JP7178833B2 - Hydrogen peroxide-containing water treatment equipment - Google Patents

Hydrogen peroxide-containing water treatment equipment Download PDF

Info

Publication number
JP7178833B2
JP7178833B2 JP2018164473A JP2018164473A JP7178833B2 JP 7178833 B2 JP7178833 B2 JP 7178833B2 JP 2018164473 A JP2018164473 A JP 2018164473A JP 2018164473 A JP2018164473 A JP 2018164473A JP 7178833 B2 JP7178833 B2 JP 7178833B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
water
treated
tank
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164473A
Other languages
Japanese (ja)
Other versions
JP2020037062A (en
Inventor
翔平 水間
裕樹 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2018164473A priority Critical patent/JP7178833B2/en
Publication of JP2020037062A publication Critical patent/JP2020037062A/en
Application granted granted Critical
Publication of JP7178833B2 publication Critical patent/JP7178833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、過酸化水素含有水の処理装置に関し、特に、還元処理用の薬品を過酸化水素含有水に添加する処理装置に関する。 TECHNICAL FIELD The present invention relates to a treatment apparatus for hydrogen peroxide-containing water, and more particularly to a treatment apparatus for adding a chemical for reduction treatment to hydrogen peroxide-containing water.

洗浄や殺菌用途で過酸化水素が広く使用されており、洗浄や殺菌などの工程からは、過酸化水素を含む排水が排出される。過酸化水素を含む排水をそのまま外部に排出することはできず、排水中の過酸化水素を除去することが必要となる。排水には過酸化水素のほかに他の成分、例えば有機物が含まれる場合もあるが、その場合には、まず過酸化水素を除去した後に、後段の設備において有機物や窒素、フッ素などの他の成分の除去を行なうことになる。被処理水である過酸化水素含有水に含まれる過酸化水素を除去する方法としては、還元処理用の薬品を添加して過酸化水素を分解し、これによって過酸化水素を除去する方法、白金などの分解触媒が充填された分解塔に被処理水を導入して過酸化水素を分解除去する方法、活性炭による触媒的な反応を利用して過酸化水素を分解除去する方法などが知られている。 Hydrogen peroxide is widely used for cleaning and sterilization, and waste water containing hydrogen peroxide is discharged from processes such as cleaning and sterilization. Wastewater containing hydrogen peroxide cannot be discharged to the outside as it is, and it is necessary to remove the hydrogen peroxide in the wastewater. In some cases, waste water contains other components besides hydrogen peroxide, such as organic matter. Components will be removed. As a method for removing hydrogen peroxide contained in the hydrogen peroxide-containing water, which is the water to be treated, a method of adding a chemical for reduction treatment to decompose the hydrogen peroxide, thereby removing the hydrogen peroxide, platinum For example, a method of introducing water to be treated into a decomposition tower filled with a decomposition catalyst such as hydrogen peroxide to decompose and remove hydrogen peroxide, and a method of decomposing and removing hydrogen peroxide using a catalytic reaction with activated carbon are known. there is

過酸化水素を除去するためのこれらの方法のうち、還元処理用の薬品を添加する方法には、大別すると、亜硫酸水素ナトリウム(NaHSO3)などの還元剤を加えて過酸化水素を還元分解する方法と、過酸化水素分解触媒を添加して不均化による過酸化水素の還元を促進する方法とがある。過酸化水素分解触媒を用いる方法の代表的なものとして、過酸化水素分解酵素であるカタラーゼを加えて過酸化水素を水と酸素に分解する方法がある。亜硫酸水素ナトリウムなどの還元剤を加える方法では、過酸化水素の量と化学量論的に等しいかそれ以上の還元剤を加える必要があって、薬品の単価は安くても薬品使用量が比較的大きくなり、被処理水中の過酸化水素濃度が高い場合にコストが高くなる。一方、カタラーゼを添加する方法は、カタラーゼが触媒として機能するので、薬品使用量を少なくすることができる。カタラーゼを添加して被処理水中の過酸化水素を分解することの例が特許文献1に記載されている。カタラーゼを添加して過酸化水素を分解する場合、比較的長い反応時間(反応槽での滞留時間)を必要とし、反応時間を長くするためには反応槽を大きくすることが好ましい。しかしながら、スペース等の関係で反応槽を大きくできない場合もある。そこで特許文献2は、分解処理の効率を高めるために、複数に区画された反応域を有する多段式の反応槽に被処理水を連続的に供給し、被処理水が最初に供給される反応域にカタラーゼを添加することを開示している。 Among these methods for removing hydrogen peroxide, the method of adding a chemical for reduction treatment can be broadly divided into the addition of a reducing agent such as sodium hydrogen sulfite (NaHSO 3 ) to reductively decompose hydrogen peroxide. and a method of adding a hydrogen peroxide decomposition catalyst to accelerate the reduction of hydrogen peroxide by disproportionation. A typical method using a hydrogen peroxide decomposition catalyst is a method in which catalase, which is a hydrogen peroxide decomposition enzyme, is added to decompose hydrogen peroxide into water and oxygen. In the method of adding a reducing agent such as sodium bisulfite, it is necessary to add a reducing agent that is stoichiometrically equal to or greater than the amount of hydrogen peroxide. When the concentration of hydrogen peroxide in the water to be treated is high, the cost increases. On the other hand, the method of adding catalase can reduce the amount of chemicals used because catalase functions as a catalyst. Patent Document 1 describes an example of adding catalase to decompose hydrogen peroxide in the water to be treated. When catalase is added to decompose hydrogen peroxide, a relatively long reaction time (residence time in the reaction tank) is required, and in order to lengthen the reaction time, it is preferable to enlarge the reaction tank. However, there are cases where the reactor cannot be made large due to space constraints. Therefore, in Patent Document 2, in order to increase the efficiency of the decomposition treatment, the water to be treated is continuously supplied to a multi-stage reaction tank having a reaction zone divided into a plurality, and the water to be treated is supplied first. It discloses adding catalase to the region.

特開平8-132063号公報JP-A-8-132063 特開2009-269002号公報Japanese Patent Application Laid-Open No. 2009-269002

特許文献1,2に示す過酸化水素分解酵素であるカタラーゼを添加して被処理水中の過酸化水素を分解する方法は、0mg/Lに近い極低濃度から50g/Lといった高濃度までの広い過酸化水素濃度範囲に適応し、広いpH範囲で被処理水を処理できる優れた方法である。しかしながら、過酸化水素濃度が変動するため、被処理水中の過酸化水素濃度に応じて適切な量のカタラーゼを添加するのが難しい、という課題を有する。カタラーゼの添加量が過剰であると、ランニングコストが上昇する。一方、カタラーゼの添加量が過少であると、処理水に過酸化水素が残留して処理水質が悪化する恐れがある。亜硫酸水素ナトリウムなどの還元剤を添加する方法においても、同様の理由で、最適な添加量を決めるのが難しいという課題がある。 The method of adding catalase, which is a hydrogen peroxide degrading enzyme, disclosed in Patent Documents 1 and 2 to decompose hydrogen peroxide in the water to be treated has a wide range from extremely low concentrations close to 0 mg / L to high concentrations such as 50 g / L. It is an excellent method that is adaptable to a range of hydrogen peroxide concentrations and can treat water to be treated over a wide pH range. However, since the hydrogen peroxide concentration fluctuates, there is a problem that it is difficult to add an appropriate amount of catalase according to the hydrogen peroxide concentration in the water to be treated. If the amount of catalase added is excessive, the running cost will increase. On the other hand, if the amount of catalase added is too small, hydrogen peroxide may remain in the treated water, degrading the quality of the treated water. For the same reason, the method of adding a reducing agent such as sodium hydrogen sulfite also has the problem that it is difficult to determine the optimum amount to be added.

本発明の目的は、過酸化水素含有水に還元処理用の薬品を添加して過酸化水素を分解除去する際に、薬品の添加量を最適化することができる処理装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a treatment apparatus capable of optimizing the amount of chemical added when adding a chemical for reduction treatment to hydrogen peroxide-containing water to decompose and remove hydrogen peroxide. It is in.

本発明の過酸化水素含有水の処理装置は、過酸化水素を含む被処理水を分解除去する処理装置であって、被処理水を一時的に貯える原水槽と、原水槽の出口に接続するとともにpH調整剤が供給されて被処理水のpHを調整するpH調整槽と、被処理水における過酸化水素濃度を計測できる位置に設けられている過酸化水素濃度センサーと、pH調整槽の出口に接続されて被処理水が供給される反応槽と、過酸化水素濃度センサーでの計測結果に基づいて制御される添加量で、反応槽にカタラーゼを含む還元処理用の薬品を供給する供給手段と過酸化水素濃度センサーは、作用極である第1の電極と、対極および参照極を兼ねる第2の電極とを有し、第1の電極と第2の電極との間に直流電圧を印加したときに過酸化水素の還元によって発生する電流を検出するものであって、原水槽に接続した循環配管に設けられており、反応槽において薬品により被処理水中の過酸化水素の還元処理を行なう。 The hydrogen peroxide-containing water treatment apparatus of the present invention is a treatment apparatus for decomposing and removing water to be treated containing hydrogen peroxide, and is connected to a raw water tank for temporarily storing the water to be treated and an outlet of the raw water tank. A pH adjusting tank for adjusting the pH of the water to be treated by supplying a pH adjusting agent together with the pH adjusting tank, a hydrogen peroxide concentration sensor provided at a position where the hydrogen peroxide concentration in the water to be treated can be measured, and an outlet of the pH adjusting tank and a supply means for supplying a reduction treatment chemical containing catalase to the reaction vessel in an amount controlled based on the measurement result of the hydrogen peroxide concentration sensor. The hydrogen peroxide concentration sensor has a first electrode as a working electrode and a second electrode as a counter electrode and a reference electrode, and a DC voltage is applied between the first electrode and the second electrode. It detects the current generated by the reduction of hydrogen peroxide when applied , is provided in the circulation pipe connected to the raw water tank, and reduces the hydrogen peroxide in the water to be treated by chemicals in the reaction tank. process.

本発明によれば、過酸化水素濃度の計測結果に基づいて被処理水に対する還元処理用の薬品の添加量を制御するので、還元処理用の薬品の添加量を最適化することができる。 According to the present invention, the addition amount of the reduction treatment chemical to the water to be treated is controlled based on the measurement result of the hydrogen peroxide concentration, so the addition amount of the reduction treatment chemical can be optimized.

本発明の実施の一形態の処理装置の構成を示すフローシートである。1 is a flow sheet showing the configuration of a processing apparatus according to one embodiment of the present invention; 別の実施形態の処理装置の構成を示すフローシートである。It is a flow sheet which shows the structure of the processing apparatus of another embodiment.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。図1は、本発明の実施の一形態の処理装置を示している。この処理装置は、過酸化水素(H22)を含む水を被処理水として、還元処理用の薬品を被処理水に添加することにより、過酸化水素を還元して分解し、過酸化水素が除去された処理水を得るものである。 Preferred embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a processing apparatus according to one embodiment of the present invention. In this treatment apparatus, water containing hydrogen peroxide (H 2 O 2 ) is treated as water to be treated, and a chemical for reduction treatment is added to the water to be treated to reduce and decompose the hydrogen peroxide. A treated water from which hydrogen has been removed is obtained.

被処理水を一時的に貯える原水槽11が設けられており、原水槽11の出口にはポンプ13が設けられており、原水槽11内の被処理水が配管15を介してpH調整槽16に導かれる。pH調整槽15には貯槽17からpH調整剤も供給される。pH調整槽16は、被処理水のpHを過酸化水素の還元処理に適した値に調整するために設けられている。pH調整槽16内の被処理水のpHを計測するpHセンサー(不図示)を設け、pHセンサーの計測値に基づいてpH調整槽16へのpH調整剤の供給量を制御するようにしてもよい。pH調整槽16の出口は、配管18を介して反応槽21に接続している。原水槽11に供給される被処理水のpHが既に還元処理に適した値である場合には、pH調整槽16を設けなくてもよく、そのときは、配管15に配管18を直結して被処理水が反応槽21に直接供給されるようにしてもよい。 A raw water tank 11 for temporarily storing water to be treated is provided, and a pump 13 is provided at the outlet of the raw water tank 11. led to. A pH adjuster is also supplied to the pH adjustment tank 15 from a storage tank 17 . The pH adjustment tank 16 is provided to adjust the pH of the water to be treated to a value suitable for hydrogen peroxide reduction treatment. A pH sensor (not shown) for measuring the pH of the water to be treated in the pH adjusting tank 16 may be provided, and the amount of pH adjusting agent supplied to the pH adjusting tank 16 may be controlled based on the measured value of the pH sensor. good. The outlet of the pH adjustment tank 16 is connected to the reaction tank 21 through the pipe 18 . When the pH of the water to be treated supplied to the raw water tank 11 is already at a value suitable for reduction treatment, the pH adjustment tank 16 may not be provided. The water to be treated may be directly supplied to the reaction tank 21 .

さらに配管15には、ポンプ13から吐出される被処理水の少なくとも一部を原水槽11に戻す循環配管12が接続されている。循環配管12は、pH調整槽16に供給される被処理水の量を調節するためのものであるとともに、処理を停止している際にも原水槽11内の被処理水を滞留させないようにするためのものであり、必要に応じて設けられる。循環配管12には、被処理水中の過酸化水素濃度をオンライン計測する過酸化水素濃度計14が設けられている。過酸化水素濃度計14は、被処理水中の過酸化水素濃度を測定できるのであれば原水槽11に設けてもよいが、原水槽11への被処理水の供給によっては原水槽11内の過酸化水素濃度は一様でない場合があり、また、配管15上に設けてもよいが、配管15を介してpH調整槽16に供給される被処理水の流量が多いと配管15の配管口径も大きくなり、過酸化水素濃度計14のメンテナンスを考慮した配管設計上の影響が大きくなることから、循環配管12に設けるのが好ましい。前述のとおり循環配管12は、pH調整槽16に供給する被処理水の量を調整するために設けられるので、その流量は少なく、配管15の配管口径も小さくなるため、過酸化水素濃度計14の配管設計上の影響も小さくて済む。また、原水槽11内の被処理水が循環するため、循環配管12内の被処理水の過酸化水素濃度が一様となり、計測誤差が生じにくくなる。 Furthermore, a circulation pipe 12 is connected to the pipe 15 to return at least part of the water to be treated discharged from the pump 13 to the raw water tank 11 . The circulation pipe 12 is for adjusting the amount of the water to be treated supplied to the pH adjusting tank 16, and also prevents the water to be treated in the raw water tank 11 from remaining even when the treatment is stopped. and is provided as necessary. The circulation pipe 12 is provided with a hydrogen peroxide concentration meter 14 for online measurement of the hydrogen peroxide concentration in the water to be treated. The hydrogen peroxide concentration meter 14 may be installed in the raw water tank 11 as long as it can measure the concentration of hydrogen peroxide in the water to be treated. The concentration of hydrogen oxide may not be uniform, and it may be provided on the pipe 15. It is preferable to install it in the circulation pipe 12 because it becomes large and has a large influence on the piping design considering the maintenance of the hydrogen peroxide concentration meter 14 . As described above, the circulation pipe 12 is provided to adjust the amount of water to be treated supplied to the pH adjustment tank 16, so the flow rate is small and the pipe diameter of the pipe 15 is small, so the hydrogen peroxide concentration meter 14 The impact on piping design is also small. Further, since the water to be treated in the raw water tank 11 circulates, the concentration of hydrogen peroxide in the water to be treated in the circulation pipe 12 becomes uniform, and measurement errors are less likely to occur.

反応槽21では、配管18を介して供給された被処理水に対して還元処理用の薬品すなわち過酸化水素分解剤が添加され、この薬品により被処理水中の過酸化水素が還元分解されて除去される。このようにして過酸化水素濃度が低減された水は、処理水として、反応槽21から配管24を介して排出される。反応槽21には、不図示の撹拌装置が取り付けられていてもよい。反応槽21に対して還元処理用の薬品を供給するために、水溶液の形態である還元処理用の薬品を一時的に貯える貯槽22と、貯槽22から薬品を反応槽21に注入する注入ポンプ23とが設けられている。また、配管24を介して排出された処理水を一時的に貯える中継槽31が設けられており、中継槽31の出口には配管32が接続し、配管32には、処理水を給送するためのポンプ33が設けられている。処理水は、配管32を介して、例えば有機物や窒素、フッ素などを除去する設備である後段設備に送られる。 In the reaction tank 21, a reduction treatment chemical, that is, a hydrogen peroxide decomposing agent, is added to the water to be treated supplied through the pipe 18, and the chemical reduces and decomposes the hydrogen peroxide in the water to be treated to remove it. be done. The water in which the hydrogen peroxide concentration has been reduced in this manner is discharged from the reaction tank 21 through the pipe 24 as treated water. A stirring device (not shown) may be attached to the reaction tank 21 . In order to supply the chemical for reduction treatment to the reaction tank 21, a storage tank 22 for temporarily storing the chemical for reduction treatment in the form of an aqueous solution, and an injection pump 23 for injecting the chemical from the storage tank 22 into the reaction tank 21. and are provided. A relay tank 31 is provided to temporarily store the treated water discharged through the pipe 24. A pipe 32 is connected to the outlet of the relay tank 31, and the treated water is supplied to the pipe 32. A pump 33 is provided for this purpose. The treated water is sent through a pipe 32 to post-stage equipment that removes organic matter, nitrogen, fluorine, and the like, for example.

反応槽21における過酸化水素の還元反応速度は、滞留時間あるいは反応時間が長いほど、過酸化水素濃度が高いほど、また還元処理用の薬品の濃度が高いほど高くなる。そこで本実施形態では、特許文献2に記載されるように、反応槽21として、複数の(例えば2つの)区画された反応域が直列に接続した構成のものを用い、初段の反応域に対して配管18からの被処理水と還元処理用の薬品が供給され、最終段の反応域から処理水が排出されるように構成されたものを使用することもできる。 The reduction reaction rate of hydrogen peroxide in the reaction tank 21 increases as the residence time or reaction time increases, as the concentration of hydrogen peroxide increases, and as the concentration of the chemical for reduction treatment increases. Therefore, in the present embodiment, as described in Patent Document 2, as the reaction vessel 21, a structure in which a plurality of (for example, two) partitioned reaction zones are connected in series is used. It is also possible to use one configured so that the water to be treated and the chemicals for reduction treatment are supplied from the pipe 18, and the treated water is discharged from the reaction zone at the final stage.

本実施形態において、還元処理用の薬品(すなわち過酸化水素分解剤)としては、亜硫酸ナトリウムや亜硫酸水素ナトリウムの水溶液などの還元剤を用いることもできるが、この還元剤の消費量が多くなりがちであるので、過酸化水素分解酵素であるカタラーゼを用いることが好ましい。カタラーゼは生物界に広く一般的に存在する酵素であるが、微生物産生のカタラーゼを例えば水溶液の形態で容易に入手することができる。微生物から生産されるカタラーゼとしては、アスペルギルス(Aspergillus)属の微生物から生産されるカタラーゼ、サーモマイセス(Thermomyces)属の微生物から生産されるカタラーゼ、ミクロコッカス(Micrococcus)属の微生物から生産されるカタラーゼなどがある。これらの微生物由来のカタラーゼは、微生物の種類によって異なった性質を有することが知られている。中でもアスペルギルス属の微生物に由来するカタラーゼは、高濃度の過酸化水素に対しても失活しにくく、そのため添加量を少なくすることが可能であるので、本実施形態において還元処理用の薬品として用いるのに好ましい。本実施形態において還元処理用の薬品として使用できるカタラーゼとしては、オルガノ社製のオルソーブEZ-800H(主成分:アスペルギルス属産生のカタラーゼ)などが挙げられる。 In the present embodiment, a reducing agent such as an aqueous solution of sodium sulfite or sodium hydrogen sulfite can be used as a chemical for reduction treatment (that is, a hydrogen peroxide decomposing agent), but the consumption of this reducing agent tends to be large. Therefore, it is preferable to use catalase, which is a hydrogen peroxide degrading enzyme. Catalase is an enzyme that exists widely and commonly in the living world. Catalase produced by microorganisms is readily available, for example, in the form of an aqueous solution. Examples of catalase produced from microorganisms include catalase produced from microorganisms belonging to the genus Aspergillus, catalase produced from microorganisms belonging to the genus Thermomyces, catalase produced from microorganisms belonging to the genus Micrococcus, and the like. be. Catalase derived from these microorganisms is known to have different properties depending on the type of microorganism. Among them, catalase derived from microorganisms of the genus Aspergillus is less likely to be deactivated by high-concentration hydrogen peroxide, so that the amount to be added can be reduced, so it is used as a chemical for reduction treatment in this embodiment. preferred. Examples of catalase that can be used as a chemical for reduction treatment in the present embodiment include Orsorb EZ-800H (main component: Aspergillus-produced catalase) manufactured by Organo Corporation.

この処理装置では、被処理水に対する還元処理用の薬品の添加量を最適化するために、過酸化水素濃度計14からの計測出力信号に基づいて注入ポンプ23の動作が制御され、過酸化水素濃度計14での計測結果に基づいて反応槽21への還元処理用の薬品の添加量が最適量となるようにされる。処理装置は、その供給される被処理水中の過酸化水素濃度が変動する場合であっても、反応槽21から排出される処理水中の過酸化水素濃度が所定レベル以下となるように過酸化水素の分解除去処理を行う。そのため過酸化水素濃度計14からの計測出力信号に基づく注入ポンプ23の動作の制御では、処理水中の過酸化水素濃度が所定レベル以下となるような制御が行なわれる。反応槽21の容積と反応槽21への被処理水の流量とが分かれば、反応槽21において確保される滞留時間(反応時間)を算出される。温度が一定であるとして還元処理用の薬品による過酸化水素の分解反応の反応速度定数(あるいは反応速度式)は、薬品の種類(例えばカタラーゼを産生する微生物の菌種の違い)などによって異なり得るが、薬品の種類が定まれば一意に決まるといってよい。被処理水の過酸化水素濃度が計測結果として与えられたときに、反応槽21での滞留時間と反応速度定数と基づいて、反応速度計算により、反応槽21の出口での過酸化水素濃度が所定レベルとなるような薬品の添加量を算出することができる。還元処理用の薬品の実際の添加量は、安全を見込んで、ここで算出された添加量よりも多少大きな値としてもよい。図には示していないが、還元処理用の薬品の添加量を反応速度計算から算出する算出部を設け、算出部によって注入ポンプを制御してもよい。 In this treatment apparatus, the operation of the injection pump 23 is controlled based on the measurement output signal from the hydrogen peroxide concentration meter 14 in order to optimize the addition amount of the chemical for reduction treatment to the water to be treated. Based on the result of measurement by the densitometer 14, the amount of chemical for reduction treatment to be added to the reaction tank 21 is adjusted to be the optimum amount. Even if the concentration of hydrogen peroxide in the supplied water to be treated fluctuates, the treatment apparatus maintains the concentration of hydrogen peroxide in the treated water discharged from the reaction tank 21 to a predetermined level or less. is decomposed and removed. Therefore, in the control of the operation of the injection pump 23 based on the measurement output signal from the hydrogen peroxide concentration meter 14, control is performed so that the concentration of hydrogen peroxide in the treated water is below a predetermined level. If the volume of the reaction tank 21 and the flow rate of the water to be treated to the reaction tank 21 are known, the residence time (reaction time) ensured in the reaction tank 21 can be calculated. Assuming that the temperature is constant, the reaction rate constant (or reaction rate formula) of the decomposition reaction of hydrogen peroxide by the chemical for reduction treatment may vary depending on the type of chemical (for example, the difference in species of microorganisms that produce catalase). However, it can be said that it is uniquely determined once the type of drug is determined. When the concentration of hydrogen peroxide in the water to be treated is given as a measurement result, the concentration of hydrogen peroxide at the outlet of the reaction vessel 21 is calculated by reaction rate calculation based on the residence time in the reaction vessel 21 and the reaction rate constant. It is possible to calculate the amount of chemical to be added so as to achieve a predetermined level. In view of safety, the actual addition amount of the chemical for reduction treatment may be slightly larger than the addition amount calculated here. Although not shown in the figure, a calculation unit may be provided for calculating the addition amount of the chemical for reduction treatment from the reaction rate calculation, and the injection pump may be controlled by the calculation unit.

次に、過酸化水素濃度計14について説明する。過酸化水素濃度の測定法としては、過マンガン酸カリウムやヨウ素を使用した滴定法やボルタンメトリー法、化学発光検出器を用いたポストカラムHPLC法、センサーと検出器とを用いる方法などがあるが、過酸化水素濃度計14は、過酸化水素濃度センサーを備えて過酸化水素濃度をオンライン計測し、その計測結果に基づいて還元処理用の薬品の添加量を制御するために計測出力信号を出力するものである。オンライン計測を行なって薬品の添加量の制御のために用いられることから、過酸化水素濃度計14に設けられる過酸化水素濃度センサーには、連続分析が可能であり、かつ、応答速度が速いことが求められる。この観点から、過酸化水素濃度センサーとしては、電流測定に基づく2電極型のセンサーを用いることが好ましい。 Next, the hydrogen peroxide concentration meter 14 will be explained. Methods for measuring hydrogen peroxide concentration include a titration method using potassium permanganate or iodine, a voltammetry method, a post-column HPLC method using a chemiluminescence detector, and a method using a sensor and a detector. The hydrogen peroxide concentration meter 14 has a hydrogen peroxide concentration sensor, measures the concentration of hydrogen peroxide on-line, and outputs a measurement output signal for controlling the addition amount of the reduction treatment chemical based on the measurement result. It is. Since online measurement is performed and used to control the amount of chemicals added, the hydrogen peroxide concentration sensor provided in the hydrogen peroxide concentration meter 14 should be capable of continuous analysis and have a fast response speed. is required. From this point of view, it is preferable to use a two-electrode sensor based on current measurement as the hydrogen peroxide concentration sensor.

2電極型の過酸化水素濃度センサーは、例えば棒状の部材の先端に作用極である第1の電極を設け、その部材の側面に対極および参照極を兼ねる第2の電極を設け、第1の電極に比べて第2の電極の方が十分に面積が大きくなるようにしたものである。第1の電極は例えば金(Au)や白金(Pt)からなる電極であり、第2の電極は、例えば銀/塩化銀(Ag/AgCl)電極や、特開平9-178700号公報に示されるように不活性化可能な金属からなる電極である。過酸化水素濃度センサーは、過酸化水素を透過する隔膜によって測定対象の液体から隔てられていてもよく、隔膜を設ける場合には、隔膜と各電極との間は一定のイオン活量を有する内部電解液(例えば、所定濃度の塩化カリウム(KCl)溶液)で満たされる。このような過酸化水素濃度センサーでは、第1の電極と第2の電極との間に所定の直流電圧を印加することにより、過酸化水素が電子を受け取って還元される。このときに電極間を流れる電流は過酸化水素濃度に比例するから、過酸化水素濃度計14は、電極間に流れる電流に応じた計測出力信号を出力する。本実施形態において使用可能な過酸化水素濃度センサーとしては、例えば、ドイツ国所在のプロミネント(Prominent)社製のPER1あるいはPEROXが挙げられる。 In the two-electrode type hydrogen peroxide concentration sensor, for example, a first electrode serving as a working electrode is provided at the tip of a rod-shaped member, and a second electrode serving as both a counter electrode and a reference electrode is provided on the side surface of the member. The area of the second electrode is sufficiently larger than that of the electrodes. The first electrode is, for example, an electrode made of gold (Au) or platinum (Pt), and the second electrode is, for example, a silver/silver chloride (Ag/AgCl) electrode, as disclosed in JP-A-9-178700. It is an electrode made of a metal that can be deactivated. The hydrogen peroxide concentration sensor may be separated from the liquid to be measured by a diaphragm that is permeable to hydrogen peroxide. It is filled with an electrolytic solution (for example, a potassium chloride (KCl) solution of a predetermined concentration). In such a hydrogen peroxide concentration sensor, hydrogen peroxide receives electrons and is reduced by applying a predetermined DC voltage between the first electrode and the second electrode. Since the current flowing between the electrodes at this time is proportional to the concentration of hydrogen peroxide, the hydrogen peroxide concentration meter 14 outputs a measurement output signal corresponding to the current flowing between the electrodes. A hydrogen peroxide concentration sensor that can be used in this embodiment includes, for example, PER1 or PEROX manufactured by Prominent of Germany.

図1に示した構成では、被処理水を一時的に貯える原水槽11に接続する循環配管12に対して過酸化水素濃度計14が接続し、循環配管12を介して原水槽11に循環する被処理水における過酸化水素濃度を計測している。しかしながら過酸化水素濃度計14の設置位置はこれに限られるものではなく、また過酸化水素濃度計14が測定対象とする水も被処理水に限定されるものではない。過酸化水素濃度に基づいて還元処理用の薬品の添加量を最適化することができるのであれば、処理装置内の任意の位置に過酸化水素濃度計14を設けることができる。 In the configuration shown in FIG. 1, a hydrogen peroxide concentration meter 14 is connected to a circulation pipe 12 connected to a raw water tank 11 in which water to be treated is temporarily stored, and circulates through the circulation pipe 12 to the raw water tank 11. It measures the concentration of hydrogen peroxide in the water to be treated. However, the installation position of the hydrogen peroxide concentration meter 14 is not limited to this, and the water to be measured by the hydrogen peroxide concentration meter 14 is not limited to water to be treated. The hydrogen peroxide concentration meter 14 can be provided at any position in the treatment apparatus if the addition amount of the reduction treatment chemical can be optimized based on the hydrogen peroxide concentration.

図2は、本発明の別の実施形態の処理装置を示している。この処理装置は、図1に示す処理装置において、反応槽21から排出される処理水を一時的に貯える中継槽31の後段に活性炭充填塔40を配置したものである。活性炭充填塔40は、中継槽31の出口から延びる配管32の先端に設けられている。活性炭充填塔40の内部には活性炭が充填されて活性炭層を形成しており、この活性炭層を通過した処理水が、活性炭充填塔40の出口から後段設備に送られる。この処理装置では、反応槽21の出口での処理水中の過酸化水素濃度は、活性炭充填塔40で処理可能な程度にまで低ければよいので、具体的には、50mg/L以下であればよいので、図1に示す処理装置に比べ、反応槽21への還元処理用の薬品の注入量を低減することができ、ランニングコストを大幅に低減することができる。活性炭充填塔40は、反応槽21から排出される処理水中の過酸化水素をさらに分解除去し、後段設備に送られる処理水中の過酸化水素濃度を所定値以下とする。活性炭充填塔40は、加圧型と開放型のいずれでもよく、また、下向流通水でも上向流通水でもよいが、過酸化水素の処理能力が比較的小さい、加圧型下向流式の活性炭充填塔の場合に、本発明はより有効である。 FIG. 2 shows a processing device of another embodiment of the invention. This treatment apparatus is the same as the treatment apparatus shown in FIG. 1, except that an activated carbon packed tower 40 is arranged after the relay tank 31 for temporarily storing the treated water discharged from the reaction tank 21 . The activated carbon packed tower 40 is provided at the tip of the pipe 32 extending from the outlet of the relay tank 31 . The inside of the activated carbon packed tower 40 is filled with activated carbon to form an activated carbon layer, and the treated water that has passed through this activated carbon layer is sent from the outlet of the activated carbon packed tower 40 to the subsequent equipment. In this treatment apparatus, the hydrogen peroxide concentration in the treated water at the outlet of the reaction tank 21 should be low enough to be treated by the activated carbon packed tower 40, specifically, 50 mg / L or less. Therefore, compared with the treatment apparatus shown in FIG. 1, the injection amount of chemicals for reduction treatment into the reaction tank 21 can be reduced, and the running cost can be greatly reduced. The activated carbon-filled tower 40 further decomposes and removes hydrogen peroxide in the treated water discharged from the reaction tank 21 to reduce the concentration of hydrogen peroxide in the treated water sent to the subsequent equipment to a predetermined value or less. The activated carbon packed tower 40 may be either a pressurized type or an open type, and may be either downward flowing water or upward flowing water. The invention is more effective in the case of packed columns.

11 原水槽
13,33 ポンプ
14 過酸化水素濃度計
16 pH調整槽
21 反応槽
23 注入ポンプ
31 中継槽
40 活性炭充填塔
11 raw water tank 13, 33 pump 14 hydrogen peroxide concentration meter 16 pH adjustment tank 21 reaction tank 23 injection pump 31 relay tank 40 activated carbon packed tower

Claims (3)

過酸化水素を含む被処理水を分解除去する処理装置であって、
前記被処理水を一時的に貯える原水槽と、
前記原水槽の出口に接続するとともにpH調整剤が供給されて前記被処理水のpHを調整するpH調整槽と、
前記被処理水における過酸化水素濃度を計測できる位置に設けられている過酸化水素濃度センサーと、
前記pH調整槽の出口に接続されて前記被処理水が供給される反応槽と、
前記過酸化水素濃度センサーでの計測結果に基づいて制御される添加量で、前記反応槽にカタラーゼを含む還元処理用の薬品を供給する供給手段と
を備え、
前記過酸化水素濃度センサーは、作用極である第1の電極と、対極および参照極を兼ねる第2の電極とを有し、前記第1の電極と前記第2の電極との間に直流電圧を印加したときに過酸化水素の還元によって発生する電流を検出するものであって、前記原水槽に接続した循環配管に設けられており、
前記反応槽において前記薬品により前記被処理水中の過酸化水素の還元処理を行なう処理装置。
A treatment apparatus for decomposing and removing water to be treated containing hydrogen peroxide,
a raw water tank for temporarily storing the water to be treated;
a pH adjusting tank connected to the outlet of the raw water tank and supplied with a pH adjusting agent to adjust the pH of the water to be treated;
a hydrogen peroxide concentration sensor provided at a position where the hydrogen peroxide concentration in the water to be treated can be measured;
a reaction tank connected to the outlet of the pH adjusting tank and supplied with the water to be treated;
supply means for supplying a reduction treatment chemical containing catalase to the reaction vessel in an amount controlled based on the measurement result of the hydrogen peroxide concentration sensor ;
with
The hydrogen peroxide concentration sensor has a first electrode serving as a working electrode and a second electrode serving as both a counter electrode and a reference electrode. It detects the current generated by the reduction of hydrogen peroxide when is applied , and is provided in the circulation pipe connected to the raw water tank ,
A treatment apparatus for reducing hydrogen peroxide in the water to be treated with the chemical in the reaction tank.
前記処理装置における前記被処理水の滞留時間と、前記薬品による過酸化水素の還元分解反応の反応速度定数とを使用して、前記薬品の添加量が算出される、請求項1に記載の処理装置。 2. The process according to claim 1, wherein the addition amount of said chemical is calculated using a residence time of said water to be treated in said treatment apparatus and a reaction rate constant of a reductive decomposition reaction of hydrogen peroxide by said chemical. Device. 前記反応槽の出口に接続する活性炭充填塔をさらに有する、請求項1または2に記載の処理装置。 3. The processing apparatus according to claim 1, further comprising an activated carbon packed tower connected to the outlet of said reactor.
JP2018164473A 2018-09-03 2018-09-03 Hydrogen peroxide-containing water treatment equipment Active JP7178833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164473A JP7178833B2 (en) 2018-09-03 2018-09-03 Hydrogen peroxide-containing water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164473A JP7178833B2 (en) 2018-09-03 2018-09-03 Hydrogen peroxide-containing water treatment equipment

Publications (2)

Publication Number Publication Date
JP2020037062A JP2020037062A (en) 2020-03-12
JP7178833B2 true JP7178833B2 (en) 2022-11-28

Family

ID=69737213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164473A Active JP7178833B2 (en) 2018-09-03 2018-09-03 Hydrogen peroxide-containing water treatment equipment

Country Status (1)

Country Link
JP (1) JP7178833B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247944A (en) 2008-04-02 2009-10-29 Jfe Engineering Corp Method and apparatus for treating ballast water
JP2009269002A (en) 2008-05-09 2009-11-19 Japan Organo Co Ltd Method and apparatus for treating hydrogen peroxide-containing water
JP2014506528A (en) 2011-01-26 2014-03-17 エボニック デグサ ゲーエムベーハー Apparatus and method for reducing the content of hydrogen peroxide and peracetic acid in a water stream
JP2018047436A (en) 2016-09-23 2018-03-29 ダイセン・メンブレン・システムズ株式会社 Apparatus for producing purified water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247944A (en) 2008-04-02 2009-10-29 Jfe Engineering Corp Method and apparatus for treating ballast water
JP2009269002A (en) 2008-05-09 2009-11-19 Japan Organo Co Ltd Method and apparatus for treating hydrogen peroxide-containing water
JP2014506528A (en) 2011-01-26 2014-03-17 エボニック デグサ ゲーエムベーハー Apparatus and method for reducing the content of hydrogen peroxide and peracetic acid in a water stream
JP2018047436A (en) 2016-09-23 2018-03-29 ダイセン・メンブレン・システムズ株式会社 Apparatus for producing purified water

Also Published As

Publication number Publication date
JP2020037062A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
US20220306498A1 (en) Electrochemically activated persulfate for advanced oxidation processes
JP7178834B2 (en) Method and apparatus for treating water containing hydrogen peroxide
JP7178833B2 (en) Hydrogen peroxide-containing water treatment equipment
US5227010A (en) Regeneration of ferric chloride etchants
KR101253251B1 (en) Realtime monitoring and controlling apparatus of taste-odor matters for drinking water treatment, and method for the same
JPH10328676A (en) Method and apparatus for controlling injection of hydrogen sulfide removing agent
JP5868229B2 (en) Organic matter decomposition system using ozone
CN112777719B (en) Ozone catalytic regulation method for sewage treatment
US20140097095A1 (en) Generation of variable concentrations of chlorine dioxide
JP4683977B2 (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP7284624B2 (en) Residual chlorine removal method, controller for residual chlorine removal system, and residual chlorine removal system
JP4199394B2 (en) Control method of absorbent concentration in thiosulfate denitration method
JP2005324121A (en) Water treatment method and water treatment apparatus
JP2017185442A (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2007252965A (en) Apparatus for treating waste water
JP2003200171A (en) Treatment method for organic waste liquid
KR101674984B1 (en) Apparatus for controlling ozone and method for controlling ozone
JP5995242B2 (en) Nitrogen removal method and apparatus
CN104973666B (en) Intellectualized sewage water is without chlorination disinfection system
JP2014083483A (en) Persulfate processing apparatus, persulfate processing method, redox potential measuring device, and redox potential measuring method
JP2004344144A (en) Fish and shellfish-rearing water-purifying device
US20230064737A1 (en) Method and apparatus for removing specific contaminants from water in a recirculating or linear treatment system
JP6749463B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP5700735B1 (en) Water treatment apparatus and control method for water treatment apparatus
JP5135157B2 (en) Wastewater purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221115

R150 Certificate of patent or registration of utility model

Ref document number: 7178833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150