JP2000285881A - Thin battery and its manufacture - Google Patents

Thin battery and its manufacture

Info

Publication number
JP2000285881A
JP2000285881A JP11088921A JP8892199A JP2000285881A JP 2000285881 A JP2000285881 A JP 2000285881A JP 11088921 A JP11088921 A JP 11088921A JP 8892199 A JP8892199 A JP 8892199A JP 2000285881 A JP2000285881 A JP 2000285881A
Authority
JP
Japan
Prior art keywords
battery
thickness
active material
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11088921A
Other languages
Japanese (ja)
Inventor
Hisashi Higuchi
永 樋口
Nobuyuki Kitahara
暢之 北原
Toshihiko Kamimura
俊彦 上村
Hiromitsu Mishima
洋光 三島
Shinji Umagome
伸二 馬込
Makoto Osaki
誠 大崎
Toru Hara
亨 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11088921A priority Critical patent/JP2000285881A/en
Publication of JP2000285881A publication Critical patent/JP2000285881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize miniaturization and a thinner form of a battery by forming a generating cell obtained by laminating one or more sets of generating elements having a layer structure of a positive electrode current collector, a positive electrode active material, an electrolyte, a negative electrode active material and a negative electrode current collector so as to have a partially cut rectangular form in a plan view. SOLUTION: In a battery 1, a generating cell 2 has a simple rectangular plane form having a partially cut part 2' in the inner part, or a simple rectangular plane form having a partially cut part on the profile. A cutout part 3' having the cut plane form may be circular, elliptic, and polygonal without being limited to the rectangular form. A printed board of substantially the same form with an electronic part or a module consisting of the electronic part on board is arranged in the cutout part 3' of the battery 1, whereby the thickness as the apparatus corresponds to the thicker one, compared with the thickness of the battery 1 and the thickness of the functional electronic circuit or electronic part, and the thinning of the apparatus can be realized to save the space.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ICカード、IC
ペーパー、薄型ノートパソコン、携帯電話、情報端末な
どのエレクトロニクス薄型小型携帯機器などに用いられ
る薄型電池とその製造方法に関する。
TECHNICAL FIELD The present invention relates to an IC card, an IC
The present invention relates to a thin battery used for thin electronic devices such as paper, a thin notebook personal computer, a mobile phone, and an information terminal, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、自動改札、自動料金収受、FA生
産ライン、入退場管理、健康管理、移動通信システムな
どの生活・文化・医療・情報通信分野において、ICチ
ップと薄型電池を内蔵した携帯用のICカードなどが注
目されている。従来の円筒形電池や角型電池は、発電要
素を渦巻き状に巻いて堅牢な金属筐体に収納して有機電
解液を満たして気密に封止したものであるが、形状的に
厚くてICカードなどの薄型機器の電源としては搭載で
きない。このため小型で薄型の電池が注目されている。
このような電池としては、極薄の円形のコイン電池や矩
形状のシート状ポリマー電池が期待されている。また、
ノートパソコンや携帯電話などの携帯用小型情報通信機
器の分野においても、電池の高容量化・軽量化・薄型化
・小型化などが市場から求められるようになり、これに
応え得る電池として、小型で高容量のシート状ポリマー
電池が期待されている。コイン電池では発電セルの面積
が充分に確保できないため、高容量化は困難であるが、
シート状ポリマー電池ではシートの面積を大きくすれば
容易に高容量化が実現できる。
2. Description of the Related Art In recent years, in the fields of life, culture, medical care, and information communication, such as automatic ticket gates, automatic toll collection, FA production lines, entrance / exit management, health management, and mobile communication systems, mobile phones with built-in IC chips and thin batteries. IC cards and the like are attracting attention. Conventional cylindrical batteries and prismatic batteries are those in which a power generation element is spirally wound and housed in a robust metal housing, filled with an organic electrolyte, and hermetically sealed. It cannot be used as a power supply for thin devices such as cards. For this reason, small and thin batteries have attracted attention.
As such batteries, ultra-thin circular coin batteries and rectangular sheet-like polymer batteries are expected. Also,
In the field of portable small information and communication equipment such as notebook computers and mobile phones, the market demands higher capacity, lighter weight, thinner, and smaller batteries. Therefore, a high capacity sheet polymer battery is expected. Since the area of the power generation cell cannot be sufficiently secured with a coin battery, it is difficult to increase the capacity.
In a sheet-shaped polymer battery, a higher capacity can be easily realized by increasing the area of the sheet.

【0003】ICカードに極薄のコイン電池を搭載した
例が一般にあり、ICカードの一部を切り欠いて電池収
納室を設け、そこにコイン電池を挿入することが行われ
ている()。
[0003] In general, there is an example in which an ultra-thin coin battery is mounted on an IC card, and a part of the IC card is cut out to provide a battery accommodating chamber, and a coin battery is inserted therein ().

【0004】また、ICカード本体部の少なくとも一方
のカード面に矩形状のシート状ポリマー二次電池を搭載
したものとして、特開平5−166019号がある
()。この例では、カード面の50%から100%の
サイズのポリマー電池をカードの片面もしくは両面に貼
り付けている。
Japanese Patent Application Laid-Open No. HEI 5-16619 discloses a device in which a rectangular sheet-shaped polymer secondary battery is mounted on at least one card surface of an IC card body. In this example, a polymer battery having a size of 50% to 100% of the card surface is attached to one or both sides of the card.

【0005】また、フレキシブル配線基板上に矩形状の
シート状電池を搭載した例として、特開平9−2608
03号がある()。電池装着型配線基板は全体的にフ
レキシビリティであるため、たとえば折り曲げて電子機
器類に組み込むことができるので、電子機器類のコンパ
クト化に寄与するとしている。
Japanese Patent Application Laid-Open No. 9-2608 discloses an example in which a rectangular sheet-like battery is mounted on a flexible wiring board.
There is No. 03 (). It is stated that the battery-mounted wiring board is flexible as a whole and can be folded and incorporated in electronic devices, for example, thereby contributing to downsizing of the electronic devices.

【0006】また、機器の壁面や空いたスペースに二次
電池を複数個貼り付けた例として、特開平10−218
96号がある()。筐体が形成する空間を二次電池シ
ステムの組み込み個所として有効に利用することによ
り、機器のコンパクト化や軽量化が図れるとしている。
Japanese Patent Application Laid-Open No. 10-218 discloses an example in which a plurality of rechargeable batteries are attached to a wall surface or an empty space of a device.
No. 96 (). By effectively utilizing the space formed by the housing as a place where the secondary battery system is incorporated, the size and weight of the device can be reduced.

【0007】コイン電池は電解質が液体であるため、堅
牢な剛体の電池筐体を安全上備える必要があり、極薄の
コイン電池といっても電池の厚みとその形状の自由度お
よびその電池容量には限界がある。また、ポリマー電池
は、電解質がゲル状のポリマーから成る矩形状の発電セ
ルをアルミラミネートフィルムでケーシングし、水分な
どの外部影響を受けないように気密且つ減圧状態とした
曲折可能な電池として知られている。
[0007] Since the electrolyte of a coin battery is a liquid, it is necessary to provide a rigid and rigid battery housing for safety. Even if it is an ultra-thin coin battery, the thickness of the battery, the degree of freedom of its shape, and its battery capacity are required. Has limitations. Further, a polymer battery is known as a bendable battery in which a rectangular power generation cell made of a polymer having a gel electrolyte is casingd with an aluminum laminated film, and is airtight and depressurized so as not to be externally affected by moisture or the like. ing.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記
のごとく、ICカードに極薄のコイン電池を挿入したよ
うな例では外装に強度を要するため、電池の厚みが厚く
なる傾向があり、カードの厚みが電池の厚みで制限さ
れ、カードの厚みを電池の厚みより薄くできないという
問題があった。さらに、ICカードの高機能化と長時間
使用に伴い、電池の高容量化が求められる市場要求に対
してコイン電池は期待薄である。
However, as described above, in the case where an ultra-thin coin battery is inserted into an IC card, since the exterior needs strength, the battery tends to be thick, and the thickness of the card tends to be large. However, there is a problem that the thickness of the battery is limited by the thickness of the battery, and the thickness of the card cannot be made smaller than the thickness of the battery. Furthermore, with the advancement of functions and the long-term use of IC cards, coin batteries are not expected to meet market demands for higher capacity batteries.

【0009】また、上記のように、ICカード本体部
にシート状固体ポリマー電池をカード面の50%から1
00%の大きさで貼り付けた構造では、ICカードの厚
みがICカード本体部の厚みと固体ポリマー電池の厚み
を合計した厚みとなり、薄型のICカードを得ることが
できない。
Further, as described above, a sheet-shaped solid polymer battery is provided on the IC card main body from 50% of the card surface to 1%.
In a structure in which the IC card is attached at a size of 00%, the thickness of the IC card is the sum of the thickness of the IC card body and the thickness of the solid polymer battery, and a thin IC card cannot be obtained.

【0010】また、上記のように、フレキシブル配線
基板上に矩形状のシート状電池を折り曲げて組み込むこ
とで搭載機器のコンパクト化を図ったものでは、フレキ
シブル配線基板の厚みと矩形状電池の厚みを合計した厚
みとなり、機器の薄型化が実現できず、また折り曲げに
限界があって万能でないことや折り曲げできない固体電
解質を用いた固体電池が搭載ができない。
[0010] Further, as described above, when the size of the mounting device is reduced by folding and incorporating a rectangular sheet-shaped battery on a flexible wiring board, the thickness of the flexible wiring board and the thickness of the rectangular battery are reduced. The total thickness results in the inability to reduce the thickness of the device, and the bending is limited, so that it is not versatile, or a solid battery using a solid electrolyte that cannot be bent cannot be mounted.

【0011】また、上記のように、機器の壁面や空い
たスペースに二次電池を貼り付けることによって、筐体
が形成する空間を二次電池システムの組み込み個所とし
て有効に利用するものでは、組み込みに限界があって万
能ではない。
Further, as described above, if the space formed by the housing is effectively used as a place for mounting the secondary battery system by attaching the secondary battery to the wall surface of the device or the empty space, Is limited and not universal.

【0012】従来の薄型電池を図7に示す。図7におい
て、1はシート状ポリマー電池もしくは薄型の固体電池
である。2はその発電要素の外形を示し、その断面は正
極集電体、正極活物質、電解質、負極活物質、負極集電
体を層状に重ねた発電要素(図示せず)を一組以上積層
した矩形状の積層発電要素から成る。これらの発電要素
はシート状の成形体をカッティングして所望のサイズに
作製される。
FIG. 7 shows a conventional thin battery. In FIG. 7, reference numeral 1 denotes a sheet-shaped polymer battery or a thin solid battery. Reference numeral 2 denotes the outer shape of the power generating element, and its cross section is formed by laminating at least one set of a power generating element (not shown) in which a positive electrode current collector, a positive electrode active material, an electrolyte, a negative electrode active material, and a negative electrode current collector are layered. It consists of rectangular stacked power generation elements. These power generating elements are manufactured to a desired size by cutting a sheet-shaped molded body.

【0013】図7に示すように、プリント基板4に搭載
された電子部品5や機器の取付ボード4に搭載されたプ
リント基板や電子部品やモジュール5などが存在する
と、電池1の厚みをt1として機能性電子回路や電子部
品5の厚みをt2とすると、機器の厚みはt1とt2の
合計の厚みとなり、機器としての厚みはより厚くなり、
無駄なスペースも生じてしまう。このことは、図8に示
すように、搭載する機能性電子回路や電子部品5がプリ
ント基板4の中心部でなく端部に存在しても、電池1の
厚みをt1とし機能性電子回路や電子部品5などの厚み
をt2とすると、機器の厚みはt1とt2の合計の厚み
となり、機器としての厚みはより厚くなり、無駄なスペ
ースも生じてしまう。
As shown in FIG. 7, when there are an electronic component 5 mounted on the printed circuit board 4 and a printed circuit board, electronic component, module 5 and the like mounted on the mounting board 4 of the device, the thickness of the battery 1 is defined as t1. Assuming that the thickness of the functional electronic circuit or the electronic component 5 is t2, the thickness of the device is the total thickness of t1 and t2, and the thickness of the device is larger.
There is also wasted space. This means that, as shown in FIG. 8, even if the functional electronic circuit or the electronic component 5 to be mounted exists not at the center of the printed circuit board 4 but at the end, the thickness of the battery 1 is set to t1 and the functional electronic circuit or Assuming that the thickness of the electronic component 5 and the like is t2, the thickness of the device is the total thickness of t1 and t2, and the thickness of the device is further increased, resulting in useless space.

【0014】本発明の課題は、機器の薄型化と電源の高
容量化にふさわしい、薄くて大面積のシート状のポリマ
ー電池において、如何にして搭載機器に薄型化および小
型化を付与するかにある。
An object of the present invention is to provide a thin and large-area sheet-shaped polymer battery suitable for a thin device and a high capacity of a power supply, and to make the mounted device thin and small. is there.

【0015】また、本発明の課題は、特に発電セルの少
なくとも一つの要素が固体で且つ無機系の薄型の剛体で
ある固体電池において、如何にして搭載機器に薄型化お
よび小型化を付与するかにある。
[0015] Another object of the present invention is to provide a thin and small-sized mounting device especially for a solid-state battery in which at least one element of the power generation cell is solid and inorganic and thin. It is in.

【0016】[0016]

【問題点を解決するための手段】本発明の薄型電池で
は、正極集電体、正極活物質、電解質、負極活物質、お
よび負極集電体を層状に重ねた発電要素を一組以上積層
した発電セルから成る薄型電池において、前記発電セル
の平面視した形状が矩形状の一部が欠けた形状であるこ
とを特徴とする。
Means for Solving the Problems In the thin battery of the present invention, at least one set of a power generating element in which a positive electrode current collector, a positive electrode active material, an electrolyte, a negative electrode active material, and a negative electrode current collector are layered is stacked. In a thin battery including a power generation cell, the shape of the power generation cell in plan view is a shape in which a part of a rectangular shape is missing.

【0017】また、上記薄型電池では、機能性電子回路
および/または電子部品が配設される場合、前記発電セ
ルの欠けた部分に配設される。
Further, in the above-mentioned thin battery, when a functional electronic circuit and / or an electronic component is provided, it is provided in a portion where the power generation cell is missing.

【0018】また、上記薄型電池では、搭載機器の外装
体の凸部がある場合、前記発電セルの欠けた部分に配設
される。
In the above-mentioned thin battery, if there is a convex portion on the exterior body of the mounted equipment, the thin battery is disposed in the chipped portion of the power generation cell.

【0019】さらに、前記発電セルの電解質はゲル状電
解質もしくは固体電解質であることが望ましい。
Furthermore, it is desirable that the electrolyte of the power generation cell is a gel electrolyte or a solid electrolyte.

【0020】また、本発明に係る薄型電池の製造方法で
は、正極集電体、正極活物質、電解質、負極活物質、負
極集電体を層状に重ねた発電セルの一部が欠けた形状を
有する薄型電池の製造方法において、前記発電セルの欠
けた部分を打ち抜き成形もしくは金型加圧生成形で形成
する。
Further, in the method for manufacturing a thin battery according to the present invention, the shape of the power generation cell in which the positive electrode current collector, the positive electrode active material, the electrolyte, the negative electrode active material, and the negative electrode current collector are partly layered is partially omitted. In the method of manufacturing a thin battery having the above, the chipped portion of the power generation cell is formed by punching or die pressurization.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づき説明する。図1は本発明に係る薄型電池1の
一実施形態を示す平面図であり、図2はそのA−A' 断
面図であり、図4は分解して示した図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a plan view showing an embodiment of a thin battery 1 according to the present invention, FIG. 2 is a cross-sectional view taken along the line AA ′, and FIG. 4 is an exploded view.

【0022】発電セル2は、図3に示すように、正極集
電体2a、正極活物質2b、電解質2c、負極活物質2
d、負極集電体2eを層状に重ねた発電要素を一組(図
3(a))もしくはそれ以上(図3(b))積層した発
電要素から成る積層構造である。また、図2に示すよう
に、外装3は発電セル2を保護するための保護ケースで
あり、気密封止用の樹脂でラミネートした金属のフィル
ムやシートなどから成るが、保護膜コートを用いてもよ
い。図示していないが、集電体には引出端子が接続して
設けられる。
As shown in FIG. 3, the power generation cell 2 includes a positive electrode current collector 2a, a positive electrode active material 2b, an electrolyte 2c, and a negative electrode active material 2c.
d, a stacked structure including a power generating element in which one set (FIG. 3 (a)) or more (FIG. 3 (b)) of power generating elements in which the negative electrode current collectors 2e are layered is stacked. As shown in FIG. 2, the exterior 3 is a protective case for protecting the power generation cell 2 and is made of a metal film or sheet laminated with a resin for hermetic sealing. Is also good. Although not shown, a lead terminal is connected to the current collector.

【0023】本発明に係わる薄型電池1は、発電セル2
の平面形状が単純矩形状である図7の従来例とは異な
り、図1に示すように、発電セル2の平面形状が単純矩
形状の内部が欠けた部分2’を有するような平面形状2
であるか、もしくは図5に示すように発電セル2の平面
形状が単純矩形状の外郭が一部欠けた部分2’を有する
ような平面形状2であることを特徴とする。これらの異
形形状の製作には、発電要素の各シート成形後あるいは
これらを積層した後、打ち抜き成形もしくはプレス打ち
抜き成形することを特徴とする。
The thin battery 1 according to the present invention comprises a power generation cell 2
Unlike the conventional example of FIG. 7 in which the planar shape of the power generating cell 2 is a simple rectangular shape, as shown in FIG.
Alternatively, as shown in FIG. 5, the power generating cell 2 is characterized in that the power generating cell 2 has a planar shape 2 having a part 2 ′ in which a simple rectangular outline is partially missing. The production of these irregular shapes is characterized by punching or press punching after forming each sheet of the power generating element or after laminating them.

【0024】発電セル2の正極活物質、負極活物質、お
よび固体電解質の材料としては、例えばリチウムコバル
ト酸化物、リチウムニッケル酸化物、リチウムマンガン
酸化物、リチウムバナジウム酸化物、二酸化マンガン、
金属リチウム、リチウム合金、黒鉛やコークスなどの炭
素系材料、五酸化ニオブ、リチウムチタン酸化物、リチ
ウム遷移金属複合窒化物、PEO(ポリエチレンオキシ
ド)、りん酸リチウムなどが挙げられる。これらに、カ
ーボン、アセチレンブラックなどの電子電導材や高分子
バインダーやリチウム塩などの添加材を混合して用いて
もよい。
The materials of the positive electrode active material, the negative electrode active material, and the solid electrolyte of the power generation cell 2 include, for example, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium vanadium oxide, manganese dioxide,
Examples thereof include metal lithium, lithium alloy, carbon-based materials such as graphite and coke, niobium pentoxide, lithium titanium oxide, lithium transition metal composite nitride, PEO (polyethylene oxide), lithium phosphate, and the like. An electron conductive material such as carbon and acetylene black, and an additive such as a polymer binder and a lithium salt may be mixed and used.

【0025】正極集電体や負極集電体としては、アルミ
ニウム、銅、ステンレス、ニッケルなどからなる金属シ
ートの金属箔が挙げられる。外装体3としては外面部に
電気的絶縁性や装飾性を持たせるため、絶縁性のポリエ
チレンテレフタレート(PET)やポリエチレン(P
E)などで金属シートをラミネートしたラミネートフィ
ルムなどが使用され、樹脂や無機ガラスなどの保護コー
トを使用してもよい。
Examples of the positive electrode current collector and the negative electrode current collector include metal foils of metal sheets made of aluminum, copper, stainless steel, nickel and the like. As the exterior body 3, insulating polyethylene terephthalate (PET) or polyethylene (P) is used in order to impart electrical insulation and decorative properties to the outer surface.
A laminated film obtained by laminating a metal sheet as in E) is used, and a protective coat such as resin or inorganic glass may be used.

【0026】また、本発明の発電セル2は、正極集電
体、正極活物質、電解質、負極活物質、および負極集電
体を層状に重ねた発電要素を一組以上積層した構造とす
ることで発電電圧を高めたり、発電電流を増すことがで
きる。また、本発明の発電セル2は剛体の場合に特に有
効であるが、柔軟な場合にも有効である。前者の例とし
ては発電セルが無機系材料をベースとした全固体電池が
あり、後者の例としては発電セルが有機系材料をベース
としたポリマー電池がある。
The power generation cell 2 of the present invention has a structure in which at least one set of power generation elements in which a positive electrode current collector, a positive electrode active material, an electrolyte, a negative electrode active material, and a negative electrode current collector are layered is stacked. Thus, the generated voltage can be increased or the generated current can be increased. The power generation cell 2 of the present invention is particularly effective in the case of a rigid body, but is also effective in the case of flexibility. An example of the former is an all-solid-state battery in which the power generation cells are based on an inorganic material, and an example of the latter is a polymer battery in which the power generation cells are based on an organic material.

【0027】図1や図5における欠けた平面形状3'
は、必ずしも矩形状でなくてもよく、円形、楕円形、お
よび多角形などでも構わない。これらの形状は、前記活
物質と高分子バインダーと電子電導材などとの混合物を
金属テープにドクターブレード法などでテープ成形した
後、打ち抜き成形することで、任意に且つ容易に作成す
ることができる。ポリマー電池であれば打ち抜きテープ
成形品にリチウム塩などを添加浸透させて外装すれば作
製できるし、固体電池であれば生の打ち抜きテープ成形
品を焼成・焼結することで作製できる。
The missing planar shape 3 'in FIGS. 1 and 5
Is not necessarily rectangular, but may be circular, elliptical, polygonal, or the like. These shapes can be arbitrarily and easily formed by forming a mixture of the active material, the polymer binder, the electronic conductive material, and the like into a metal tape by tape forming by a doctor blade method or the like, and then punching and forming. . In the case of a polymer battery, it can be manufactured by adding and infiltrating a lithium salt or the like into a punched tape molded product, and then, in the case of a solid battery, it can be manufactured by firing and sintering a raw punched tape molded product.

【0028】図4や図6に示すように、電池1の欠けた
部分3' に、ほぼ同じ形状の電子部品や電子部品から成
るモジュール5を搭載したプリント基板4を配置するこ
とで、機器としての厚みは電池の厚みt1と機能性電子
回路もしくは電子部品5の厚みt2と比較してより厚い
方の厚みとなり、従来より薄くできる。このように、機
器の薄型化が実現され、省スペースが可能となり、機器
の小型化が実現できることは明白である。
As shown in FIGS. 4 and 6, a printed circuit board 4 on which electronic components having substantially the same shape and a module 5 composed of electronic components are mounted in the chipped portion 3 'of the battery 1 as a device. Is thicker than the thickness t1 of the battery and the thickness t2 of the functional electronic circuit or electronic component 5, and can be made thinner than before. As described above, it is apparent that the device can be made thinner, space can be saved, and the device can be downsized.

【0029】この欠けた部分3’には、機能性電子回路
もしくは電子部品5として、プリント基板、電子モジュ
ール、光モジュール、光電子モジュール、アンテナ、コ
イル、コンデンサー、トランス、予備電池などを配置す
ることが可能で、機器の省スペースが実現され、小型化
および薄型化が実現できる。また、携帯機器の外装ケー
ス内部にケースの出っ張り(凸部)がある場合、本発明
の欠けた部分にこの出っ張り部が位置するように搭載す
ることで、外装ケース内のスペースの有効活用が可能と
なり、機器の省スペースが実現され、小型化および薄型
化が実現できる。
A printed circuit board, an electronic module, an optical module, an opto-electronic module, an antenna, a coil, a capacitor, a transformer, a spare battery, and the like can be disposed as functional electronic circuits or electronic components 5 in the missing portion 3 '. As a result, space saving of the device can be realized, and miniaturization and thinning can be realized. In addition, when there is a protrusion (convex portion) inside the outer case of the portable device, the space inside the outer case can be effectively used by mounting the case so that the protrusion is located in the missing part of the present invention. As a result, space saving of the device is realized, and miniaturization and thinning can be realized.

【0030】また、図4や図6に示すように、プリント
配線基板4上に機能性電子回路や電子部品5などを搭載
し、これら機能性電子回路や電子部品5などと重畳しな
いように欠けた部分3' を形成した薄型電池1を同時に
搭載することで、機器のコンパクト化が図られ、機器の
薄型化および小型化が実現できる。
As shown in FIGS. 4 and 6, a functional electronic circuit and an electronic component 5 are mounted on the printed wiring board 4, and the functional electronic circuit and the electronic component 5 are cut off so as not to overlap with the functional electronic circuit and the electronic component 5. By simultaneously mounting the thin battery 1 having the formed portion 3 ', the size of the device can be reduced, and the thickness and size of the device can be reduced.

【0031】[0031]

【実施例】<実施例1>カードサイズの図1の形状のシ
ート状ポリマー電池を作製した。まず、正極用の活物質
としてリチウムコバルト酸化物(LiCoO2 )を80
重量%、電子導電性を付与させる添加物としてアセチレ
ンブラックを11重量%、およびバインダーとしてポリ
フッ化ビニリデン(以下PVDFという)を9重量%混
合した後、この混合物にN−メチル−2−ピロリドン
(以下NMPという)を添加混合して正極形成用ペース
トを調整した。
EXAMPLES Example 1 A sheet-shaped polymer battery having a card size and a shape as shown in FIG. 1 was produced. First, lithium cobalt oxide (LiCoO 2 ) was used as an active material for the positive electrode.
After mixing 11% by weight of acetylene black as an additive for imparting electronic conductivity and 9% by weight of polyvinylidene fluoride (hereinafter referred to as PVDF) as a binder, N-methyl-2-pyrrolidone (hereinafter referred to as "N-methyl-2-pyrrolidone") was added to the mixture. NMP) was added and mixed to prepare a paste for forming a positive electrode.

【0032】一方、負極を構成する活物質材料としてリ
チウムマンガン酸化物(Li4 Mn5 12)を80重量
%、電子導電性を付与させる添加物としてアセチレンブ
ラックを11重量%、およびPVDFを9重量%混合し
た後、この混合物にNMPを添加混合して正極形成用ペ
ーストを調整した。
On the other hand, 80% by weight of lithium manganese oxide (Li 4 Mn 5 O 12 ) as an active material constituting the negative electrode, 11% by weight of acetylene black as an additive for imparting electronic conductivity, and 9% of PVDF were used. After mixing by weight, NMP was added to and mixed with this mixture to prepare a positive electrode forming paste.

【0033】次いで、集電体として厚さ20μmのアル
ミニウム箔を用い、このアルミニウム箔上にそれぞれ正
極形成用、負極形成用ペーストを塗布して充分に乾燥さ
せて溶媒を除去した後、ロール加圧で正極の厚さを12
0μm、負極の厚さを100μmとなるように調整し
た。
Next, an aluminum foil having a thickness of 20 μm was used as a current collector, and a paste for forming a positive electrode and a paste for forming a negative electrode were applied on the aluminum foil, dried sufficiently, and the solvent was removed. To make the thickness of the positive electrode 12
The thickness was adjusted to be 0 μm, and the thickness of the negative electrode was adjusted to be 100 μm.

【0034】一方、固体電解質としてリチウムチタン酸
化物(Li4 Ti5 12)を90重量%、PVDFを1
0重量%を混合した後、この混合物にNMPを添加混合
して固体電解質形成用ペーストを調整した。
On the other hand, 90% by weight of lithium titanium oxide (Li 4 Ti 5 O 12 ) and 1% of PVDF were used as a solid electrolyte.
After mixing 0% by weight, NMP was added to the mixture and mixed to prepare a solid electrolyte forming paste.

【0035】次に、得られた固体電解質形成用ペースト
を正極もしくは負極に塗布し、充分に乾燥させて溶媒を
除去した後、ロール加圧で固体電解質の厚さを20μm
に調整した。
Next, the obtained paste for forming a solid electrolyte is applied to a positive electrode or a negative electrode, and is sufficiently dried to remove the solvent.
Was adjusted.

【0036】また、上記積層体に含浸硬化させる高分子
固体電解質は、モノマー状にあるポリエチレンオキサイ
ドを92重量%に溶質となるLiBF4 を8重量%溶解
した。LiBF4 はポリエチレンオキサイドに直接溶解
しにくいため、事前にN−メチル−2−ピロリドンに溶
解させた後、モノマー状のポリエチレンオキサイドと混
合させた。この混合物を上記積層体に含浸させて所定の
温度でNMPを蒸発乾燥させたのち、高分子固体電解質
を含浸させて重合させた。
In the solid polymer electrolyte to be impregnated and cured in the laminate, 92 wt% of monomeric polyethylene oxide and 8 wt% of LiBF 4 as a solute were dissolved. Since LiBF 4 is hard to dissolve directly in polyethylene oxide, it was previously dissolved in N-methyl-2-pyrrolidone and then mixed with monomeric polyethylene oxide. This mixture was impregnated into the above-mentioned laminate, and NMP was evaporated and dried at a predetermined temperature, and then impregnated with a solid polymer electrolyte and polymerized.

【0037】かくして得られた電極および固体電解質を
被着した電極をそれぞれ80mm×50mmの大きさに
切り出した後、図1に示す形状となるよう中央部を15
mm×15mmの大きさにプレス打ち抜きを行った。こ
れらを120℃の温度で2時間真空乾燥させてから、両
電極を貼り合わせて積層体を作製し、さらにロール加圧
して密着性を向上させた。
After the thus obtained electrode and the electrode on which the solid electrolyte was applied were cut out to a size of 80 mm × 50 mm, the central portion was cut into a shape shown in FIG.
Press punching was performed to a size of mm × 15 mm. These were vacuum-dried at a temperature of 120 ° C. for 2 hours, and then the two electrodes were attached to each other to form a laminate, which was further roll-pressed to improve the adhesion.

【0038】次いで、アルミシートの両面をポリエチレ
ン(PE)でラミネートした厚みが120〜150μ
m、大きさが85×53mmのシート2枚を重ね合わせ
て熱融着し袋状とした。
Next, an aluminum sheet laminated on both sides with polyethylene (PE) has a thickness of 120 to 150 μm.
m, two sheets each having a size of 85 × 53 mm were overlapped and heat-sealed to form a bag.

【0039】前記正極集電体、正極活物質、電解質、負
極活物質、および負極集電体から成る積層体をこの袋状
のラミネートフィルムに挿入し、このラミネートフィル
ムの外周3および内周3' の近傍を熱融着させ、同時に
この内部を真空引きして気密にした発電セルを作製し
た。ここで袋状ラミネートの中央部で図1の外装内周
3' に相当する11mm×11mmサイズを切り抜い
て、図1の形状の薄型電池を作製した。こうして得られ
た電池の厚みは約0.5mmであった。
A laminate composed of the positive electrode current collector, the positive electrode active material, the electrolyte, the negative electrode active material, and the negative electrode current collector is inserted into the bag-shaped laminate film, and the outer periphery 3 and the inner periphery 3 ′ of the laminate film are inserted. Was heat-sealed at the same time, and the inside was evacuated at the same time to produce an air-tight power generation cell. Here, a 11 mm × 11 mm size corresponding to the outer circumference 3 ′ of FIG. 1 was cut out at the center of the bag-like laminate to produce a thin battery having the shape of FIG. The thickness of the battery thus obtained was about 0.5 mm.

【0040】次に、ICカード用の厚みが約0.3mm
のICチップを搭載した厚みが0.2mmのプリント基
板からなる電子部品を準備した。この電子部品は全体厚
みが約0.5mmとなり、大きさは10mm×10mm
であった。
Next, the thickness for the IC card is about 0.3 mm.
An electronic component consisting of a printed board having a thickness of 0.2 mm and mounting the IC chip was prepared. This electronic component has a total thickness of about 0.5 mm and a size of 10 mm × 10 mm.
Met.

【0041】こうして、図4のように、電池1と電子部
品5を配置した場合、合計した厚みはそれぞれの厚みと
変わらない0.5mmであった。
Thus, when the battery 1 and the electronic component 5 were arranged as shown in FIG. 4, the total thickness was 0.5 mm which was not different from the respective thicknesses.

【0042】ちなみに、従来例の場合、合計した厚みは
それぞれの厚みを合計した1.0mmであった。
Incidentally, in the case of the conventional example, the total thickness was 1.0 mm which is the sum of the respective thicknesses.

【0043】最終的には、厚みが約100μmのポリエ
チレン/アルミニウムの構成から成る大きさが85×5
3mmのベースシートおよびカバーシートで全体を覆っ
てICカードとなる。
Finally, a polyethylene / aluminum structure having a thickness of about 100 μm and a size of 85 × 5
An IC card is entirely covered with a 3 mm base sheet and a cover sheet.

【0044】[実施例2]図5の形状の大きさが約20
mm×20mmサイズの全固体の薄型電池を作製した。
[Embodiment 2] The shape shown in FIG.
An all-solid thin battery of mm × 20 mm size was produced.

【0045】まず、正極用の活物質としてリチウムコバ
ルト酸化物(LiCoO2 )を80重量%に、電子導電
性を付与させる添加物として天然黒鉛を10重量%、お
よびリチウムイオン伝導性を有するLi2 O−B2 3
−ZnOガラスを10重量%混合した後、図5の面形状
に打ち抜き成形して、正極活物質体の生成形体を得た。
この生成形体を大気中550℃で焼成することで焼結体
電極を作製した。作製した正極活物質は大きさ約20m
m×20mm、厚み約0.2mmであった。なお、面形
状の切り欠いた部分の大きさは約5mm×5mmであっ
た。一方、負極を構成する活物質材料としてリチウムマ
ンガン酸化物(Li4 Mn5 12)を80重量%に電子
導電性を付与させる添加物として天然黒鉛を10重量
%、およびリチウムイオン伝導性を有するLi2 O−B
2 3 −ZnOガラスを10重量%混合した後、図5の
面形状に打ち抜き成形して負極活物質体の生成形体を得
た。この生成形体を大気中550℃で焼成することで焼
結体電極を作製した。作製した負極活物質は大きさ約2
0mm×20mm、厚み約0.2mmであった。なお、
面形状の切り欠いた部分の大きさは約5mm×5mmで
あった。
First, lithium cobalt oxide (LiCoO 2 ) was used as an active material for the positive electrode at 80% by weight, natural graphite as an additive for imparting electronic conductivity was 10% by weight, and Li 2 having lithium ion conductivity was used. O-B 2 O 3
After 10% by weight of -ZnO glass was mixed, it was stamped and formed into the surface shape shown in FIG. 5 to obtain a formed form of a positive electrode active material body.
The formed body was fired at 550 ° C. in the air to produce a sintered body electrode. The produced positive electrode active material is about 20 m in size.
mx 20 mm, thickness about 0.2 mm. In addition, the size of the cutout portion of the surface shape was about 5 mm × 5 mm. On the other hand, 80% by weight of lithium manganese oxide (Li 4 Mn 5 O 12 ) is used as an active material constituting the negative electrode, 10% by weight of natural graphite is used as an additive for imparting electronic conductivity, and lithium ion conductivity is provided. Li 2 O-B
After 10% by weight of 2 O 3 -ZnO glass was mixed, the mixture was punched and formed into the surface shape shown in FIG. 5 to obtain a formed negative electrode active material body. The formed body was fired at 550 ° C. in the air to produce a sintered body electrode. The prepared negative electrode active material has a size of about 2
The size was 0 mm × 20 mm and the thickness was about 0.2 mm. In addition,
The size of the cutout portion of the surface shape was about 5 mm × 5 mm.

【0046】一方、固体電解質としてリチウムチタン酸
化物(Li4 Ti5 12)を90重量%とPVDFを1
0重量%を混合した後、この混合物にNMPを添加混合
して固体電解質形成用ペーストを調整した。
On the other hand, 90% by weight of lithium titanium oxide (Li 4 Ti 5 O 12 ) and 1 part of PVDF were used as a solid electrolyte.
After mixing 0% by weight, NMP was added to the mixture and mixed to prepare a solid electrolyte forming paste.

【0047】次に、得られた固体電解質形成用ペースト
を正極もしくは負極に塗布して充分に乾燥させてNMP
を除去した後、ロール加圧で固体電解質の厚さを20μ
mに調整した。
Next, the obtained paste for forming a solid electrolyte is applied to a positive electrode or a negative electrode, and is sufficiently dried.
Is removed, and the thickness of the solid electrolyte is increased
m.

【0048】また、上記積層体に含浸硬化させる高分子
固体電解質は、モノマー状にあるポリエチレンオキサイ
ドを92重量%に溶質となるLiBF4 を8重量%溶解
した。LiBF4 はポリエチレンオキサイドに直接溶解
しにくいため、事前にN−メチル−2−ピロリドンに溶
解させた後、モノマー状のポリエチレンオキサイドと混
合させた。この混合物を上記積層体に含浸させて所定の
温度でNMPを蒸発乾燥させたのち、高分子固体電解質
を含浸させて重合させた。
In the solid polymer electrolyte to be impregnated and cured in the laminate, 92 wt% of polyethylene oxide in a monomer state and 8 wt% of LiBF 4 serving as a solute were dissolved. Since LiBF 4 is hard to dissolve directly in polyethylene oxide, it was previously dissolved in N-methyl-2-pyrrolidone and then mixed with monomeric polyethylene oxide. This mixture was impregnated into the above-mentioned laminate, and NMP was evaporated and dried at a predetermined temperature, and then impregnated with a solid polymer electrolyte and polymerized.

【0049】かくして得られた電極および固体電解質を
被着した電極を120℃の温度で2時間、真空乾燥させ
てから、両電極を貼り合わせて積層体を作製し、さらに
ロール加圧して密着性を向上させた。
The electrode thus obtained and the electrode on which the solid electrolyte is applied are vacuum-dried at a temperature of 120 ° C. for 2 hours, and then the two electrodes are bonded together to form a laminate. Improved.

【0050】次いで、アルミシートの両面をポリエチレ
ン(PE)でラミネートした厚みが120〜150μ
m、大きさが25×25mmのシート2枚を重ね合わせ
て熱融着し袋状とした。
Next, the aluminum sheet was laminated on both sides with polyethylene (PE) to a thickness of 120 to 150 μm.
m, two sheets each having a size of 25 × 25 mm were overlapped and heat-sealed to form a bag.

【0051】前記正極集電体、正極活物質、電解質、負
極活物質、負極集電体から成る積層体をこの袋状のラミ
ネートフィルムに挿入し、このラミネートフィルムの外
周3および内周3' の近傍を熱融着させ、同時にこの内
部を真空引きして気密にした発電セルを作製した。ここ
で、袋状ラミネートの端部で図5の外装3' に相当する
約5mm×5mmサイズを切り抜いて、図5の形状の薄
型電池を作製した。こうして得られた電池の厚みは約
0.5mmであった。
A laminate composed of the positive electrode current collector, the positive electrode active material, the electrolyte, the negative electrode active material, and the negative electrode current collector is inserted into the bag-like laminate film, and the outer periphery 3 and the inner periphery 3 ′ of the laminate film are formed. The vicinity was heat-sealed, and at the same time, the inside was evacuated to produce an air-tight power generation cell. Here, a size of about 5 mm × 5 mm corresponding to the exterior 3 ′ of FIG. 5 was cut out at the end of the bag-like laminate to produce a thin battery having the shape of FIG. The thickness of the battery thus obtained was about 0.5 mm.

【0052】次に、厚みが約0.5mmの抵抗体やコン
デンサーなどの電子部品から成る厚みが約0.5mmの
モジュールを準備した。こうして、図6のように、電池
とモジュールを配置した場合、合計した厚みはそれぞれ
の厚みと変わらない約0.5mmであった。
Next, a module having a thickness of about 0.5 mm made of electronic parts such as resistors and capacitors having a thickness of about 0.5 mm was prepared. Thus, when the battery and the module were arranged as shown in FIG. 6, the total thickness was about 0.5 mm which was not different from the respective thicknesses.

【0053】ちなみに、従来例の場合、合計した厚みは
それぞれの厚みを合計した1mmであった。
Incidentally, in the case of the conventional example, the total thickness was 1 mm which is the sum of the respective thicknesses.

【0054】[0054]

【発明の効果】本発明の薄型電池では、正極集電体、正
極活物質、電解質、負極活物質、および負極集電体を層
状に重ねた一組以上の積層発電要素から成る発電セルの
平面視した形状が矩形状の一部が欠けた形状であること
から、この欠けた部分に機能性電子回路や機能性部品や
外装体を配設することで、電池搭載機器としての薄型化
および小型化を実現できる。
According to the thin battery of the present invention, the flat surface of a power generating cell comprising one or more sets of stacked power generating elements in which a positive electrode current collector, a positive electrode active material, an electrolyte, a negative electrode active material, and a negative electrode current collector are stacked in layers. Since the shape seen is a shape with a part of the rectangular shape missing, by arranging functional electronic circuits, functional parts, and an exterior body in this missing part, it is possible to make it thinner and smaller as a battery-mounted device Can be realized.

【0055】また、本発明の薄型電池の製造方法では、
発電セルの欠けた部分を、打ち抜き成形もしくは金型加
圧生成形で形成することから、この欠けた部分を任意且
つ容易に形成できる。
In the method for manufacturing a thin battery according to the present invention,
Since the chipped portion of the power generation cell is formed by punching or pressurized mold generation, the chipped portion can be arbitrarily and easily formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る薄型電池の一実施形態を示す平面
図である。
FIG. 1 is a plan view showing an embodiment of a thin battery according to the present invention.

【図2】図1のA−A' 断面図である。FIG. 2 is a sectional view taken along line AA ′ of FIG. 1;

【図3】本発明に係る薄型電池の発電要素を一組以上積
層した状態を示す図である。
FIG. 3 is a view showing a state in which one or more sets of power generating elements of the thin battery according to the present invention are stacked.

【図4】本発明に係る薄型電池の一実施形態を示す分解
図である。
FIG. 4 is an exploded view showing an embodiment of the thin battery according to the present invention.

【図5】本発明に係る薄型電池の他の実施形態を示す図
である。
FIG. 5 is a view showing another embodiment of the thin battery according to the present invention.

【図6】本発明に係る薄型電池の他の実施形態を示す分
解図である。
FIG. 6 is an exploded view showing another embodiment of the thin battery according to the present invention.

【図7】従来の薄型電池を示す図である。FIG. 7 is a view showing a conventional thin battery.

【図8】従来の薄型電池を示す分解図である。FIG. 8 is an exploded view showing a conventional thin battery.

【図9】従来の他の薄型電池を示す図である。FIG. 9 is a view showing another conventional thin battery.

【符号の説明】[Explanation of symbols]

2‥‥‥発電セル、3‥‥‥外装、3' ‥‥‥切り欠き
2 ‥‥‥ power generation cell, 3 ‥‥‥ exterior, 3 '‥‥‥ notch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三島 洋光 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 馬込 伸二 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 原 亨 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H011 AA06 AA07 BB03 DD07 5H024 AA02 CC04 DD01 FF21 5H028 AA07 BB00 CC02 5H029 AJ00 AK03 AL03 AM00 AM16 BJ04 CJ01 CJ04 EJ12  ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Yoko Mishima 3-5-chome, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratory, Kyocera Corporation (72) Inventor Shinji Magome 3-chome, Seika-cho, Soraku-gun, Kyoto 5 Kyocera Corporation Central Research Laboratory (72) Inventor Makoto Osaki 3-chome, Seika-cho, Soraku-gun, Kyoto Prefecture 5-5-2 Kyocera Corporation Central Research Laboratory (72) Inventor Tohru Hara, Kyodai, Soraku-cho, Kyoto Prefecture 3-5-5 Kyocera Corporation Central Research Laboratory F term (reference) 5H011 AA06 AA07 BB03 DD07 5H024 AA02 CC04 DD01 FF21 5H028 AA07 BB00 CC02 5H029 AJ00 AK03 AL03 AM00 AM16 BJ04 CJ01 CJ04 EJ12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体、正極活物質、電解質、負極
活物質、および負極集電体を層状に重ねた発電要素を一
組以上積層した発電セルから成る薄型電池において、前
記発電セルの平面視した形状が矩形状の一部が欠けた形
状であることを特徴とする薄型電池。
1. A thin battery comprising a power generating element in which at least one set of a power generating element in which a positive electrode current collector, a positive electrode active material, an electrolyte, a negative electrode active material, and a negative electrode current collector are layered is stacked. A thin battery wherein the shape in plan view is a shape in which a part of a rectangular shape is missing.
【請求項2】 前記発電セルの欠けた部分に、機能性電
子回路および/または電子部品が配設されていることを
特徴とする請求項1に記載の薄型電池。
2. The thin battery according to claim 1, wherein a functional electronic circuit and / or an electronic component is disposed in a part where the power generation cell is missing.
【請求項3】 前記発電セルの欠けた部分に、搭載機器
の外装体の凸部が配設されていることを特徴とする請求
項1に記載の薄型電池。
3. The thin battery according to claim 1, wherein a projecting portion of an exterior body of the mounted device is provided in a part where the power generation cell is missing.
【請求項4】 前記発電セルの電解質がゲル状電解質も
しくは固体電解質であることを特徴とする請求項1、2
または3に記載の薄型電池。
4. The power generation cell according to claim 1, wherein the electrolyte is a gel electrolyte or a solid electrolyte.
Or the thin battery according to 3.
【請求項5】 正極集電体、正極活物質、電解質、負極
活物質、および負極集電体を層状に重ねた発電セルの一
部が欠けた形状を有する薄型電池の製造方法において、
前記発電セルの欠けた部分を打ち抜き成形で形成するこ
とを特徴とする薄型電池の製造方法。
5. A method of manufacturing a thin battery having a shape in which a part of a power generation cell in which a positive electrode current collector, a positive electrode active material, an electrolyte, a negative electrode active material, and a negative electrode current collector are layered is partially missing.
A method for manufacturing a thin battery, wherein the chipped portion of the power generation cell is formed by punching.
JP11088921A 1999-03-30 1999-03-30 Thin battery and its manufacture Pending JP2000285881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11088921A JP2000285881A (en) 1999-03-30 1999-03-30 Thin battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11088921A JP2000285881A (en) 1999-03-30 1999-03-30 Thin battery and its manufacture

Publications (1)

Publication Number Publication Date
JP2000285881A true JP2000285881A (en) 2000-10-13

Family

ID=13956392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11088921A Pending JP2000285881A (en) 1999-03-30 1999-03-30 Thin battery and its manufacture

Country Status (1)

Country Link
JP (1) JP2000285881A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018917A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Stacked battery, and battery pack
WO2013031148A1 (en) 2011-08-29 2013-03-07 パナソニック株式会社 Thin battery
JP2013048510A (en) * 2011-08-29 2013-03-07 Panasonic Corp Battery device and operation method thereof
WO2013137611A1 (en) * 2012-03-14 2013-09-19 주식회사 엘지화학 Compact battery cell having enhanced durability, and battery pack comprising same
US20140113184A1 (en) * 2012-10-18 2014-04-24 Apple Inc. Three-dimensional non-rectangular battery cell structures
CN104081574A (en) * 2011-12-20 2014-10-01 诺基亚公司 Apparatus for storing electrical energy and portable electronic device
WO2015046803A1 (en) * 2013-09-26 2015-04-02 주식회사 엘지화학 Method for manufacturing electrode assembly and secondary battery
EP2593981B1 (en) * 2010-07-16 2015-11-25 Apple Inc. Design and construction of non-rectangular batteries
JP2015537338A (en) * 2013-02-05 2015-12-24 エルジー・ケム・リミテッド Battery cell including step structure
JP2016001604A (en) * 2014-05-23 2016-01-07 株式会社半導体エネルギー研究所 Electronic apparatus equipped with secondary battery
WO2017033765A1 (en) * 2015-08-26 2017-03-02 富士フイルム株式会社 Method for producing electrode sheet for all-solid-state secondary batteries and method for manufacturing all-solid-state secondary battery
AU2015202067B2 (en) * 2010-07-16 2017-07-13 Apple Inc. Design and construction of non-rectangular batteries
US20170229745A1 (en) * 2014-08-21 2017-08-10 Lg Chem, Ltd. Battery cell having improved cooling performance
JPWO2016092889A1 (en) * 2014-12-09 2017-09-21 日本碍子株式会社 Battery-powered device
WO2017208531A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Secondary battery
US9929393B2 (en) 2015-09-30 2018-03-27 Apple Inc. Wound battery cells with notches accommodating electrode connections
CN107925123A (en) * 2015-08-28 2018-04-17 Jenax股份有限公司 Secondary cell and preparation method thereof
WO2018100846A1 (en) * 2016-11-29 2018-06-07 株式会社村田製作所 Secondary battery and device
WO2018100927A1 (en) * 2016-11-29 2018-06-07 株式会社村田製作所 Secondary cell and device
WO2018100842A1 (en) * 2016-11-29 2018-06-07 株式会社村田製作所 Secondary battery
JP2018526798A (en) * 2015-11-30 2018-09-13 エルジー・ケム・リミテッド Battery cell with atypical structure with improved sealing reliability of cell case
US10186735B2 (en) * 2015-12-21 2019-01-22 Intel Corporation Void filling battery
JP2019507963A (en) * 2016-01-14 2019-03-22 ヴィスハイ スピローグ,インコーポレーテッド Low profile flat plate wet electrolytic tantalum capacitor
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018917A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Stacked battery, and battery pack
AU2015202067B2 (en) * 2010-07-16 2017-07-13 Apple Inc. Design and construction of non-rectangular batteries
US11024887B2 (en) 2010-07-16 2021-06-01 Apple Inc. Construction of non-rectangular batteries
EP3026729B1 (en) * 2010-07-16 2019-02-27 Apple Inc. Design and construction of non-rectangular batteries
EP2593981B1 (en) * 2010-07-16 2015-11-25 Apple Inc. Design and construction of non-rectangular batteries
US20190074549A1 (en) * 2010-07-16 2019-03-07 Apple Inc. Design and construction of non-rectangular batteries
US10135097B2 (en) 2010-07-16 2018-11-20 Apple Inc. Construction of non-rectangular batteries
WO2013031148A1 (en) 2011-08-29 2013-03-07 パナソニック株式会社 Thin battery
JP2013048510A (en) * 2011-08-29 2013-03-07 Panasonic Corp Battery device and operation method thereof
EP2795711A4 (en) * 2011-12-20 2015-10-28 Nokia Technologies Oy Apparatus for storing electrical energy and portable electronic device
CN104081574A (en) * 2011-12-20 2014-10-01 诺基亚公司 Apparatus for storing electrical energy and portable electronic device
US9589737B2 (en) 2011-12-20 2017-03-07 Nokia Technologies Oy Apparatus for storing electrical energy and portable electronic device
US9425440B2 (en) 2012-03-14 2016-08-23 Lg Chem, Ltd. Compact battery cell having improved durability and battery pack comprising the same
KR101383629B1 (en) 2012-03-14 2014-04-14 주식회사 엘지화학 Battery Cell Havig Through Hole and Battery Pack Comprising The Same
WO2013137611A1 (en) * 2012-03-14 2013-09-19 주식회사 엘지화학 Compact battery cell having enhanced durability, and battery pack comprising same
CN104737322A (en) * 2012-10-18 2015-06-24 苹果公司 Three-dimensional non-rectangular battery cell structures
US20140113184A1 (en) * 2012-10-18 2014-04-24 Apple Inc. Three-dimensional non-rectangular battery cell structures
JP2015537338A (en) * 2013-02-05 2015-12-24 エルジー・ケム・リミテッド Battery cell including step structure
US10014556B2 (en) 2013-02-05 2018-07-03 Lg Chem, Ltd. Battery cell including stepped structure
KR101619604B1 (en) 2013-09-26 2016-05-10 주식회사 엘지화학 Method of manufacturing electrode assembly and secondary battery
CN110010975A (en) * 2013-09-26 2019-07-12 株式会社Lg化学 The method for manufacturing electrode assembly and lithium secondary battery
WO2015046803A1 (en) * 2013-09-26 2015-04-02 주식회사 엘지화학 Method for manufacturing electrode assembly and secondary battery
TWI508349B (en) * 2013-09-26 2015-11-11 Lg Chemical Ltd Methods of preparing electrode assembly and secondary battery
US9893376B2 (en) 2013-09-26 2018-02-13 Lg Chem, Ltd. Methods of preparing electrode assembly and secondary battery
US11626637B2 (en) 2014-05-23 2023-04-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery comprising the opening
US10586954B2 (en) 2014-05-23 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Electronic device including secondary battery
JP2016001604A (en) * 2014-05-23 2016-01-07 株式会社半導体エネルギー研究所 Electronic apparatus equipped with secondary battery
JP2017527950A (en) * 2014-08-21 2017-09-21 エルジー・ケム・リミテッド Battery cell with improved cooling performance
US20170229745A1 (en) * 2014-08-21 2017-08-10 Lg Chem, Ltd. Battery cell having improved cooling performance
US10249919B2 (en) * 2014-08-21 2019-04-02 Lg Chem, Ltd. Battery cell having improved cooling performance
JPWO2016092889A1 (en) * 2014-12-09 2017-09-21 日本碍子株式会社 Battery-powered device
US10581114B2 (en) 2014-12-09 2020-03-03 Ngk Insulators, Ltd. Battery-equipped device
JPWO2017033765A1 (en) * 2015-08-26 2018-05-24 富士フイルム株式会社 Electrode sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery
WO2017033765A1 (en) * 2015-08-26 2017-03-02 富士フイルム株式会社 Method for producing electrode sheet for all-solid-state secondary batteries and method for manufacturing all-solid-state secondary battery
CN107925123A (en) * 2015-08-28 2018-04-17 Jenax股份有限公司 Secondary cell and preparation method thereof
JP2018529193A (en) * 2015-08-28 2018-10-04 ジェナックス インコーポレイテッド Secondary battery and manufacturing method thereof
US9929393B2 (en) 2015-09-30 2018-03-27 Apple Inc. Wound battery cells with notches accommodating electrode connections
US10790478B2 (en) 2015-11-30 2020-09-29 Lg Chem, Ltd. Battery cell of irregular structure with improved sealing reliability of cell case
JP2018526798A (en) * 2015-11-30 2018-09-13 エルジー・ケム・リミテッド Battery cell with atypical structure with improved sealing reliability of cell case
US10186735B2 (en) * 2015-12-21 2019-01-22 Intel Corporation Void filling battery
JP7032326B2 (en) 2016-01-14 2022-03-08 ヴィスハイ スピローグ,インコーポレーテッド Low profile flat plate wet electrolytic tantalum capacitor
JP2019507963A (en) * 2016-01-14 2019-03-22 ヴィスハイ スピローグ,インコーポレーテッド Low profile flat plate wet electrolytic tantalum capacitor
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
US11784302B2 (en) 2016-02-26 2023-10-10 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
JPWO2017208531A1 (en) * 2016-05-31 2018-10-04 株式会社村田製作所 Secondary battery
US11342590B2 (en) 2016-05-31 2022-05-24 Murata Manufacturing Co., Ltd. Secondary battery
WO2017208531A1 (en) * 2016-05-31 2017-12-07 株式会社村田製作所 Secondary battery
WO2018100842A1 (en) * 2016-11-29 2018-06-07 株式会社村田製作所 Secondary battery
WO2018100927A1 (en) * 2016-11-29 2018-06-07 株式会社村田製作所 Secondary cell and device
WO2018100846A1 (en) * 2016-11-29 2018-06-07 株式会社村田製作所 Secondary battery and device
JPWO2018100842A1 (en) * 2016-11-29 2019-04-04 株式会社村田製作所 Secondary battery
US11990586B2 (en) 2016-11-29 2024-05-21 Murata Manufacturing Co., Ltd. Secondary battery

Similar Documents

Publication Publication Date Title
JP2000285881A (en) Thin battery and its manufacture
KR102535804B1 (en) Secondary battery, electronic device, and vehicle
JP2020191293A (en) Thin electrochemical cell
JP2023027297A (en) Electronic apparatus
KR102599733B1 (en) Coin-type battery and manufacturing method thereof
US20110045355A1 (en) Electrode for lithium battery and lithium battery
JP4293501B2 (en) Electrochemical devices
JP2004503910A (en) IC card with thin battery
WO2003043105A1 (en) Electric cell
CN111864257B (en) All-solid-state battery and method for manufacturing all-solid-state battery
JP2013030385A (en) Laminate battery
KR20150049261A (en) Secondary Battery and Manufacturing Method thereof
US20210267063A1 (en) Method of Direct Embedding a Lithium Ion Battery on a Flexible Printed Circuit Board
US9099252B2 (en) Apparatus and associated methods
JP4211623B2 (en) Electrode laminated battery
JP2000195482A (en) Sheet-shaped battery
JP2001015152A (en) Fully solid layer built cell
JP5327020B2 (en) All solid battery
JP2004288571A (en) Water-based metal-air cell and electronic apparatus using the same
JP4465790B2 (en) Battery manufacturing method
US11251483B2 (en) Method of preparing an electrochemical cell
JP2003257393A (en) Electrochemical device
JP2000021387A (en) Sheet type battery
JP4821043B2 (en) Electrochemical devices
JP2002245999A (en) Electro-chemical device and case