problem. This is because excessive addition merely decomposes itself in nitric acid or hydrofluoric acid solution in which metal ions are present, and wastes hydrogen peroxide. Japanese Patent Application Laid-Open No. 55-134694 discloses a method of adjusting the addition of hydrogen peroxide based on the oxidation-reduction potential of a nitrous acid-containing liquid, but the correlation between the oxidation-reduction potential and the concentration of nitrous acid is constant. It is difficult to adjust the amount of hydrogen peroxide added.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for solving the above-described problems in the prior art and effectively suppressing the generation of NOx gas in a nitric acid-containing liquid.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the adjustment of the amount of hydrogen peroxide added, the present inventors have found that when a nitric acid-containing liquid is electrolyzed at a constant potential, the electrolysis current value, the concentration of nitrite ions in the liquid, and the amount of NOx gas generated The inventors have found that there is a certain relationship between the two and arrived at the present invention.
[0006]
That is, the present invention relates to a method for suppressing the release of NOx gas from a nitric acid-containing liquid by the addition of hydrogen peroxide, wherein the nitric acid-containing liquid is electrolyzed at a constant potential, and the amount of hydrogen peroxide added based on the electrolysis current value. The present invention relates to a method for suppressing NOx gas, characterized by adjusting the above.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is preferably used for a mixed acid of nitric acid and hydrofluoric acid used for pickling treatment of stainless steel, and a nitric acid-containing liquid used for surface treatment of copper, brass and the like. For example, pickling of stainless steel is processed batchwise or continuously, and the temperature of the nitric acid-containing liquid and the amount of dissolved metal also change, so the amount of NOx generated also changes. Therefore, the required amount of hydrogen peroxide to be added also varies with time.
[0008]
The present invention can also be applied to the case where the nitric acid-containing liquid used as the NOx absorbing solution is oxidized to nitric acid by adding hydrogen peroxide. For example, NOx gas generated by burning coal, oil or other fuel, or NOx gas generated from a facility for nitrification / oxidation of an organic compound using nitric acid is absorbed and oxidized.
[0009]
The constant-potential electrolysis method of the present invention is a method of performing electrolysis while keeping the cathode potential constant. Specifically, using a so-called three-electrode potential control device having a working electrode, a counter electrode, and a reference electrode, nitric acid, fluorine In this method, an acid solution is electrolyzed to detect a current value. Platinum is preferred because the working electrode and counter electrode materials must be stable and do not dissolve, and the electrolyte is nitric acid or hydrofluoric acid. The reference electrode is not particularly limited, but is preferably a resin-made silver / silver chloride electrode and double junction type that does not cause contamination of the electrolyte because glass is dissolved in hydrofluoric acid solution.
[0010]
In addition, using a bipolar electric potential control device, using platinum as the working electrode and the counter electrode, and using a tripolar electric potential control device even if the current value is detected by electrolysis while keeping the electric potential applied between the two electrodes constant. Similar correlation is obtained. FIG. 1 is a schematic diagram of an apparatus when a three-pole potential control device is used, and FIG. 2 is a schematic diagram of the device when a two-pole potential control device is used.
[0011]
Although there is no restriction | limiting in particular about the surface area of an electrode, Since it affects a detection electric current value, it determines according to the magnitude | size of the electric current calculated | required. When the amount of NOx gas generated is to be controlled to a certain level, it is preferable to automatically supply hydrogen peroxide for reaction with nitrite ions according to the obtained current value. An electrode surface having a size capable of extracting an electrolytic current value necessary for controlling the supply device is required. The distance between the electrodes and the electrolysis temperature are preferably constant in order to detect a stable electrolysis current value.
[0012]
FIG. 3 is a graph showing the relationship between the potential of the pickling solution and the current value when the bipolar potential control device is used. Nitrite ions were measured by ion chromatography. These nitric acid and hydrofluoric acid liquids are generally used when pickling stainless steel, and the measurement conditions are as follows.
Measurement pickling solution: nitric acid 10% by weight, hydrofluoric acid 4% by weight,
Electrolysis temperature: 40 ° C. (stirred stirring state)
Working electrode and counter electrode: platinum wire (surface area 4.7 cm 2 ),
Distance between electrodes: 4cm,
Liquid volume: 400 ml.
When the potential-current value curve immediately after the bathing is compared with the potential-current value curve after immersion of stainless steel (SUS430), the current value after immersion is always larger. Further, when the voltage is between 0.20 V and 1.25 V, the current value after the bathing is constant at about 10 mA.
[0013]
FIG. 4 shows the relationship between the electrolysis current value at an electrolysis potential of 0.5 V, the measured value of the nitrite ion concentration by ion chromatography, and the measured value by the NOx gas detector tube above the nitric acid and hydrofluoric acid liquid surfaces. It is a graph. From this, it is clear that there is a proportional relationship between the NOx gas generation amount and the electrolysis current value. If this proportional relationship is utilized, the amount of NOx gas generated can be suppressed by adding hydrogen peroxide so as to be equal to or less than a certain electrolysis current value.
[0014]
In the present invention, the set value of the maximum value of the electrolysis current is appropriately selected according to the NOx gas concentration as the upper limit. For example, when the NOx gas concentration is 80 ppm or less, hydrogen peroxide may be added at an electrolysis potential of 0.5 V until the current value reaches 20 mA from FIG. According to the setting of the electrolytic current value, the NOx gas generation amount can be kept constant at a certain reference value. In addition, as a method for adding hydrogen peroxide, simple on / off control can be used.
[0015]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples.
[0016]
Example 1
Using a two-electrode voltage controller shown in FIG. 2, SUS430 (3 × 5 cm square plate) was washed with a pickling solution (1 L, 40 ° C.) made of nitric acid (10 wt%) and hydrofluoric acid (4 wt%). It was immersed and dissolved. The electrolytic potential was 0.5 V, and control was performed so that hydrogen peroxide was added when the electrolytic current value exceeded 20 mA. The behavior of the electrolysis current value by the addition of hydrogen peroxide was the change shown in FIG. In this case, the amount of NOx gas above the pickling solution was always about 80 ppm or less.
[0017]
Example 2
The same treatment as in Example 1 was performed except that the hydrogen peroxide was controlled to be added when the electrolytic current value exceeded 5 mA. In this case, the amount of NOx gas at the upper surface of the pickling solution was always about 10 ppm or less.
[0018]
Example 3
Using a three-electrode voltage control device (a silver / silver chloride double junction electrode as a reference electrode) shown in FIG. 1, pickling solution (1 L, 40%) composed of nitric acid (10 wt%) and hydrofluoric acid (4 wt%) SUS430 (3 × 5 cm square plate) was subjected to immersion treatment at a temperature of (° C.) and dissolved. The electrolytic potential was 1.1 V (vsAg / AgCl), and control was performed so that hydrogen peroxide was added when the electrolytic current value exceeded 20 mA. In this case, the amount of NOx gas above the pickling solution was always about 70 ppm or less.
[0019]
Comparative Example 1
SUS430 (3 × 5 cm square plate) was immersed and dissolved in a pickling solution (1 L, 40 ° C.) composed of nitric acid (10 wt%) and hydrofluoric acid (4 wt%). In this case, the amount of NOx gas in the upper part of the pickling solution increased with each stainless steel treatment, reaching a maximum of 1000 ppm.
[0020]
【The invention's effect】
According to the present invention, it is possible to control the minimum hydrogen peroxide addition amount according to the NOx gas amount.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus using three-electrode voltage control.
FIG. 2 is a schematic view of an apparatus using two-electrode voltage control.
FIG. 3 shows the relationship between the potential of the pickling solution and the current value when a bipolar electrode potential control device is used.
FIG. 4 shows a relationship between an electrolysis current value when an electrolysis potential of 0.5 V is applied, a nitrite ion concentration, and a NOx gas generation concentration.
5 shows the behavior of the electrolytic current value in Example 1. FIG.
[Explanation of symbols]
1: Pickling bath 2: Nitric acid-containing liquid 3: Hydrogen peroxide supply pump 4: Platinum electrode 5: Reference electrode 6: Three-electrode voltage controller (potentiostat)
7: Two-electrode voltage control device 8: Supply pump drive control signal 9: Potential-current value curve 10 when nitrite ions are not present 10: Potential-current value curve 11 when nitrite ions are 0.55 g / L : Relationship between current value and NOx gas generation concentration 12: Relationship between current value and nitrite ion concentration

Claims (2)

過酸化水素の添加によって硝酸含有液からのNOxガスの放出を抑制する方法において、硝酸含有液を一定電位で電解し、NOxガス発生量と比例関係にある電解電流値に基づいて、過酸化水素の添加量を調整することを特徴とするNOxガスの抑制方法。In a method for suppressing the release of NOx gas from a nitric acid-containing liquid by adding hydrogen peroxide, the nitric acid-containing liquid is electrolyzed at a constant potential, and based on an electrolysis current value proportional to the amount of NOx gas generated , hydrogen peroxide A method for suppressing NOx gas, comprising adjusting the amount of addition of NOx. 硝酸含有液が、弗素を含有するステンレス鋼用酸洗浴である請求項1記載の方法。 The method according to claim 1, wherein the nitric acid-containing liquid is a pickling bath for stainless steel containing fluorine.
JP10167699A 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide Expired - Lifetime JP3901382B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10167699A JP3901382B2 (en) 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide
US09/542,847 US6475373B1 (en) 1999-04-08 2000-04-04 Method of controlling NOx gas emission by hydrogen peroxide
DE60003743T DE60003743T2 (en) 1999-04-08 2000-04-06 Process for controlling NOx gas emissions by hydrogen peroxide
EP00107103A EP1043422B1 (en) 1999-04-08 2000-04-06 Method of controlling NOx gas emission by hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10167699A JP3901382B2 (en) 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2000290787A JP2000290787A (en) 2000-10-17
JP3901382B2 true JP3901382B2 (en) 2007-04-04

Family

ID=14306966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10167699A Expired - Lifetime JP3901382B2 (en) 1999-04-08 1999-04-08 NOx gas suppression method using hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP3901382B2 (en)

Also Published As

Publication number Publication date
JP2000290787A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
Gilmartin et al. Voltammetric and amperometric behaviour of uric acid at bare and surface-modified screen-printed electrodes: studies towards a disposable uric acid sensor
DE873514T1 (en) Electrochemical cell
KR101833833B1 (en) Electrochemical water treatment apparatus for removing ammonia nitrogen in wastewater
JP3901382B2 (en) NOx gas suppression method using hydrogen peroxide
Morrison et al. Oxidation-reduction chemistry of hydrogen peroxide in aprotic and aqueous solutions
Aziz et al. Selective Determination of Catechol in the Presence of Hydroquinone at Bare Indium Tin Oxide Electrodes via Peak‐Potential Separation and Redox Cycling by Hydrazine
JPH05331669A (en) Apparatus and method for preventing corrosion of cathod madeof aluminum-containing metal
JP2001250804A (en) Method of controlling nitrite ion with hydrogen peroxide
JP2001009477A (en) NOx GAS SUPPRESSING METHOD USING HYDROGEN PEROXIDE
Komorsky-Lovrić et al. Peak current—frequency relationship in adsorptive stripping square-wave voltammetry
EP1043422B1 (en) Method of controlling NOx gas emission by hydrogen peroxide
Tanaka et al. Enhancement effect of cysteine on anodic stripping voltammetry of copper
Asadpour-Zeynali et al. Electrocatalytic determination of isoniazid by a glassy carbon electrode modified with poly (Eriochrome Black T)
Hourani Desulfurization of thiophene by electrochemical perturbation
WO1999032690A1 (en) Pickling process with at least two steps
JP2008058025A (en) Residual chlorine concentration meter
Wei et al. Electrochemical characterization of a new system for detection of superoxide ion in alkaline solution
Maj-Zurawska et al. Effect of the platinum surface on the potential of nitrate-selective electrodes without internal solution
JP2002097600A (en) METHOD FOR INHIBITING GENERATION OF NOx GAS IN DISSOLVING COPPER METAL
JP2004344144A (en) Fish and shellfish-rearing water-purifying device
Kariuki et al. Current oscillations in the reduction of indium (III) and gallium (III) in dilute chloride and nitrate solutions at the dropping mercury electrode
JPS55152180A (en) Method for regeneration of copper chloride etching solution
Chagas et al. Some evidence of the influence of light on the electrochemical behavior of copper in the presence and absence of propargyl alcohol
JP4227784B2 (en) Method for suppressing NOx gas generation from nitric acid-containing pickling solution
JP2014200782A (en) Hydrogen peroxide decomposition apparatus, decomposition method, detector, and different method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

EXPY Cancellation because of completion of term