JP2000284117A - Grid polarizer and its manufacture - Google Patents

Grid polarizer and its manufacture

Info

Publication number
JP2000284117A
JP2000284117A JP11088245A JP8824599A JP2000284117A JP 2000284117 A JP2000284117 A JP 2000284117A JP 11088245 A JP11088245 A JP 11088245A JP 8824599 A JP8824599 A JP 8824599A JP 2000284117 A JP2000284117 A JP 2000284117A
Authority
JP
Japan
Prior art keywords
grid
light
grid polarizer
parallel
grid pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11088245A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
聡史 鈴木
Yasuhiro Yasuma
康浩 安間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP11088245A priority Critical patent/JP2000284117A/en
Publication of JP2000284117A publication Critical patent/JP2000284117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability, to actualize a beautifully-sectioned grid struc ture, to substantially shorten grid cycles, and to improve a logical characteristic limit value although no contact metal is needed and a single metal material is used. SOLUTION: The grid polarizer has grid patterns on one-side surfaces of 1st and 2nd light-transmissive substrates (glass substrates 10 and 14) by arraying many copper thin wires 12 and 16 in parallel; and the grid pattern formation surfaces of the 1st and 2nd light-transmissive substrates face each other and both the grid patterns are almost parallel to each other and are joined together with an optical adhesive 18 interposed between them. Both the grid patterns are preferably different in cycle from each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属グリッドによ
って単一偏光を作り出すグリッド偏光子及びその製造方
法に関し、更に詳しく述べると、多数本の銅細線を平行
に配列したグリッドパターンを有する2枚の光透過性基
板を対向させて光学接着剤で貼り合わせた構造のグリッ
ド偏光子及びその製造方法に関するものである。このグ
リッド偏光子は、光通信や光計測などの分野で有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grid polarizer for producing single polarized light by a metal grid and a method of manufacturing the same, and more particularly, to a grid polarizer having a grid pattern in which a large number of fine copper wires are arranged in parallel. The present invention relates to a grid polarizer having a structure in which light-transmitting substrates are opposed to each other and bonded with an optical adhesive, and a method for manufacturing the same. This grid polarizer is useful in fields such as optical communication and optical measurement.

【0002】[0002]

【従来の技術】光通信幹線系のレーザダイオードの直後
には、反射戻り光により発振源(レーザダイオード)が
不安定になるのを防ぐために、光アイソレータが組み込
まれている。信号光の偏光面の偏光度に合わせて設置す
る必要がある偏波依存型光アイソレータは、一例とし
て、45度ファラデー回転子の光軸方向の前後2箇所
に、偏光面が互いに45度傾いた偏光子を設置した構成
になっており、これによって順方向の光の通過は許容す
るが、逆方向の光は遮断する特性を発現させる。
2. Description of the Related Art An optical isolator is incorporated immediately after a laser diode in an optical communication trunk system in order to prevent an oscillation source (laser diode) from becoming unstable due to reflected return light. As an example, a polarization dependent optical isolator that needs to be installed in accordance with the degree of polarization of the polarization plane of the signal light has, for example, two polarization planes inclined 45 degrees before and after the 45-degree Faraday rotator in the optical axis direction. The configuration is such that a polarizer is provided, which allows the passage of light in the forward direction, but blocks the light in the reverse direction.

【0003】このような偏光依存型光アイソレータ用の
偏光子の一つにグリッド偏光子がある。これは、多数本
の線状金属(ワイヤ)を一定の周期で平行に配列したグ
リッド構造を有する偏光子であり、偏光面を自由に設定
できる特徴がある。金属のような導電率の高い材料から
なるグリッドパターンの周期(グリッド周期)を、信号
光の波長よりも小さくすると、金属細線に対して平行に
振動する電界ベクトルの成分を選択的に反射又は吸収す
る性質が得られる。つまり、グリッド周期が入射光の波
長より短い場合に、金属細線に対して平行な偏光成分
(P偏光)は反射され、垂直な偏光成分(S偏光)は透
過するため、単一偏光を作り出す偏光子として機能する
のである。
One of the polarizers for such a polarization-dependent optical isolator is a grid polarizer. This is a polarizer having a grid structure in which a large number of linear metals (wires) are arranged in parallel at a fixed period, and has a feature that a polarization plane can be freely set. When the period (grid period) of a grid pattern made of a material having high conductivity such as metal is made smaller than the wavelength of the signal light, the component of the electric field vector vibrating in parallel to the thin metal wire is selectively reflected or absorbed. Is obtained. That is, when the grid period is shorter than the wavelength of the incident light, the polarized light component (P-polarized light) parallel to the thin metal wire is reflected, and the polarized light component (S-polarized light) perpendicular to the thin metal wire is transmitted. It functions as a child.

【0004】ところで光通信の分野では、通信信号に近
赤外光が用いられており、その波長は、例えば1.31
μmあるいは1.55μmである。従って、そのような
近赤外光用のグリッド偏光子では、グリッド周期を非常
に短くする必要があり、サブミクロンオーダの微細加工
技術が要求される。そこでガラス基板にフォトリソグラ
フィ技術を利用して多数本の金細線を平行に配列したグ
リッドパターンを形成することが試みられている。グリ
ッドパターンを形成するには、ウエットエッチング法や
リフトオフ法などの方法もあるが、現状ではドライエッ
チング法以外に微細なグリッドパターンを形成できる技
術はない。典型的には、マスク材としてフォトレジスト
を使用し、イオンミリング法(イオンビームエッチング
法)で行っている。
In the field of optical communication, near-infrared light is used as a communication signal, and its wavelength is, for example, 1.31.
μm or 1.55 μm. Therefore, in such a grid polarizer for near-infrared light, it is necessary to make the grid period extremely short, and a fine processing technology on the order of submicrons is required. Therefore, it has been attempted to form a grid pattern in which a large number of fine gold wires are arranged in parallel on a glass substrate by using photolithography technology. There are methods such as a wet etching method and a lift-off method for forming a grid pattern, but at present, there is no technique other than the dry etching method that can form a fine grid pattern. Typically, photoresist is used as a mask material, and ion milling (ion beam etching) is used.

【0005】[0005]

【発明が解決しようとする課題】現在、グリッド材料と
しては、導電率が高く且つ化学的に安定な金(Au)が
用いられ、基板材料としては光学ガラスが採用されてい
る。ところが、ガラス基板に対する金の蒸着膜は、付着
力が非常に小さいため実用的でない。銀(Ag)や白金
(Pt)も同様の問題がある。そこで、通常、金とガラ
ス基板の間に、コンタクトメタル(例えばクロム(C
r)やニッケル(Ni)等)の薄膜を介在させる手法が
用いられる。しかし、この手法は、単に工数が増えるば
かりでなく、後工程で細線に加工する際のミリングレー
トが異質の材料の間で変動し、細線の幅の制御が困難に
なる問題が生じる。
At present, gold (Au), which has high conductivity and is chemically stable, is used as a grid material, and optical glass is used as a substrate material. However, a gold vapor deposition film on a glass substrate is not practical because it has a very small adhesive force. Silver (Ag) and platinum (Pt) have similar problems. Therefore, usually, a contact metal (for example, chromium (C
r) or nickel (Ni)). However, this method not only increases the number of steps but also causes a problem that the milling rate when processing into a fine wire in a subsequent process varies between different materials, and it becomes difficult to control the width of the fine wire.

【0006】グリッド材料とコンタクトメタル材料につ
いて、グリッド形成のために必要な特性を調査した結果
を表1に示す。試料は、イオンクリーニングを5分間行
い、基板加熱温度を250℃にするという条件で、蒸着
法により作製した。表1から分かるように、金とクロム
の組み合わせは、工数が増えるにしても、化学的安定
性、電気抵抗、及び付着力の点では好ましいが、ミリン
グレートが極端に異なるため、理想的な細線断面形状を
実現し難く、イオンミリングのエンドポイント制御が難
しい。
[0006] Table 1 shows the results of investigations on the characteristics required for grid formation for the grid material and the contact metal material. The sample was prepared by vapor deposition under the condition that ion cleaning was performed for 5 minutes and the substrate heating temperature was set to 250 ° C. As can be seen from Table 1, the combination of gold and chromium is preferable in terms of chemical stability, electric resistance, and adhesion even if the number of steps is increased. It is difficult to realize a cross-sectional shape, and it is difficult to control the end point of ion milling.

【0007】[0007]

【表1】 [Table 1]

【0008】また、フォトレジストをマスク材として使
用するイオンミリングによる細線微細加工方法では、細
線に加工し有機溶剤で洗浄した後でもフォトレジストが
金属細線上に残ってしまうことがある。この残存するフ
ォトレジストは、信号光を散乱させてしまうために透過
損失が増加する。フォトレジストを除去するのに有効と
言われるO2 プラズマ後処理も、強く且つ長く行う必要
があるため、金属細線の断面形状が崩れてしまったり、
ガラス基板の表面状態に悪影響を与えるなどの別の問題
が生じる。
Further, in the fine wire fine processing method by ion milling using a photoresist as a mask material, the photoresist may remain on the fine metal wires even after processing into a fine wire and washing with an organic solvent. The remaining photoresist scatters the signal light and increases transmission loss. O 2 plasma post-treatment, which is said to be effective for removing photoresist, must be performed strongly and for a long time.
Another problem arises, such as adversely affecting the surface state of the glass substrate.

【0009】ところで、この種のグリッド偏光子は、原
理的にはグリッド周期が短いほど特性は良好となる。偏
光子の主要特性である消光比は、グリッド周期が信号光
波長の約1/10までは、短周期になるほど向上する。
しかし、代表的な信号光波長である1.31μm又は
1.55μmの1/10となると、約0.1μmという
超微細加工の領域であり、正確なパターン形成は極めて
困難となる。
By the way, in this kind of grid polarizer, in principle, the shorter the grid period, the better the characteristics. The extinction ratio, which is a main characteristic of the polarizer, increases as the grid period becomes shorter, up to about 1/10 of the signal light wavelength.
However, when it is 1/10 of the typical signal light wavelength of 1.31 μm or 1.55 μm, it is a region of ultra-fine processing of about 0.1 μm, and it is extremely difficult to form an accurate pattern.

【0010】更に、グリッド偏光子は、その理論的な限
界特性値が他の形式(例えば複合偏光プリズム)に比べ
て低いため、用途が限られている。消光比特性を向上さ
せるために、ガラス基板の両面に金属細線を形成する構
造も考えられるが、そのような構造にすると、光アイソ
レータの他の重要特性である透過損失までもが倍化して
しまうため、効果が乏しい。
[0010] Furthermore, grid polarizers have limited applications because their theoretical critical characteristic values are lower than those of other types (for example, composite polarizing prisms). In order to improve the extinction ratio characteristics, a structure in which fine metal wires are formed on both surfaces of the glass substrate is also conceivable, but such a structure doubles the transmission loss, another important characteristic of the optical isolator. Therefore, the effect is poor.

【0011】本発明の目的は、コンタクトメタルを必要
とせず単一の金属材料を使用しているにもかかわらず、
信頼性が高く且つ断面形状が均一できれいなグリッド構
造を実現できるグリッド偏光子を提供することである。
本発明の他の目的は、グリッド周期を実質的に短縮で
き、理論的な特性限界値を向上できるグリッド偏光子を
提供することである。本発明の更に他の目的は、信頼性
が高く、実質的なグリッド周期が短いグリッド偏光子
を、安価に且つ容易に製造できる方法を提供することで
ある。
An object of the present invention is to use a single metal material without the need for a contact metal.
An object of the present invention is to provide a grid polarizer that can realize a clean grid structure with high reliability and a uniform cross-sectional shape.
Another object of the present invention is to provide a grid polarizer that can substantially shorten the grid period and improve the theoretical characteristic limit. Still another object of the present invention is to provide a method for manufacturing a highly reliable grid polarizer having a short grid period at a low cost and easily.

【0012】[0012]

【課題を解決するための手段】本発明は、第1及び第2
の光透過性基板の片面にそれぞれ多数本の銅細線を平行
に配列したグリッドパターンを形成し、それら第1及び
第2の光透過性基板はグリッドパターン形成面が対向し
且つ両方のグリッドパターンがほぼ平行となるように配
置され、間に光学接着剤を介在させて接合一体化してな
るグリッド偏光子である。
SUMMARY OF THE INVENTION The present invention provides first and second embodiments.
A grid pattern in which a large number of thin copper wires are arranged in parallel on one side of the light-transmitting substrate is formed, and the first and second light-transmitting substrates have a grid pattern forming surface facing each other and both grid patterns are This is a grid polarizer that is arranged so as to be substantially parallel, and is joined and integrated with an optical adhesive therebetween.

【0013】また本発明は、光透過性基板の片面上に銅
の薄膜を形成し、硬化時の屈折率が該光透過性基板とほ
ぼ等しいフォトレジストを用いたフォトリソグラフィ技
術によりイオンミリング法で多数本の銅細線を平行に配
列したグリッドパターンを形成し、その光透過性基板を
2枚、グリッドパターン形成面が対向し且つ互いにほぼ
平行となるように配置し、前記光透過性基板と屈折率が
ほぼ等しい光学接着剤を用いて貼り合わせるグリッド偏
光子の製造方法である。
The present invention also provides an ion milling method using a photolithography technique using a photoresist in which a copper thin film is formed on one surface of a light-transmitting substrate and the refractive index at the time of curing is substantially equal to the light-transmitting substrate. A grid pattern in which a large number of fine copper wires are arranged in parallel is formed, and two light-transmitting substrates are arranged so that the grid pattern forming surfaces face each other and are substantially parallel to each other. This is a method of manufacturing a grid polarizer to be bonded using an optical adhesive having almost the same ratio.

【0014】金属グリッド材料に高い導電率の銅を用い
ることで、コンタクトメタルを用いなくても基板材料
(例えば光学ガラス)への高い付着力が発現する。銅の
化学的に不安定である問題は、2枚の光透過性基板と光
学接着剤でサンドイッチ構造にして大気から遮断するこ
とで解決している。
By using high conductivity copper for the metal grid material, a high adhesion to a substrate material (for example, optical glass) is exhibited without using a contact metal. The problem of copper being chemically unstable has been solved by forming a sandwich structure between two light-transmitting substrates and an optical adhesive and shielding it from the atmosphere.

【0015】これらにおいて、第1及び第2の光透過性
基板に、グリッドパターンの周期が異なるものを形成
し、それらを組み合わせると、実質的に超短周期とな
る。例えば、目標とする周期0.1μmのグリッドパタ
ーンは実現困難であっても、2枚の光透過性基板にそれ
ぞれ周期0.3μmと0.4μmのグリッドパターンを
形成することは比較的容易である。この2種類の周期の
グリッドパターンをもつ光透過性基板を重ね合わせるこ
とにより、周期1.2μmで1サイクルのパターンが出
現する。信号光の入出射方向から見た場合、1サイクル
中で銅細線の間隔が0〜0.3μmと変化しているが、
0μmの箇所でも偏光子の厚さ方向で銅細線は独立して
いる(短絡していない)ため、所定の機能を果たす。マ
クロな範囲(信号光の通る有効径:例えば直径100μ
m)で見れば、短周期の同一パターンの繰り返しが多く
出現するため、光学特性としては超短周期のグリッド偏
光子と同等の値が得られる。
In these, when the first and second light-transmitting substrates are formed with different periods of the grid pattern, and they are combined, the period becomes substantially ultra-short. For example, although it is difficult to achieve a target grid pattern with a period of 0.1 μm, it is relatively easy to form a grid pattern with a period of 0.3 μm and a period of 0.4 μm on two light-transmitting substrates, respectively. . By superposing the light-transmitting substrates having the two types of periodic grid patterns, a one-cycle pattern with a period of 1.2 μm appears. When viewed from the input / output direction of the signal light, the interval between the copper thin wires changes from 0 to 0.3 μm in one cycle,
Even at the point of 0 μm, the copper thin wire is independent (not short-circuited) in the thickness direction of the polarizer, and thus performs a predetermined function. Macro range (effective diameter through which signal light passes: for example, 100 μm in diameter
According to m), since the same pattern having a short cycle repeats frequently, a value equivalent to that of a grid polarizer having a very short cycle can be obtained as an optical characteristic.

【0016】因みに、光透過性基板の両面にグリッドを
形成すると、消光比は高くなるが、透過損失も増大して
しまう。しかし、本発明では2平面にあるグリッドパタ
ーンが偏光子の厚さ方向で非常に接近した構造となるた
めに、理論計算では、使用する信号光波長に比べて十分
に小さい値(約1/10)まで2次曲線的な光学特性の
向上が見られるので効果は大きい。
By the way, if grids are formed on both sides of the light-transmitting substrate, the extinction ratio increases, but the transmission loss also increases. However, in the present invention, since the grid patterns on the two planes have a structure very close in the thickness direction of the polarizer, the theoretical calculation shows that the grid pattern is sufficiently small (approximately 1/10) compared to the signal light wavelength used. The effect is great because the improvement of the optical characteristic in a quadratic curve is observed up to ()).

【0017】光学接着剤としては、光透過性基板とほぼ
等しい屈折率の紫外線硬化型接着剤が好ましい。フォト
リソグラフィ技術によるグリッドパターンの形成は、イ
オンミリング法が最適である。
As the optical adhesive, an ultraviolet curable adhesive having a refractive index substantially equal to that of the light transmitting substrate is preferable. The ion milling method is optimal for forming a grid pattern by photolithography.

【0018】[0018]

【発明の実施の形態】図1は本発明に係るグリッド偏光
子の一例を示す説明図である。Aは組み立て時の状態を
示す説明図であり、Bは組み立て後の断面図である。第
1のガラス基板10の片面に、多数本の銅細線12を平
行に配列したグリッドパターンを形成する。また、第2
のガラス基板14の片面にも、多数本の銅細線16を平
行に配列したグリッドパターンを形成する。これら第1
のガラス基板10及び第2のガラス基板14に形成する
グリッドパターンは、互い周期が異なるようにする。そ
して、それら第1のガラス基板10と第2のガラス基板
14を、それらのグリッドパターン形成面が対向し且つ
両方のグリッドパターンがほぼ平行となるように僅かの
間隙をおいて配置し、間に紫外線硬化型光学接着剤18
を介在させて接合一体化する。
FIG. 1 is an explanatory view showing one example of a grid polarizer according to the present invention. A is an explanatory view showing a state at the time of assembly, and B is a cross-sectional view after assembly. On one surface of the first glass substrate 10, a grid pattern in which a large number of fine copper wires 12 are arranged in parallel is formed. Also, the second
On one surface of the glass substrate 14, a grid pattern in which a large number of fine copper wires 16 are arranged in parallel is formed. These first
The grid patterns formed on the glass substrate 10 and the second glass substrate 14 have different periods from each other. Then, the first glass substrate 10 and the second glass substrate 14 are arranged with a slight gap between them so that their grid pattern forming surfaces face each other and both grid patterns are substantially parallel to each other. UV curable optical adhesive 18
And are joined and integrated.

【0019】図1には示していないが、接合したグリッ
ド偏光子の端面で銅細線が露出するような場合には、端
面に樹脂を塗布するなどして大気から遮断し保護するの
が望ましい。また、第1のガラス基板及び第2のガラス
基板のグリッドパターン形成面とは反対側の面(即ち、
グリッド偏光子の表裏両面)に、それぞれ反射防止膜を
形成することも有効である。
Although not shown in FIG. 1, in the case where the copper fine wire is exposed at the end face of the joined grid polarizer, it is desirable to protect the end face of the grid polarizer by coating the end face with a resin or the like so as to shield it from the atmosphere. Also, the surfaces of the first glass substrate and the second glass substrate on the opposite side to the grid pattern forming surface (that is,
It is also effective to form an antireflection film on each of the front and back surfaces of the grid polarizer).

【0020】光透過性基板としては、通常、上記のよう
に両方共に光学ガラス基板を使用する。しかし、光透過
性基板の一方に光ファイバのコリメータレンズを用いた
り、光透過性基板の一方にファラデー素子を用いてもよ
く、それによって光学部品の共用化と小型化を図ること
もできる。
As the light-transmitting substrate, an optical glass substrate is usually used for both as described above. However, a collimator lens of an optical fiber may be used for one of the light-transmitting substrates, or a Faraday element may be used for one of the light-transmitting substrates, so that common use of optical components and miniaturization can be achieved.

【0021】[0021]

【実施例】図2のAに示すように、直径1インチ、厚さ
0.5mmの光学ガラス基板(BK7)20を複数枚用意
し、洗浄した後、真空蒸着装置を用いて銅(Cu)薄膜
22を膜厚1000Åに蒸着した。蒸着条件は、事前の
引き倒し試験データにより付着強度の高い結果が得られ
る基板加熱温度と加速電圧などを選択した。
EXAMPLE As shown in FIG. 2A, a plurality of optical glass substrates (BK7) 20 having a diameter of 1 inch and a thickness of 0.5 mm were prepared and washed, and then copper (Cu) was obtained using a vacuum deposition apparatus. A thin film 22 was deposited to a thickness of 1000 °. As the vapor deposition conditions, a substrate heating temperature, an acceleration voltage, and the like were selected so as to obtain a result with a high adhesion strength based on pull-down test data in advance.

【0022】スピンコータ装置を使用して、各試料の表
面へ感光剤フォトレジスト24を塗布した後、クリーン
オーブン内でプリベーク処理を施した。
Using a spin coater, a photosensitive photoresist 24 was applied to the surface of each sample, and then prebaked in a clean oven.

【0023】He−Cdレーザを用いて光学系を組み、
二光束干渉露光法により平行パターンの露光を行った。
その際、試料表面への光ビームの入射角度を調整し、2
種類の異なる干渉周期(例えば、0.3μmと0.4μ
m)をそれぞれ数枚の試料へ施した。
An optical system is assembled using a He-Cd laser,
The parallel pattern was exposed by the two-beam interference exposure method.
At this time, the angle of incidence of the light beam on the sample surface is adjusted,
Different types of interference periods (eg, 0.3 μm and 0.4 μm
m) was applied to several samples each.

【0024】予め良好なアスペクト比のマスク形状が得
られる現像液濃度と現像時間の設定を調査し、それに基
づき現像した(図2のB参照)。マスクとなるフォトレ
ジストを符号26で示す。その後、ポストベークを行
い、硬化処理した。
The setting of the developing solution concentration and the developing time for obtaining a mask shape having a good aspect ratio was investigated in advance, and development was performed based on the investigation (see FIG. 2B). A photoresist serving as a mask is indicated by reference numeral 26. Thereafter, post-baking was performed and a curing treatment was performed.

【0025】各試料に対して、Arイオンによるドライ
エッチング(イオンミリング)を行い、図2のCに示す
ような銅細線28の平行パターンを形成した。銅細線上
に残存する余分なフォトレジストは、アセトンやIPA
等の溶剤で浸漬洗浄し、可能な限り除去した。
Each sample was subjected to dry etching (ion milling) using Ar ions to form a parallel pattern of copper fine wires 28 as shown in FIG. 2C. Excess photoresist remaining on the copper fine wire may be acetone or IPA.
The substrate was immersed and washed in a solvent such as that described above, and removed as much as possible.

【0026】得られた試料を走査型電子顕微鏡(SE
M)で観察したところ、良好なグリッド(銅細線の平行
パターン)が確認できた。詳細に見ると、銅細線が露出
している部分もあるが、一部分では銅細線の上にフォト
レジストが残存しているのも認められた。
The obtained sample was subjected to a scanning electron microscope (SE).
Observation in M) confirmed a good grid (parallel pattern of copper fine lines). When it looked at in detail, although a copper thin wire was exposed in some parts, it was also recognized that a photoresist remained on the copper thin wire in a part.

【0027】試料表面(銅細線の平行パターン形成面)
に、ガラス基板と同じ屈折率をもつ紫外線硬化型の光学
接着剤を塗布し、周期の異なる試料表面同士が対向する
ように接合させた。硬化開始前の状態で光学特性測定系
に組み入れ、透過光パワーを連続的に確認しながら2枚
の試料を面内方向で相対的に回転させることで、両試料
の銅細線同士が平行となるように微調整した。そして、
その状態を保持しながら、紫外線照射を行うことで接着
剤を硬化処理した。また、必要に応じて、更に加熱する
ことで、より完全に硬化処理することもできる。
Sample surface (copper thin wire parallel pattern forming surface)
Then, an ultraviolet curable optical adhesive having the same refractive index as that of the glass substrate was applied thereto, and bonded so that sample surfaces having different periods faced each other. By incorporating the sample into the optical property measurement system before curing starts and rotating the two samples relatively in the in-plane direction while continuously checking the transmitted light power, the thin copper wires of both samples become parallel. Tweaked as follows. And
While maintaining the state, the adhesive was cured by irradiating ultraviolet rays. Further, if necessary, a further complete curing treatment can be performed by further heating.

【0028】このようにして得られたグリッド偏光子に
ついて、走査型電子顕微鏡で断面観察したところ、銅細
線間などの微細加工部への気泡混入も見られないことが
確認できた。最後に、試料を縦横に切断して必要な大き
さにすることによって、グリッド偏光子が得られる。
When the cross section of the thus obtained grid polarizer was observed with a scanning electron microscope, it was confirmed that no bubbles were mixed in finely processed portions such as between copper fine wires. Finally, the grid polarizer is obtained by cutting the sample to the required size vertically and horizontally.

【0029】得られたグリッド偏光子の断面構造の一例
を図3に示す。ガラス基板20の片面に、それぞれ多数
本の銅細線28を平行に配列したグリッドパターンが形
成され、それら両ガラス基板のグリッドパターン形成面
が対向し且つ両方のグリッドパターンがほぼ平行となる
ように僅かな間隙をおいて配置する。銅細線28の上に
は有機溶剤洗浄では十分に除去されないフォトレジスト
26が残存することがあるが、O2 プラズマ後処理のよ
うな無理な除去処理は行わない。除去されないフォトレ
ジスト26が残存したまま、間に光学接着剤30を塗布
あるいは充填して接合一体化する。
FIG. 3 shows an example of a sectional structure of the obtained grid polarizer. On one surface of the glass substrate 20, a grid pattern in which a large number of copper fine wires 28 are arranged in parallel is formed, and the grid pattern forming surfaces of both glass substrates are slightly opposed so that the grid pattern forming surfaces are opposed to each other and both grid patterns are substantially parallel. Are arranged with a proper gap. Although the photoresist 26 that is not sufficiently removed by the organic solvent cleaning may remain on the copper fine wire 28, an unnecessary removal process such as an O 2 plasma post-process is not performed. With the photoresist 26 not removed remaining, the optical adhesive 30 is applied or filled therebetween to join and integrate.

【0030】上記の構成では、フォトレジストが残存し
ていても、それがほぼ同じ屈折率の光学接着剤で覆われ
ているため、信号光がフォトレジストに入射する際の透
過媒体の屈折率差を最小とし、境界面形状の影響を無効
化できるため、透過光の損失が抑えられる。
In the above configuration, even if the photoresist remains, it is covered with an optical adhesive having substantially the same refractive index, so that the difference in the refractive index of the transmission medium when the signal light enters the photoresist. Can be minimized, and the influence of the boundary surface shape can be nullified, so that the loss of transmitted light can be suppressed.

【0031】[0031]

【発明の効果】本発明は上記のように、酸化され易く製
品特性を維持できない等の理由で金属細線材料として採
用されていなかった銅を積極的に用いることで、 コンタクトメタルを介在させることなく、必要且つ十
分なガラス付着強度を発現させ得る。 銅一種類の単一層なので、ドライエッチング速度が高
く且つエッチングレートが一定であり、そのため理想的
な細線断面形状への加工が可能となるし、エンドポイン
ト制御が容易である。 等の効果が生じる。また、酸化され易いという問題は、
2枚の光透過性基板と光学接着剤でサンドイッチ構造と
して、大気から遮断することで解決できる。
As described above, according to the present invention, copper which has not been adopted as a metal fine wire material because it is easily oxidized and the product characteristics cannot be maintained can be used without using a contact metal. In addition, a necessary and sufficient glass adhesion strength can be exhibited. Since it is a single layer of one kind of copper, the dry etching rate is high and the etching rate is constant, so that processing into an ideal fine line cross-sectional shape is possible, and the endpoint control is easy. And the like. Also, the problem of easy oxidation is
The problem can be solved by forming a sandwich structure between two light-transmitting substrates and an optical adhesive and shielding the structure from the atmosphere.

【0032】本発明では、比較的容易に製造できる短周
期で且つその周期が異なる二種を貼り合わせることで、
実質的に超短周期が実現でき、偏光子の絶対特性の限界
値を高めることができる。
According to the present invention, two types having a short period and different periods which can be relatively easily manufactured are bonded to each other,
Substantially, a very short period can be realized, and the limit value of the absolute characteristics of the polarizer can be increased.

【0033】また本発明では、後工程で不要となった除
去困難なフォトレジストの周囲を、近似した屈折率をも
つ光学接着剤で覆うことで、 無理な除去工程を行うことによる製品への損傷を排除
できる。 例えば反射防止の成膜加工等を必要とせずに、光学部
材として理想的である無反射の環境を、金属細線の周囲
に作り出すことができる。そのため製品内部で信号光が
異なる構成部位へ入射する際の透過媒体の屈折率差を最
小にでき、境界面形状の影響を無効化できるため、透過
光の損失を抑えることができる。 完成後の製品切断加工の際にも、製品の重要構成部分
である銅細線構造を保護できる。 などの効果が生じる。
Further, in the present invention, the periphery of the photoresist which is unnecessary in the subsequent process and which is difficult to remove is covered with an optical adhesive having an approximate refractive index, so that damage to the product due to the unreasonable removal process is performed. Can be eliminated. For example, an anti-reflection environment ideal as an optical member can be created around a thin metal wire without the need for an anti-reflection film forming process or the like. Therefore, the difference in the refractive index of the transmission medium when the signal light enters different components inside the product can be minimized, and the influence of the boundary surface shape can be nullified, so that the loss of the transmitted light can be suppressed. Even when the product is cut after completion, the copper fine wire structure, which is an important component of the product, can be protected. And the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るグリッド偏光子の一例を示す説明
図。
FIG. 1 is an explanatory view showing an example of a grid polarizer according to the present invention.

【図2】グリッド偏光子の製造工程の一例を示す説明
図。
FIG. 2 is an explanatory view showing an example of a manufacturing process of a grid polarizer.

【図3】本発明に係るグリッド偏光子の他の例を示す断
面図。
FIG. 3 is a sectional view showing another example of the grid polarizer according to the present invention.

【符号の説明】[Explanation of symbols]

10 第1のガラス基板 12 銅細線 14 第2のガラス基板 16 銅細線 18 光学接着剤 DESCRIPTION OF SYMBOLS 10 1st glass substrate 12 Copper thin wire 14 2nd glass substrate 16 Copper thin wire 18 Optical adhesive

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2の光透過性基板の片面にそ
れぞれ多数本の銅細線を平行に配列したグリッドパター
ンを形成し、それら第1及び第2の光透過性基板はグリ
ッドパターン形成面が対向し且つ両方のグリッドパター
ンがほぼ平行となるように配置され、間に光学接着剤が
介在して接合一体化されていることを特徴とするグリッ
ド偏光子。
1. A grid pattern in which a large number of copper fine wires are arranged in parallel on one surface of a first and a second light-transmitting substrate, and the first and second light-transmitting substrates form a grid pattern. A grid polarizer, wherein surfaces are opposed to each other and both grid patterns are arranged substantially parallel to each other, and are integrally joined with an optical adhesive therebetween.
【請求項2】 第1の光透過性基板及び第2の光透過性
基板に形成したグリッドパターンは、周期が互いに異な
っている請求項1記載のグリッド偏光子。
2. The grid polarizer according to claim 1, wherein the grid patterns formed on the first light transmitting substrate and the second light transmitting substrate have different periods.
【請求項3】 光透過性基板の片面上に銅の薄膜を形成
し、硬化時の屈折率が、該光透過性基板とほぼ等しいフ
ォトレジストを用いたフォトリソグラフィ技術によりイ
オンミリング法で多数本の銅細線を平行に配列したグリ
ッドパターンを形成し、その光透過性基板を2枚、グリ
ッドパターン形成面が対向し且つ互いにほぼ平行となる
ように配置し、前記光透過性基板と屈折率がほぼ等しい
光学接着剤を用いて貼り合わせることを特徴とするグリ
ッド偏光子の製造方法。
3. A copper thin film is formed on one surface of a light-transmitting substrate, and a large number of the thin films are formed by ion milling by a photolithography technique using a photoresist having a refractive index substantially equal to that of the light-transmitting substrate during curing. A grid pattern in which thin copper wires are arranged in parallel is formed, and two light-transmitting substrates thereof are arranged so that the grid pattern forming surfaces face each other and are substantially parallel to each other. A method for manufacturing a grid polarizer, wherein the grid polarizer is bonded using substantially equal optical adhesives.
【請求項4】 2枚の光透過性基板には、グリッドパタ
ーンの周期が異なるものを形成し、それらを重ね合わ
せ、光学接着剤の硬化前の状態で面内方向に相対的に回
転させ、透過光パワーが最大となる状態で硬化処理する
請求項3記載のグリッド偏光子の製造方法。
4. The two light-transmitting substrates are formed with different grid pattern periods, are superposed, and are relatively rotated in the in-plane direction before the optical adhesive is cured. The method for producing a grid polarizer according to claim 3, wherein the curing treatment is performed in a state where the transmitted light power is maximized.
【請求項5】 光学接着剤が紫外線硬化型接着剤である
請求項3又は4記載のグリッド偏光子の製造方法。
5. The method for producing a grid polarizer according to claim 3, wherein the optical adhesive is an ultraviolet curable adhesive.
JP11088245A 1999-03-30 1999-03-30 Grid polarizer and its manufacture Pending JP2000284117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11088245A JP2000284117A (en) 1999-03-30 1999-03-30 Grid polarizer and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11088245A JP2000284117A (en) 1999-03-30 1999-03-30 Grid polarizer and its manufacture

Publications (1)

Publication Number Publication Date
JP2000284117A true JP2000284117A (en) 2000-10-13

Family

ID=13937479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11088245A Pending JP2000284117A (en) 1999-03-30 1999-03-30 Grid polarizer and its manufacture

Country Status (1)

Country Link
JP (1) JP2000284117A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025325A1 (en) * 2000-09-20 2002-03-28 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
WO2006008666A1 (en) * 2004-07-13 2006-01-26 Koninklijke Philips Electronics N.V. Polarizing device
WO2005123277A3 (en) * 2004-06-11 2006-04-27 Nanoopto Corp Optical films and methods of making the same
JP2006126464A (en) * 2004-10-28 2006-05-18 Ushio Inc Polarizer unit and polarized light irradiation device
US7113336B2 (en) * 2002-12-30 2006-09-26 Ian Crosby Microlens including wire-grid polarizer and methods of manufacture
JP2006527379A (en) * 2003-06-12 2006-11-30 キネテイツク・リミテツド Radiation detector
JP2006337860A (en) * 2005-06-03 2006-12-14 Ricoh Opt Ind Co Ltd Polarized beam splitting element, polarized beam splitting method, and optical device
WO2005101112A3 (en) * 2004-04-15 2007-02-08 Nanoopto Corp Optical films and methods of making the same
US7619816B2 (en) 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
US7813039B2 (en) 2004-12-06 2010-10-12 Moxtek, Inc. Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US7872803B2 (en) 2005-05-27 2011-01-18 Zeon Corporation Grid polarizing film, method for producing the film, optical laminate, method for producing the laminate, and liquid crystal display
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
JP2012048225A (en) * 2010-07-30 2012-03-08 Asahi Kasei E-Materials Corp Wire grid polarization plate and polarization beam splitter using the same
JP2012242356A (en) * 2011-05-24 2012-12-10 Denso Corp Radar apparatus
KR101340900B1 (en) 2007-04-10 2013-12-13 삼성디스플레이 주식회사 Wire grid polarizer having dual layer structure and method for fabricating the same
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
US8765360B2 (en) 2004-04-15 2014-07-01 Polarization Solutions, Llc Optical films and methods of making the same
US8873144B2 (en) 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
US8913320B2 (en) 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
JP2015222258A (en) * 2011-10-31 2015-12-10 日本精工株式会社 Manufacturing method of optical sensor
US9348076B2 (en) 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
CN110456438A (en) * 2019-06-27 2019-11-15 北海惠科光电技术有限公司 A kind of reflective polaroid and preparation method thereof and display panel

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025325A1 (en) * 2000-09-20 2002-03-28 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
US7002742B2 (en) 2000-09-20 2006-02-21 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
US7113336B2 (en) * 2002-12-30 2006-09-26 Ian Crosby Microlens including wire-grid polarizer and methods of manufacture
JP2006527379A (en) * 2003-06-12 2006-11-30 キネテイツク・リミテツド Radiation detector
US8765360B2 (en) 2004-04-15 2014-07-01 Polarization Solutions, Llc Optical films and methods of making the same
US8808972B2 (en) 2004-04-15 2014-08-19 Polarization Solutions, Llc Optical films and methods of making the same
WO2005101112A3 (en) * 2004-04-15 2007-02-08 Nanoopto Corp Optical films and methods of making the same
US7670758B2 (en) 2004-04-15 2010-03-02 Api Nanofabrication And Research Corporation Optical films and methods of making the same
WO2005123277A3 (en) * 2004-06-11 2006-04-27 Nanoopto Corp Optical films and methods of making the same
WO2006008666A1 (en) * 2004-07-13 2006-01-26 Koninklijke Philips Electronics N.V. Polarizing device
JP2006126464A (en) * 2004-10-28 2006-05-18 Ushio Inc Polarizer unit and polarized light irradiation device
JP4506412B2 (en) * 2004-10-28 2010-07-21 ウシオ電機株式会社 Polarizing element unit and polarized light irradiation device
US7813039B2 (en) 2004-12-06 2010-10-12 Moxtek, Inc. Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
US8027087B2 (en) 2004-12-06 2011-09-27 Moxtek, Inc. Multilayer wire-grid polarizer with off-set wire-grid and dielectric grid
US7619816B2 (en) 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
US7872803B2 (en) 2005-05-27 2011-01-18 Zeon Corporation Grid polarizing film, method for producing the film, optical laminate, method for producing the laminate, and liquid crystal display
JP2006337860A (en) * 2005-06-03 2006-12-14 Ricoh Opt Ind Co Ltd Polarized beam splitting element, polarized beam splitting method, and optical device
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
US8947772B2 (en) 2006-08-31 2015-02-03 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
KR101340900B1 (en) 2007-04-10 2013-12-13 삼성디스플레이 주식회사 Wire grid polarizer having dual layer structure and method for fabricating the same
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
JP2012048225A (en) * 2010-07-30 2012-03-08 Asahi Kasei E-Materials Corp Wire grid polarization plate and polarization beam splitter using the same
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
US9523805B2 (en) 2010-09-21 2016-12-20 Moxtek, Inc. Fine pitch wire grid polarizer
US8873144B2 (en) 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
US8913320B2 (en) 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
JP2012242356A (en) * 2011-05-24 2012-12-10 Denso Corp Radar apparatus
JP2015222258A (en) * 2011-10-31 2015-12-10 日本精工株式会社 Manufacturing method of optical sensor
US9726560B2 (en) 2011-10-31 2017-08-08 Nsk Ltd. Optical sensor, method for manufacturing optical sensor, optical encoder, torque detection apparatus, and electric power steering apparatus
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
US9348076B2 (en) 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
US9354374B2 (en) 2013-10-24 2016-05-31 Moxtek, Inc. Polarizer with wire pair over rib
US9632223B2 (en) 2013-10-24 2017-04-25 Moxtek, Inc. Wire grid polarizer with side region
CN110456438A (en) * 2019-06-27 2019-11-15 北海惠科光电技术有限公司 A kind of reflective polaroid and preparation method thereof and display panel

Similar Documents

Publication Publication Date Title
JP2000284117A (en) Grid polarizer and its manufacture
US6813077B2 (en) Method for fabricating an integrated optical isolator and a novel wire grid structure
KR100212088B1 (en) Optical fiber sensors and method for making the same
US5040863A (en) Optical isolator
EP1387190A1 (en) Polarizing device, and method for manufacturing the same
KR20040104694A (en) Optical isolators and methods of manufacturing using direct bonding
JP2003066229A (en) Stripe polarizer
US5546486A (en) Optical fiber end for application in an optical isolator and a method of manufacture thereof
WO2009130966A1 (en) Polarization glass, optical isolator and method for manufacturing polarization glass
JP2000304933A (en) Polarizing filter and its manufacture
KR100287596B1 (en) Photo Isolator
JPS5842003A (en) Polarizing plate
US20030227669A1 (en) Structured polarizer and method for making the same
JPH0384502A (en) Grid polarizer
JPH11142650A (en) Grid polarizer
CN111799533A (en) Terahertz angle filter with open double-ring structure and manufacturing method thereof
JP2000310750A (en) Optical isolator and optical module using same
JPH10300931A (en) Polarizing plate
JP2001350051A (en) Optical waveguide module and its manufacturing method
JP2006208710A (en) Optical isolator element, its manufacturing method, and fiber with optical isolator
JP2004061870A (en) Optical element and optical module using the same
DE112008000727T5 (en) Method for producing an optical waveguide substrate for surface mounting
JP3287871B2 (en) Printed circuit board manufacturing method
JPH10142558A (en) Optical isolator and its production
JP2003227931A (en) Polarizer incorporating optical component, method of manufacturing the same and method of combining linearly polarized wave using the same