JP2003066229A - Stripe polarizer - Google Patents

Stripe polarizer

Info

Publication number
JP2003066229A
JP2003066229A JP2001257615A JP2001257615A JP2003066229A JP 2003066229 A JP2003066229 A JP 2003066229A JP 2001257615 A JP2001257615 A JP 2001257615A JP 2001257615 A JP2001257615 A JP 2001257615A JP 2003066229 A JP2003066229 A JP 2003066229A
Authority
JP
Japan
Prior art keywords
striped
light
polarizer
light transmissive
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001257615A
Other languages
Japanese (ja)
Inventor
Mikio Kyomasu
幹雄 京増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001257615A priority Critical patent/JP2003066229A/en
Publication of JP2003066229A publication Critical patent/JP2003066229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such problems that because a grid polarizer has a structure of two light transmitting substrates having grids adhered with an UV resin, the light resistance of the adhesive is an important factor, that the thickness is hardly controlled by the adhesive and that alignment of grids in parallel to each other is difficult. SOLUTION: Stripe thin lines parallel to one another made of a metal and a light transmitting material covering the lines are deposited to form a multilayer on one surface of a light transmitting substrate, however, the stripe thin lines are arranged not to overlap the stripe thin lines in other layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、光通信等の送信モ
ジュールに用いられるレーザダイオードへの戻り光を防
止する目的に用いられるアイソレータの構成部品である
偏光子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer, which is a component of an isolator used for the purpose of preventing return light to a laser diode used in a transmission module for optical communication or the like.

【0002】[0002]

【従来の技術】従来、光通信、特に長距離通信等に用い
られるレーザモジュールは、出力変動の少ない、安定し
たレーザ発振が要求されているが、この安定発振を妨げ
る要因として、モジュール、ファイバー等からの戻り光
がある。この戻り光を除く部品として、偏波依存型アイ
ソレータがよく用いられている。
2. Description of the Related Art Conventionally, a laser module used for optical communication, particularly long-distance communication is required to have stable laser oscillation with a small output fluctuation. There is a return light from. A polarization dependent isolator is often used as a component excluding this return light.

【0003】このアイソレータは、偏光子、ファラデー
回転子、磁石から構成されており、これらの部材の低コ
スト化が光通信用送信モジュールの価格を低減させる上
から、大きな課題となっている。
This isolator is composed of a polarizer, a Faraday rotator and a magnet, and the cost reduction of these members poses a major problem in order to reduce the price of the transmission module for optical communication.

【0004】この解決策として、特開2000−284
117号公報記載のグリット偏光子が、最近、新たな素
子として注目されている。このような素子が検討され始
めた背景には、半導体集積回路の微細技術の発達に伴
い、これまで、銀粒子や銅粒子の延伸によってしか得る
事のできなかった細線を、エッチング技術により得られ
るようになってきた事による。
As a solution to this, Japanese Patent Laid-Open No. 2000-284
The grit polarizer disclosed in Japanese Patent Publication No. 117 has recently attracted attention as a new element. The reason why such devices have begun to be studied is that with the development of fine technology for semiconductor integrated circuits, fine lines, which could only be obtained by stretching silver particles or copper particles, can be obtained by etching technology. It started to happen.

【0005】図4、5に示すように、光透過性基板1に
銅のグリッド細線2を形成し、これとはピッチの異なる
グリッド細線2を有する他の光透過性基板1とを互いに
対向させ、これらをUV接着剤3により貼り合わせ、硬
化させることで偏光子を形成している。
As shown in FIGS. 4 and 5, a copper grid thin line 2 is formed on a light transmissive substrate 1, and another light transmissive substrate 1 having grid thin lines 2 having a pitch different from this is made to face each other. A polarizer is formed by bonding these with a UV adhesive 3 and curing them.

【0006】グリッド細線2の形成方法は、次のような
ものである。まず、イオンクリーニングを5分間行い、
基板加熱温度を250℃にし、銅薄膜を1000Å蒸着
する。この上に感光レジストを塗布し、2光束干渉露光
法により平行パターンの露光を行っている。このビーム
の入射角度を変化させることにより、干渉周期を変化さ
せている。感光したレジストを現像した後、ドライエッ
チングを行ない、グリッド細線2を形成している。
The method of forming the fine grid lines 2 is as follows. First, perform ion cleaning for 5 minutes,
The substrate heating temperature is set to 250 ° C. and a copper thin film is deposited by 1000Å. A photosensitive resist is applied on this, and a parallel pattern is exposed by the two-beam interference exposure method. The interference cycle is changed by changing the incident angle of this beam. After developing the exposed resist, dry etching is performed to form the grid fine lines 2.

【0007】この偏光子の原理は、多数本の線状金属
(グリッド細線2)を一定の周期で平行に配列したグリ
ッド構造を取り、導電率の高いグリッドパターンの周期
を信号光の波長より小さくすると、線状金属に対して平
行に振動する電界ベクトルの成分(p偏波)を選択的に
反射または吸収し、これに垂直な成分(s偏波)は吸収
されるため、単一偏光を作り出す偏光子として機能する
のである。
The principle of this polarizer is a grid structure in which a large number of linear metals (thin grid lines 2) are arranged in parallel at a constant period, and the period of the grid pattern having high conductivity is smaller than the wavelength of the signal light. Then, the component of the electric field vector (p-polarized wave) that oscillates parallel to the linear metal is selectively reflected or absorbed, and the component perpendicular to it (s-polarized wave) is absorbed, so that a single polarized light It functions as a polarizer to create.

【0008】[0008]

【発明が解決しようとする課題】従来の構造における課
題は、2つの光透過性基板1をUV樹脂3を用いて張り
合わせている点にある。1つは、UV樹脂3を用いてい
る点である。
The problem in the conventional structure is that the two light-transmissive substrates 1 are bonded together by using the UV resin 3. One is that the UV resin 3 is used.

【0009】アイソレータの価格を下げる有効な方法
は、部品の寸法を小さくする事であり、レーザのビーム
径は、現在、0.3〜1.0mmφの寸法となっている
が将来は、0.1〜0.2mmφに縮小されてゆくこと
が予想される。現在のレーザダイオードとの光結合パワ
ーは、5−10mWで、これを平方cm2当りに換算す
ると、0.64〜1.28W/cm2となる。これが、
将来的には小型化のために64〜12828W/cm2
となる。このように、光エネルギーが上がった場合、暴
露によるUV樹脂3の耐光性が問題となってくるのであ
る。また、2つの光透過性基板1を平行に位置合わせし
て接続する必要があり、このため、位置合わせの方法が
困難となる事や、UV光のエネルギーの不均一性による
硬化速度の違いによる内部応力の発生から基板寸法を大
きく取る事が出来ない欠点を有している。さらに、UV
樹脂3の厚みの制御が性能に影響を与えるという欠点も
有している。
An effective method of reducing the cost of the isolator is to reduce the size of the component, and the beam diameter of the laser is currently 0.3 to 1.0 mmφ, but in the future, it will be 0. It is expected that the size will be reduced to 1 to 0.2 mmφ. The current optical coupling power with the laser diode is 5 to 10 mW, which is 0.64 to 1.28 W / cm 2 when converted per square cm 2 . This is,
64-12828 W / cm 2 for miniaturization in the future
Becomes Thus, when the light energy increases, the light resistance of the UV resin 3 due to exposure becomes a problem. In addition, it is necessary to align and connect the two light-transmissive substrates 1 in parallel, which makes the alignment method difficult and causes a difference in curing speed due to non-uniformity of UV light energy. It has a drawback that the size of the substrate cannot be increased due to the generation of internal stress. Furthermore, UV
It also has a drawback that the control of the thickness of the resin 3 affects the performance.

【0010】[0010]

【課題を解決するための手段】上記に鑑みて本発明は、
光透過性基板の片面に、金属からなる互いに平行な縞状
細線とこれを覆う光透過材料を多層に堆積し、各層間の
縞状細線を重ならないように配列した。
In view of the above, the present invention provides:
On one surface of the light transmissive substrate, striped thin lines made of metal and parallel to each other and a light transmissive material covering the striped thin lines were deposited in multiple layers, and the striped thin lines between the layers were arranged so as not to overlap each other.

【0011】縞状細線として、タングステン、モリブデ
ン、金、クロム、銀、銅、アルミニウムの少なくとも1
種を用いることとした。
At least one of tungsten, molybdenum, gold, chromium, silver, copper and aluminum is used as the striped fine wire.
I decided to use seeds.

【0012】光透過性基板として、ガラス、パイレック
ス、石英の少なくとも1種を用いることとした。
At least one of glass, Pyrex and quartz is used as the light transmissive substrate.

【0013】光透過材料として、SiO2、Si23
Si、TiO2、Ta25の少なくとも1種を用いるこ
ととした。
As the light transmitting material, SiO 2 , Si 2 N 3 ,
At least one of Si, TiO 2 , and Ta 2 O 5 is used.

【0014】[0014]

【発明の実施の形態】以下本発明の実施形態を図によっ
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1、2に示すように、本発明の縞状偏光
子は、光透過性基板1の片面に第1の縞状細線5とこれ
を覆う光透過性材料4を備え、この上に第2の縞状細線
6とこれを覆う光透過性材料4を形成したものである。
As shown in FIGS. 1 and 2, the striped polarizer of the present invention is provided with a first striped fine line 5 and a light transmissive material 4 covering the first striped thin line 5 on one surface of a light transmissive substrate 1, and above this. The second striped fine line 6 and the light transmissive material 4 that covers the second striped fine line 6 are formed.

【0016】このような縞状偏光子を製造するには、光
透過性基板1に金属を蒸着、スパッタリング、あるいは
イオンプレーテイングで形成し、これにレジストを塗布
し、写真製版を行なった後、UHF−ECRプラズマエ
ッチングにより、第1の縞状細線5を形成する。
In order to manufacture such a striped polarizer, a metal is formed on the light transmissive substrate 1 by vapor deposition, sputtering or ion plating, a resist is applied to the metal, and photolithography is performed. The first striped fine line 5 is formed by UHF-ECR plasma etching.

【0017】次に、CVD技術により、光透過性材料4
を形成し、その上に、金属を形成し、上記と同様な方法
により、第2の縞状細線6を形成し、さらに、光透過性
材料4を上から覆い、偏光子を完成させる。この光透過
性材料4により、金属層である縞状細線が腐食から保護
される.図には示していないが、上記偏光子の両面に
は、ARコートを形成し、各面での反射率を抑える構造
が取られている。
Next, the light transmissive material 4 is formed by the CVD technique.
Is formed, a metal is formed thereon, and the second striped fine line 6 is formed by the same method as described above. Further, the light transmissive material 4 is covered from above to complete the polarizer. The light transmissive material 4 protects the striped thin wires, which are the metal layers, from corrosion. Although not shown in the figure, an AR coat is formed on both surfaces of the above-mentioned polarizer to have a structure for suppressing the reflectance on each surface.

【0018】光透過性材料4の形成に当っては、その屈
折率を光透過性基板1と一致させる必要がある。それに
より、この面での反射率を抑えるためである。
In forming the light transmissive material 4, it is necessary to make its refractive index the same as that of the light transmissive substrate 1. This is to suppress the reflectance on this surface.

【0019】光透過性材料4として、SiO2、Si3
4、Si、TiO2、Ta25等の無機材料、レジスト、
ラミネート等、ある程度、高温に強い有機材料が適して
いる。光透過性材料4の1つとしてSiO2が考えられ
るが、このSiO2の形成方法には、高温CVD、低温
CVD、高圧CVD等がある。これらの選択は、基板と
なる光透過性基板1と屈折率の値を合わせるためであ
る。
As the light transmissive material 4, SiO 2 , Si 3 N
Inorganic materials such as 4 , Si, TiO 2 , Ta 2 O 5 , resists,
Organic materials that are resistant to high temperatures to some extent, such as laminate, are suitable. SiO 2 can be considered as one of the light transmissive materials 4, and the method of forming this SiO 2 includes high temperature CVD, low temperature CVD, high pressure CVD and the like. These selections are made to match the value of the refractive index with that of the light-transmissive substrate 1 serving as a substrate.

【0020】縞状細線5,6は金属からなるものである
が、上記光透過材料4の形成に、高温CVDを用いる場
合、縞状細線5,6として高融点金属を用いることが要
求される。これは金属の変形が特性上問題となるからで
ある。一方、光透過材料4の形成に低温CVDや高圧C
VDを用いる場合は、低融点金属で十分である。
Although the striped thin lines 5 and 6 are made of metal, when high temperature CVD is used to form the light transmitting material 4, it is required to use a refractory metal as the striped thin lines 5 and 6. . This is because the deformation of the metal poses a problem in terms of characteristics. On the other hand, low temperature CVD or high pressure C is used to form the light transmitting material 4.
When using VD, a low melting point metal is sufficient.

【0021】縞状細線5,6を成す高融点金属として
は、モリブデンやタングステンが上げられ、また、低融
点金属としては、金、銀、銅、Cr、アルミが上げられ
る。
The refractory metal forming the striped fine wires 5 and 6 is molybdenum or tungsten, and the refractory metal is gold, silver, copper, Cr or aluminum.

【0022】光透過性基板1としては、石英ガラス、パ
イレックス(登録商標)、その他、BK7等の一般的な
ガラスが適している。
Quartz glass, Pyrex (registered trademark), and other general glasses such as BK7 are suitable for the light-transmitting substrate 1.

【0023】また、上記第1の縞状細線5と第2の縞状
細線6は互いに重ならないようにしてあるが、これは、
回析、あるいは反射の効果を高め、縞状細線5,6に平
行に振動する電界ベクトルの成分(p偏波)の選択性を
向上させるためである。
The first striped thin line 5 and the second striped thin line 6 are arranged so as not to overlap each other.
This is because the effect of diffraction or reflection is enhanced and the selectivity of the component of the electric field vector (p-polarized wave) vibrating parallel to the striped thin lines 5 and 6 is improved.

【0024】本発明の縞状偏光子では、このように縞状
細線5,6を重ならないように高精度に形成できるが、
その理由を図3を用いて説明する。
In the striped polarizer of the present invention, the striped thin lines 5 and 6 can be formed with high precision so as not to overlap with each other,
The reason will be described with reference to FIG.

【0025】図3では、光透過性基板1に第1の縞状細
線5が形成され、その上に光透過性材料4が形成され、
さらに、第2の縞状細線6を形成するための第2の金属
膜10が形成され、不図示ではあるがレジスト膜が形成
されている。第2の金属膜10の膜厚は薄いため、下地
の第1の縞状細線5を観測される。また、第2の金属膜
を厚くしても、第1の縞状細線5と光透過性材料4との
間には段差が生じるため、そのエッジを線状に観察する
ことが出来る。このため、第1の縞状細線5を形成して
おいた第1の合わせマーク8を容易に捕らえる事が出来
るため、このマークに合わせ、マスク7上に形成してお
いた第2の合わせマーク9が上記第1の合わせマーク8
と一致するように合わせると、マスク合わせを正確にか
つ容易に行なう事が出来る。
In FIG. 3, the first striped fine line 5 is formed on the light transmissive substrate 1, and the light transmissive material 4 is formed thereon.
Further, a second metal film 10 for forming the second striped thin line 6 is formed, and a resist film is formed although not shown. Since the thickness of the second metal film 10 is thin, the first striped thin line 5 of the base is observed. Further, even if the second metal film is thickened, a step is formed between the first striped thin line 5 and the light transmissive material 4, so that the edge can be observed linearly. Therefore, the first alignment mark 8 on which the first striped thin line 5 has been formed can be easily captured, and the second alignment mark formed on the mask 7 in alignment with this mark. 9 is the above-mentioned first alignment mark 8
If the masks are aligned so as to match, the mask alignment can be performed accurately and easily.

【0026】さらに、この第2の合わせマーク9と第1
の合わせマーク8の大きさの違いを許容寸法差とする事
(例えば、その差を0.05μmとする。)で、マスク
あわせした時の誤差をその範囲内に入れることが出来
る。
Further, the second alignment mark 9 and the first alignment mark 9
By setting the difference in the size of the alignment mark 8 as the allowable dimensional difference (for example, the difference is set to 0.05 μm), the error when the mask is aligned can be included in the range.

【0027】第1、第2の縞状細線5,6は、チップ寸
法に細分して作ってもよく、あるいはマスク全体を同じ
に作っても良い。また、上記実施形態では2層の例を示
したが、さらにこれらの作業を繰り返し、多層化するこ
とにより、偏光特性をさらに向上させる事が出来る。
The first and second striped thin lines 5 and 6 may be subdivided into chip sizes, or the entire mask may be made the same. Further, although the example of the two layers is shown in the above-mentioned embodiment, the polarization characteristics can be further improved by repeating these operations to form a multilayer.

【0028】縞状細線は、出来る限り、その間隔を信号
光の波長より小さくする必要があり、このため、さらに
は1/4波長以下が好ましい。例えば、1.31μmの
波長の場合、間隔は0.33μm以下、1.55μmの
波長の場合、間隔は0.39μm以下とすることが好ま
しい。また、細線の幅は信号の過剰損失に影響するた
め、出来る限り小さくする事が望ましく、製造技術との
兼ね合いで、0.05〜0.1μmとすることが好まし
い。第1の縞状細線5と、第2の縞状細線6の間隔は、
やはり、波長以下が望ましく、また、反射との対応から
1/4波長以下が好ましい。
It is necessary to make the distance between the striped thin lines smaller than the wavelength of the signal light as much as possible. Therefore, it is more preferable that the striped fine lines have a quarter wavelength or less. For example, when the wavelength is 1.31 μm, the distance is preferably 0.33 μm or less, and when the wavelength is 1.55 μm, the distance is preferably 0.39 μm or less. Further, since the width of the thin line affects the excessive loss of the signal, it is desirable to make it as small as possible, and it is preferably 0.05 to 0.1 μm in consideration of the manufacturing technology. The interval between the first striped thin line 5 and the second striped thin line 6 is
After all, the wavelength is preferably equal to or less than the wavelength, and is preferably equal to or less than the quarter wavelength from the viewpoint of reflection.

【0029】[0029]

【実施例】本発明による実施例として図1に示す縞状偏
光子を作製した。光透過性基板1として、石英ガラスを
用いた。この基板をスパッタ装置で最初、ボンバードし
て表面を清浄にした後、スパッタリングでタングステン
膜を1000Å形成した。タングステンと石英基板の密
着性が悪い場合、間にTi膜を200Å形成する事も考
えられる。次ぎのこの基板にポジレジストを塗布し、写
真製版で、幅が0.3μm、間隔が0.07μmの窓を
形成した。この窓を用いて、UHF−ECRプラズマエ
ッチングによりタングステン膜を除去した。この結果、
幅が0.06μm、間隔が0.31μmの第1の縞状細
線5が出来上がった。幅が狭くなった理由は、ポジレジ
ストを用いているためである。
EXAMPLE A striped polarizer shown in FIG. 1 was produced as an example according to the present invention. Quartz glass was used as the light transmissive substrate 1. This substrate was first bombarded by a sputtering device to clean the surface, and then a tungsten film of 1000 liters was formed by sputtering. When the adhesion between tungsten and the quartz substrate is poor, it is possible to form a Ti film of 200 liters between them. Next, a positive resist was applied to this substrate and photolithography was performed to form windows having a width of 0.3 μm and a spacing of 0.07 μm. Using this window, the tungsten film was removed by UHF-ECR plasma etching. As a result,
A first striped fine wire 5 having a width of 0.06 μm and an interval of 0.31 μm was completed. The reason why the width becomes narrow is that a positive resist is used.

【0030】次に、上記基板に高温CVDで光透過材料
4をなす酸化膜を(2m+1)λ/4(λ=1.55μ
m)の厚さ形成した。本例では、厚さを0.39μmと
した。
Next, an oxide film forming the light transmitting material 4 is formed on the above substrate by high temperature CVD to (2m + 1) λ / 4 (λ = 1.55μ).
m) formed. In this example, the thickness was 0.39 μm.

【0031】さらに、この上に上記と同じ方法でタング
ステン膜を形成し、図3に示す方法によりマスク合わせ
を行い、第2の縞状細線6を形成し、これを光透過材料
4をなす酸化膜で覆うこととした。マスク合わせ精度を
0.02μmとしているため、第1の縞状細線5と第2
の縞状細線6の合わせ精度はこの範囲に入っている。
Further, a tungsten film is formed on this by the same method as described above, mask alignment is performed by the method shown in FIG. 3, a second striped fine line 6 is formed, and this is oxidized as the light transmitting material 4. It was decided to cover with a film. Since the mask alignment accuracy is 0.02 μm, the first striped thin line 5 and the second striped thin line 5
The alignment accuracy of the striped thin wire 6 is within this range.

【0032】最後に両面に、酸化膜、TiO2の4層膜
で反射防止膜を形成し、偏光子が完成した。得られた偏
光子の挿入損失、並びに、偏光特性を測定した所、満足
行く結果が得られている。
Finally, an antireflection film was formed on both surfaces with a four-layer film of an oxide film and TiO 2 to complete a polarizer. The insertion loss of the obtained polarizer and the polarization characteristics were measured, and satisfactory results were obtained.

【0033】従来の方法と異なるのは、2つの縞状細線
5,6の間隔を従来は、樹脂で形成しているのに対し、
本発明では光透過性材料4の形成で決定している点で、
この為、樹脂の膜厚制御に比べ格段の制御性を有してい
る。(因みに、本方式によれば、目標膜厚±5%が可能
である。) また、2つの縞状細線5、6の位置合わせ精度は、従来
は、顕微鏡等での位置合わせでしかできないのに対し、
本発明では、マスク合わせ装置を用いることが出来るた
め、その合わせ精度は、±0.02μmと非常に高精度
が実現している。
The difference from the conventional method is that the interval between the two striped fine wires 5 and 6 is formed of resin in the conventional method.
In the present invention, since it is determined by forming the light transmissive material 4,
Therefore, it has much more controllability than the resin film thickness control. (By the way, according to this method, a target film thickness of ± 5% is possible.) Further, conventionally, the alignment accuracy of the two striped thin lines 5 and 6 can be achieved only by alignment with a microscope or the like. As opposed to
In the present invention, since a mask alignment device can be used, the alignment accuracy is ± 0.02 μm, which is extremely high.

【0034】[0034]

【発明の効果】このように、本発明によれば、互いに重
ならない縞状細線の層構造を採用した事によって、光透
過性基板に金属細線を蒸着、スパッタリング、イオンプ
レーテイング等で形成でき、また、光透過材料は、CV
D等で形成でき、金属細線の位置合わせをマスク合わせ
で行えるため、作成工程が容易となり、また、UV樹脂
等を用いていないため、耐光性が高く、光透過材料の厚
さもCVDの膜厚制御で行えるため、性能の安定した偏
光子を提供することが出来る。
As described above, according to the present invention, by adopting the layered structure of striped fine wires which do not overlap each other, it is possible to form fine metal wires on the light transmissive substrate by vapor deposition, sputtering, ion plating, etc. The light transmitting material is CV
Since it can be formed by D etc., and the alignment of the fine metal wires can be performed by mask alignment, the manufacturing process is easy, and since no UV resin or the like is used, the light resistance is high and the thickness of the light transmitting material is the thickness of the CVD film. Since it can be controlled, it is possible to provide a polarizer with stable performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の縞状偏光子の斜視図である。FIG. 1 is a perspective view of a striped polarizer of the present invention.

【図2】本発明の縞状偏光子の断面図である。FIG. 2 is a sectional view of a striped polarizer of the present invention.

【図3】本発明の縞状偏光子の製造方法におけるマスク
合わせを説明する平面図である。
FIG. 3 is a plan view illustrating mask alignment in the method for manufacturing a striped polarizer of the present invention.

【図4】従来のグリッド偏光子の斜視図である。FIG. 4 is a perspective view of a conventional grid polarizer.

【図5】従来のグリッド偏光子の断面図である。FIG. 5 is a cross-sectional view of a conventional grid polarizer.

【符号の説明】[Explanation of symbols]

1 光透過性基板 2 グリッド細線 3 UV樹脂 4 光透過性材料 5 第1の縞状細線 6 第2の縞状細線 7 第2のマスク 8 第1の合わせマーク 9 第2の合わせマーク 10 第2の金属膜 1 Light-transmissive substrate 2 grid thin lines 3 UV resin 4 Light-transmissive material 5 First striped thin wire 6 Second striped thin wire 7 Second mask 8 First alignment mark 9 Second alignment mark 10 Second metal film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光透過性基板の片面に、金属からなる互い
に平行な縞状細線とこれを覆う光透過材料とを多層に堆
積し、各層間の縞状細線を重ならないように配列したこ
とを特徴とする縞状偏光子。
1. A multi-layered striped thin line made of metal and a light transmissive material covering the striped multi-layered lines are deposited on one surface of a light-transmissive substrate in a multilayer structure, and the striped thin lines between the layers are arranged so as not to overlap each other. Is a striped polarizer.
【請求項2】上記縞状細線として、タングステン、モリ
ブデン、金、クロム、銀、銅、アルミニウムの少なくと
も1種を用いることを特徴とする請求項1記載の縞状偏
光子。
2. The striped polarizer according to claim 1, wherein at least one of tungsten, molybdenum, gold, chromium, silver, copper, and aluminum is used as the striped thin wire.
【請求項3】上記光透過性基板として、ガラス、パイレ
ックス、石英の少なくとも1種を用いることを特徴とす
る請求項1記載の縞状偏光子。
3. The striped polarizer according to claim 1, wherein at least one of glass, Pyrex and quartz is used as the light transmissive substrate.
【請求項4】上記光透過材料として、SiO2、Si3
4、Si、TiO2、Ta25の少なくとも1種を用いる
ことを特徴とする請求項1記載の縞状偏光子。
4. The light transmissive material is SiO 2 , Si 3 N
The striped polarizer according to claim 1, wherein at least one of 4 , Si, TiO 2 , and Ta 2 O 5 is used.
JP2001257615A 2001-08-28 2001-08-28 Stripe polarizer Pending JP2003066229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257615A JP2003066229A (en) 2001-08-28 2001-08-28 Stripe polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257615A JP2003066229A (en) 2001-08-28 2001-08-28 Stripe polarizer

Publications (1)

Publication Number Publication Date
JP2003066229A true JP2003066229A (en) 2003-03-05

Family

ID=19085249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257615A Pending JP2003066229A (en) 2001-08-28 2001-08-28 Stripe polarizer

Country Status (1)

Country Link
JP (1) JP2003066229A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331564A (en) * 2004-05-18 2005-12-02 Seiko Epson Corp Method for forming thin film pattern, and device
JP2006003447A (en) * 2004-06-15 2006-01-05 Sony Corp Polarized light separating element and manufacturing method thereof
WO2005123277A3 (en) * 2004-06-11 2006-04-27 Nanoopto Corp Optical films and methods of making the same
JP2006138945A (en) * 2004-11-10 2006-06-01 Asahi Glass Co Ltd Polarizer and transmission type liquid crystal projector apparatus
EP1669780A1 (en) * 2004-12-10 2006-06-14 Canon Kabushiki Kaisha Optical element, method of manufacturing same, and optical apparatus using optical element
WO2006126707A1 (en) * 2005-05-27 2006-11-30 Zeon Corporation Grid polarizing film, method for producing grid polarizing film, optical laminate, method for producing optical laminate, and liquid crystal display
JP2006330521A (en) * 2005-05-27 2006-12-07 Nippon Zeon Co Ltd Grid polarizing film, method for manufacturing grid polarizing film, optical laminate, method for manufacturing optical laminate, and liquid crystal display apparatus
US7158302B2 (en) * 2003-10-23 2007-01-02 Industry Technology Research Institute Wire grid polarizer with double metal layers
WO2005101112A3 (en) * 2004-04-15 2007-02-08 Nanoopto Corp Optical films and methods of making the same
JPWO2005059607A1 (en) * 2003-12-18 2007-07-12 松下電器産業株式会社 Condensing element and solid-state imaging device
JP2008502948A (en) * 2004-06-11 2008-01-31 ナノオプト コーポレーション OPTICAL FILM AND METHOD FOR PRODUCING OPTICAL FILM
JP2008268299A (en) * 2007-04-16 2008-11-06 Asahi Kasei Corp Laminate wire grid polarizer
US7619816B2 (en) 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
JP2009300654A (en) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp Wire grid polarizer and display device using it
JP2010197764A (en) * 2009-02-26 2010-09-09 Ricoh Co Ltd Polarization controlling element and image display apparatus using the same
JP2014074824A (en) * 2012-10-05 2014-04-24 Osaka City Univ Laminated wire grid and method of manufacturing the same
JP2014134564A (en) * 2013-01-08 2014-07-24 Canon Inc Absorption type wire grid polarization element and optical instrument
JP2016035977A (en) * 2014-08-04 2016-03-17 大日本印刷株式会社 Imprint mold and imprint method, and wire-grid polarizer and manufacturing method thereof
JP2017034276A (en) * 2016-10-20 2017-02-09 大日本印刷株式会社 Mold for imprint and imprint method
CN112987154A (en) * 2019-12-12 2021-06-18 北京梦之墨科技有限公司 Grating plate, double-sided grating plate and manufacturing process thereof

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158302B2 (en) * 2003-10-23 2007-01-02 Industry Technology Research Institute Wire grid polarizer with double metal layers
JP5022601B2 (en) * 2003-12-18 2012-09-12 パナソニック株式会社 Solid-state imaging device
US7851837B2 (en) 2003-12-18 2010-12-14 Panasonic Corporation Light-collecting device and solid-state imaging apparatus
JPWO2005059607A1 (en) * 2003-12-18 2007-07-12 松下電器産業株式会社 Condensing element and solid-state imaging device
US7670758B2 (en) 2004-04-15 2010-03-02 Api Nanofabrication And Research Corporation Optical films and methods of making the same
WO2005101112A3 (en) * 2004-04-15 2007-02-08 Nanoopto Corp Optical films and methods of making the same
US8808972B2 (en) * 2004-04-15 2014-08-19 Polarization Solutions, Llc Optical films and methods of making the same
JP2007532977A (en) * 2004-04-15 2007-11-15 ナノオプト コーポレーション Optical film and method for producing the same
US8765360B2 (en) 2004-04-15 2014-07-01 Polarization Solutions, Llc Optical films and methods of making the same
JP2005331564A (en) * 2004-05-18 2005-12-02 Seiko Epson Corp Method for forming thin film pattern, and device
WO2005123277A3 (en) * 2004-06-11 2006-04-27 Nanoopto Corp Optical films and methods of making the same
JP2008502948A (en) * 2004-06-11 2008-01-31 ナノオプト コーポレーション OPTICAL FILM AND METHOD FOR PRODUCING OPTICAL FILM
JP2006003447A (en) * 2004-06-15 2006-01-05 Sony Corp Polarized light separating element and manufacturing method thereof
JP2006138945A (en) * 2004-11-10 2006-06-01 Asahi Glass Co Ltd Polarizer and transmission type liquid crystal projector apparatus
JP4639761B2 (en) * 2004-11-10 2011-02-23 旭硝子株式会社 Polarizer and transmissive liquid crystal projector device
EP1669780A1 (en) * 2004-12-10 2006-06-14 Canon Kabushiki Kaisha Optical element, method of manufacturing same, and optical apparatus using optical element
US7619816B2 (en) 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
WO2006126707A1 (en) * 2005-05-27 2006-11-30 Zeon Corporation Grid polarizing film, method for producing grid polarizing film, optical laminate, method for producing optical laminate, and liquid crystal display
US7872803B2 (en) 2005-05-27 2011-01-18 Zeon Corporation Grid polarizing film, method for producing the film, optical laminate, method for producing the laminate, and liquid crystal display
JP2006330521A (en) * 2005-05-27 2006-12-07 Nippon Zeon Co Ltd Grid polarizing film, method for manufacturing grid polarizing film, optical laminate, method for manufacturing optical laminate, and liquid crystal display apparatus
JP2008268299A (en) * 2007-04-16 2008-11-06 Asahi Kasei Corp Laminate wire grid polarizer
JP2009300654A (en) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp Wire grid polarizer and display device using it
JP2010197764A (en) * 2009-02-26 2010-09-09 Ricoh Co Ltd Polarization controlling element and image display apparatus using the same
JP2014074824A (en) * 2012-10-05 2014-04-24 Osaka City Univ Laminated wire grid and method of manufacturing the same
JP2014134564A (en) * 2013-01-08 2014-07-24 Canon Inc Absorption type wire grid polarization element and optical instrument
JP2016035977A (en) * 2014-08-04 2016-03-17 大日本印刷株式会社 Imprint mold and imprint method, and wire-grid polarizer and manufacturing method thereof
US10088617B2 (en) 2014-08-04 2018-10-02 Dai Nippon Printing Co., Ltd. Imprint mold, imprint method, wire grid polarizer, and method for manufacturing wire grid polarizer
JP2017034276A (en) * 2016-10-20 2017-02-09 大日本印刷株式会社 Mold for imprint and imprint method
CN112987154A (en) * 2019-12-12 2021-06-18 北京梦之墨科技有限公司 Grating plate, double-sided grating plate and manufacturing process thereof
CN112987154B (en) * 2019-12-12 2022-11-29 北京梦之墨科技有限公司 Manufacturing process of grating plate and double-sided grating plate

Similar Documents

Publication Publication Date Title
JP2003066229A (en) Stripe polarizer
US6813077B2 (en) Method for fabricating an integrated optical isolator and a novel wire grid structure
EP1645903A1 (en) Wire grid polarizer and fabrication method thereof
WO2002091044A1 (en) Polarizing device, and method for manufacturing the same
US8369013B2 (en) Polarizing element, method of manufacturing polarizing element, and electronic apparatus
KR20050105383A (en) Wire grid polarizer and thereof manufacture method
WO2008018247A1 (en) Transmission type polarizing element, and complex polarizing plate using the element
JP2005092219A (en) Method for producing diffracting optical element
JP3898597B2 (en) Polarizer and manufacturing method of polarizer
JP7142057B2 (en) Polarizing plate, optical device, and method for producing polarizing plate
JPH11142650A (en) Grid polarizer
CN110596811B (en) Grating coupling structure and manufacturing method thereof
JP2000310750A (en) Optical isolator and optical module using same
TWI530720B (en) Optical waveguide and fabrication method of optical waveguide
JPH07241690A (en) Dielectric substance mask for laser machining and its production
JP2002311402A (en) Faraday rotator
US20160195656A1 (en) Structure of ultraviolet light polarization component and manufacturing process therefor
JP4193265B2 (en) Manufacturing method of substrate with recess for microlens, manufacturing method of counter substrate for liquid crystal panel, counter substrate for liquid crystal panel, liquid crystal panel, and projection display device
CN111082305A (en) Semiconductor laser packaged silicon substrate chip and preparation method thereof
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JPH04234109A (en) Method of forming wiring in semiconductor device
JPH09186067A (en) Transmission mask for charged beam gang exposure
CN109655965B (en) True zero-order integrated optical waveguide type full wave plate
JPH09189890A (en) Electro-optic modulator with passivation layer
JP2008249914A (en) Transmission type polarizing element and combined polarizer plate using the same