JP2000283939A - Water quality monitoring system, water quality monitoring method, and demineralizer - Google Patents

Water quality monitoring system, water quality monitoring method, and demineralizer

Info

Publication number
JP2000283939A
JP2000283939A JP11086767A JP8676799A JP2000283939A JP 2000283939 A JP2000283939 A JP 2000283939A JP 11086767 A JP11086767 A JP 11086767A JP 8676799 A JP8676799 A JP 8676799A JP 2000283939 A JP2000283939 A JP 2000283939A
Authority
JP
Japan
Prior art keywords
water
water quality
quality monitoring
resistivity
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11086767A
Other languages
Japanese (ja)
Other versions
JP2000283939A5 (en
JP3712225B2 (en
Inventor
Makio Tamura
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP08676799A priority Critical patent/JP3712225B2/en
Publication of JP2000283939A publication Critical patent/JP2000283939A/en
Publication of JP2000283939A5 publication Critical patent/JP2000283939A5/ja
Application granted granted Critical
Publication of JP3712225B2 publication Critical patent/JP3712225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and surely measure an instrinsic resistivity of test water such as desalted water, by restraining remarkably the influence of dissolved carbon dioxide. SOLUTION: In this monitoring system 1, resistivity of test water W wherein the atmospheric gas is dissolved by contacting with the atmosphere is measured by a water quality measuring apparatus 7, the quality of the water W is monitored based on a measured value therein. and a heater 4 for heating the water W to remove dissolved carbon dioxide is provided in a previous stage of the water quality measuring apparatus 7. The water quality monitoring system 1 and a water quality monitoring method are thereby provided to restrain remarkably the influence of the dissolved carbon dioxide so as to measure easily and surely instrinsic resistivity of the water W such as desalted water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水質監視装置及び
水質監視方法並びに脱塩装置に関し、更に詳しくは、大
気との接触により大気中のガスが溶存する脱塩水等の検
水の抵抗率を導電率計により測定し、この測定値率に基
づいて検水の水質を監視する水質監視装置及び水質監視
方法並びに脱塩装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality monitoring device, a water quality monitoring method, and a desalination device. More specifically, the present invention relates to a method for measuring the resistivity of a sample such as demineralized water in which gas in the atmosphere is dissolved by contact with the atmosphere. The present invention relates to a water quality monitoring device, a water quality monitoring method, and a desalination device that measure a conductivity with a conductivity meter and monitor the quality of a sample water based on the measured value rate.

【0002】[0002]

【従来の技術】例えば各種の産業分野では洗浄用水、薬
品希釈用水、分析用水、あるいはボイラー給水等として
純水が使用されている。純水は、その使用目的に応じ
て、例えば、除濁装置、活性炭装置、イオン交換樹脂装
置、逆浸透膜装置(RO)、電気透析装置、蒸留装置、
電気再生式脱塩装置(EDI)、脱炭酸装置等を単独で
あるいはこれらを適宜組み合わせて製造される。更に高
純度の純水を製造する場合には、上述の装置に紫外線酸
化装置、真空脱気装置、限外濾過装置等を付加したもの
が使用されている。
2. Description of the Related Art In various industrial fields, for example, pure water is used as washing water, chemical dilution water, analysis water, or boiler feed water. Depending on the purpose of use, the pure water may be, for example, a clarifier, an activated carbon device, an ion exchange resin device, a reverse osmosis membrane device (RO), an electrodialysis device, a distillation device,
It is manufactured by using an electric regeneration type desalination unit (EDI), a decarbonation unit or the like alone or by appropriately combining them. In the case of producing high-purity pure water, the above-described apparatus to which an ultraviolet oxidation apparatus, a vacuum deaerator, an ultrafiltration apparatus, and the like are added is used.

【0003】ところで、脱塩水等の純水はその使用目的
に応じた水質管理が極めて重要であるため、製造工程に
適宜配置された水質監視装置を用いて懸濁成分やイオン
成分等の不純物を常に監視している。監視項目として
は、例えば、抵抗率、TOC、DO、微粒子、生菌、蒸
発残留物等がある。そして、例えば、不純物が除去され
た脱塩水の水質は最終的に導電率計を用いた水質監視装
置により抵抗率を監視し、一定の許容レベルに維持して
いる。
[0003] Since the quality of pure water such as demineralized water is extremely important in accordance with the purpose of use, impurities such as suspended components and ionic components are removed using a water quality monitoring device appropriately arranged in the manufacturing process. We are constantly monitoring. The monitoring items include, for example, resistivity, TOC, DO, fine particles, viable bacteria, and evaporation residue. Then, for example, the quality of the demineralized water from which the impurities have been removed is finally monitored by a water quality monitoring device using a conductivity meter, and is maintained at a certain allowable level.

【0004】また、脱塩水等の純水は大気中で使用され
ることが多く、このような脱塩水には大気中のガス成分
が溶解して溶存ガスとして存在する。脱塩水の用途によ
っては溶存ガスが悪影響を及ぼすことがあるため、貯留
する際に窒素ガス等の不活性ガスでシールし、空気中の
ガスの溶解を防止しているが、多くの用途では溶存ガス
自体による弊害がないため、溶存ガスを含んだまま使用
している。また、溶存ガス自体が用途に悪影響を及ぼす
ものではないが、脱塩水本来の抵抗率を許容レベルで厳
重に管理する場合もある。このような場合には従来から
水質監視装置として導電率計を用いて導電率を監視して
いる。しかしながら、大気からの溶存ガスのうち、炭酸
ガスは脱塩水中に溶解して炭酸水素イオン等の電解質を
生成するため、導電率計ではこの炭酸ガスの影響を除い
た脱塩水本来の抵抗率を測定できず、脱塩水を本来の抵
抗率で管理することができない。そこで、例えば特願平
6−11406号公報において脱塩水等の純水の導電率
を測定する前に真空脱気等により溶存炭酸ガスを除去す
る技術が提案されている。
Further, pure water such as demineralized water is often used in the atmosphere, and gas components in the atmosphere are dissolved in such demineralized water and exist as dissolved gases. Dissolved gas may have a bad effect depending on the use of demineralized water, so it is sealed with an inert gas such as nitrogen gas during storage to prevent gas in the air from dissolving. Since there is no adverse effect due to the gas itself, it is used while containing dissolved gas. Although the dissolved gas itself does not adversely affect the application, the original resistivity of the demineralized water may be strictly controlled at an allowable level. In such a case, the conductivity is conventionally monitored using a conductivity meter as a water quality monitoring device. However, among the dissolved gases from the atmosphere, carbon dioxide dissolves in demineralized water and produces electrolytes such as hydrogen carbonate ions.Therefore, the conductivity meter uses the original resistivity of demineralized water excluding the influence of this carbon dioxide gas. The measurement cannot be performed, and the desalinated water cannot be managed at the original resistivity. Therefore, for example, Japanese Patent Application No. 6-11406 proposes a technique for removing dissolved carbon dioxide by vacuum degassing or the like before measuring the conductivity of pure water such as demineralized water.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、単なる
真空脱気では酸素ガスや窒素ガスは除去できるものの、
炭酸ガスは脱塩水等の純水中に溶解して水分子と結合し
て電解質を生成し、水分子と結合していない未解離の炭
酸ガスの濃度に応じて脱気されるため、多くの炭酸水素
イオン等の電解質が残り、炭酸ガスを期待するほど除去
することができず、導電率計を用いた簡便な水質監視装
置では純水本来の抵抗率を測定できないという課題があ
った。真空脱気をより確実に行うために真空度を高めよ
うとすれば大型の真空ポンプ等の排気装置が必要にな
り、本来小型で簡便である筈の水質監視装置が高価なも
のになってしまう。勿論、溶存炭酸ガス由来のイオンを
僅かに残存するNaイオンやClイオン等から分離して
純水本来の抵抗率を測定するイオンクロマトグラフや、
溶存炭酸ガス由来のイオンのみを測定できる測定装置等
を用いてその存在を確認することはできるが、水質監視
装置としては高価で複雑になってしまう。
However, although oxygen gas and nitrogen gas can be removed by simple vacuum degassing,
Carbon dioxide is dissolved in pure water such as demineralized water and combined with water molecules to form an electrolyte, which is degassed according to the concentration of undissociated carbon dioxide that is not combined with water molecules. There is a problem that an electrolyte such as hydrogen carbonate ions remains, carbon dioxide gas cannot be removed as expected, and a simple water quality monitoring device using a conductivity meter cannot measure the intrinsic resistivity of pure water. In order to increase the degree of vacuum in order to perform vacuum degassing more reliably, an exhaust device such as a large vacuum pump is required, and a water quality monitoring device that should be small and simple is expensive. . Of course, an ion chromatograph that separates ions derived from dissolved carbon dioxide from slightly remaining Na ions and Cl ions and measures the original resistivity of pure water,
Although the presence can be confirmed using a measuring device or the like capable of measuring only ions derived from dissolved carbon dioxide gas, it is expensive and complicated as a water quality monitoring device.

【0006】本発明は、上記課題を解決するためになさ
れたもので、溶存炭酸ガスの影響を格段に抑制し、脱塩
水等の検水の本来の抵抗率を簡単且つ確実に測定するこ
とができる水質監視装置及び水質監視方法並びに脱塩装
置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to remarkably suppress the influence of dissolved carbon dioxide gas and easily and reliably measure the original resistivity of a sample such as demineralized water. It is an object of the present invention to provide a water quality monitoring device, a water quality monitoring method, and a desalination device that can be used.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に記載
の水質監視方法は、大気との接触により大気中のガスが
溶存する検水の抵抗率を導電率計により測定し、この測
定値に基づいて上記検水の水質を監視する方法におい
て、上記検水の抵抗率を測定するに先立って、上記検水
を加熱手段により加熱して溶存炭酸ガスを除去すること
を特徴とするものである。
According to a first aspect of the present invention, there is provided a method for monitoring water quality, comprising measuring a resistivity of a test sample in which gas in the atmosphere is dissolved by contact with the atmosphere by means of a conductivity meter. A method of monitoring the quality of the test water based on the value, wherein prior to measuring the resistivity of the test water, the test water is heated by heating means to remove dissolved carbon dioxide gas. It is.

【0008】また、本発明の請求項2に記載の水質監視
方法は、請求項1に記載の発明において、上記加熱手段
により加熱された検水を脱気することを特徴とするもの
である。
A water quality monitoring method according to a second aspect of the present invention is characterized in that, in the first aspect of the invention, the test water heated by the heating means is degassed.

【0009】また、本発明の請求項3に記載の水質監視
方法は、請求項1または請求項2に記載の発明におい
て、上記加熱手段による加熱温度が80℃以上であるこ
とを特徴とするものである。
A third aspect of the present invention is directed to a water quality monitoring method according to the first or second aspect, wherein a heating temperature of the heating means is 80 ° C. or more. It is.

【0010】また、本発明の請求項4に記載の水質監視
装置は、大気との接触により大気中のガスが溶存する検
水の抵抗率を導電率計により測定し、この測定値に基づ
いて上記検水の水質を監視する水質監視装置において、
上記検水を加熱して溶存炭酸ガスを除去する加熱手段を
上記導電率計の前段に設けたことを特徴とするものであ
る。
[0010] The water quality monitoring device according to a fourth aspect of the present invention measures the resistivity of a test water in which gas in the atmosphere is dissolved by contact with the atmosphere by means of a conductivity meter, and based on the measured value. In the water quality monitoring device for monitoring the water quality of the test water,
A heating means for heating the test water to remove dissolved carbon dioxide gas is provided in a stage preceding the conductivity meter.

【0011】また、本発明の請求項5に記載の水質監視
装置は、請求項4に記載の発明において、上記加熱手段
の後段に脱気手段を設け、この脱気手段に加熱水を通水
することを特徴とするものである。
According to a fifth aspect of the present invention, there is provided the water quality monitoring apparatus according to the fourth aspect of the present invention, further comprising a deaeration means disposed downstream of the heating means, and passing heated water through the deaeration means. It is characterized by doing.

【0012】また、本発明の請求項6に記載の水質監視
装置は、請求項5に記載の発明において、上記脱気手段
として脱気膜装置を用いることを特徴とするものであ
る。
A water quality monitoring device according to a sixth aspect of the present invention is the water quality monitoring device according to the fifth aspect, wherein a degassing device is used as the degassing means.

【0013】また、本発明の請求項7に記載の水質監視
装置は、大気との接触により大気中のガスが溶存する検
水の抵抗率を導電率計により測定し、この測定値に基づ
いて上記検水の水質を監視する水質監視装置において、
減圧下で上記検水の溶存炭酸ガスを脱気する脱気膜手段
を上記導電率計の前段に設け、且つ、上記脱気膜手段の
減圧空間に不活性ガスを供給するガス供給手段を設けた
ことを特徴とするものである。
[0013] The water quality monitoring device according to claim 7 of the present invention measures the resistivity of a test water in which gas in the atmosphere is dissolved by contact with the atmosphere using a conductivity meter, and based on the measured value, In the water quality monitoring device for monitoring the water quality of the test water,
Degassing membrane means for degassing the dissolved carbon dioxide gas under reduced pressure is provided in front of the conductivity meter, and gas supply means for supplying an inert gas to a reduced pressure space of the degassing membrane means is provided. It is characterized by having.

【0014】また、本発明の請求項8に記載の水質監視
装置は、大気との接触により大気中のガスが溶存する検
水の抵抗率を導電率計により測定し、この測定値に基づ
いて上記検水の水質を監視する水質監視装置において、
上記検水中に不活性ガスをバブリングする曝気手段を上
記導電率計の前段に設けたことを特徴とするものであ
る。
Further, the water quality monitoring device according to the present invention measures the resistivity of a sample water in which gas in the atmosphere is dissolved by contact with the atmosphere, using a conductivity meter, and based on the measured value. In the water quality monitoring device for monitoring the water quality of the test water,
An aeration unit for bubbling an inert gas into the test water is provided at a stage preceding the conductivity meter.

【0015】また、本発明の請求項9に記載の脱塩装置
は、逆浸透膜装置の後段に請求項4〜請求項8のいずれ
か1項に記載の水質監視装置を備えたことを特徴とする
ものである。
A ninth aspect of the present invention is directed to a desalination apparatus, wherein the water quality monitoring apparatus according to any one of the fourth to eighth aspects is provided after the reverse osmosis membrane apparatus. It is assumed that.

【0016】[0016]

【発明の実施の形態】以下、図1〜図3に示す実施形態
に基づいて本発明を説明する。尚、図1は本発明の水質
監視装置の一実施形態を示すフロー図、図2は本発明の
水質監視装置の他の実施形態も要部を示す模式図、図3
は本発明の水質監視装置を備えた脱塩装置の一例を示す
フロー図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in FIGS. FIG. 1 is a flowchart showing one embodiment of the water quality monitoring device of the present invention, FIG. 2 is a schematic diagram showing a main part of another embodiment of the water quality monitoring device of the present invention, and FIG.
FIG. 2 is a flowchart showing an example of a desalination apparatus provided with the water quality monitoring device of the present invention.

【0017】本実施形態の水質監視装置1は、例えば図
1に示すように、大気に開放された状態で検水Wを貯留
する脱塩水等の検水Wを貯留する、タンク2に配管3を
介して接続された加熱装置4と、この加熱装置4に配管
3を介して接続され且つ加熱装置4において加熱された
加熱水中のガスを脱気する脱気手段である減圧塔5と、
この減圧塔5に配管3を介して接続された送水ポンプ6
と、この送水ポンプ6の下流側に配管3を介して接続さ
れた導電率計(水質計)7のセル7Aとを備え、排気装
置8により減圧塔5を所定の真空度まで減圧するように
なっている。
As shown in FIG. 1, for example, a water quality monitoring device 1 according to the present embodiment stores a test water W such as a desalinated water that stores the test water W in a state of being opened to the atmosphere. A heating device 4 connected via a pipe 3 and a decompression tower 5 connected to the heating device 4 via a pipe 3 and serving as a degassing means for degassing gas in the heated water heated in the heating device 4.
A water pump 6 connected to the pressure reducing tower 5 via a pipe 3
And a cell 7A of a conductivity meter (water quality meter) 7 connected to the downstream side of the water supply pump 6 via the pipe 3 so that the evacuation device 8 reduces the pressure in the pressure reducing tower 5 to a predetermined degree of vacuum. Has become.

【0018】タンク2内に貯留された検水Wは例えば公
知の純水製造装置(図示せず)により懸濁成分やイオン
成分が除去された超純水(脱塩水)である。しかし、タ
ンク2は大気に開放されて常に大気と接触して大気中の
ガス、主として窒素ガス、酸素ガス及び炭酸ガスが溶存
しているため、検水Wの抵抗率をそのまま測定しても検
水本来の抵抗率を示さず、本来の抵抗率よりも小さな抵
抗率を示すことは前述した通りである。
The test water W stored in the tank 2 is, for example, ultrapure water (desalinated water) from which suspended components and ionic components have been removed by a known pure water production apparatus (not shown). However, since the tank 2 is opened to the atmosphere and constantly comes into contact with the atmosphere and the gases in the atmosphere, mainly nitrogen gas, oxygen gas and carbon dioxide gas, are dissolved, even if the resistivity of the sampled water W is measured as it is, it can be detected. As described above, water does not exhibit the original resistivity but exhibits a resistivity lower than the original resistivity.

【0019】窒素ガス、酸素ガス及び炭酸ガスは大気中
のそれぞれの分圧に応じて検水中に溶解し、窒素ガス、
酸素ガス及び炭酸ガスは分子状で溶存ガスとして溶解す
る。しかし、炭酸ガスは化学平衡に基づいて水分子と結
合して炭酸水素イオン等の電解質を生成する。従って、
炭酸ガスを脱気する際には、分子状の溶存炭酸ガスが脱
気されるだけで、電解質は残留し、化学平衡に基づいて
電解質が徐々に分子状の溶存炭酸ガスに変化して除去さ
れるに過ぎない。従って、従来のような単なる脱気処理
では未解離の分子状炭酸ガスの濃度に即して炭酸ガスを
脱気するに過ぎず、他のガスほど簡単に脱気することは
できない。
Nitrogen gas, oxygen gas and carbon dioxide gas are dissolved in the test water according to the respective partial pressures in the atmosphere, and nitrogen gas,
Oxygen gas and carbon dioxide gas are dissolved as dissolved gases in molecular form. However, carbon dioxide gas combines with water molecules based on chemical equilibrium to generate an electrolyte such as hydrogen carbonate ions. Therefore,
When degassing carbon dioxide gas, only dissolved molecular carbon dioxide gas is degassed, the electrolyte remains, and the electrolyte is gradually changed to molecular dissolved carbon dioxide gas based on chemical equilibrium and removed. It just does. Therefore, the conventional simple degassing process only degass the carbon dioxide gas in accordance with the concentration of the undissociated molecular carbon dioxide gas, and cannot degas the gas as easily as other gases.

【0020】そこで、本実施形態では、加熱装置4を用
いて検水Wを加熱し、大気中に含まれているガスの溶解
度を低下させる。炭酸ガスの場合には加熱装置4により
分子状炭酸ガスの溶解度を低下させて上述の化学平衡を
ずらし、炭酸ガスとして効率良く脱気することができ
る。加熱装置4としては例えば電気ヒータ、マイクロウ
エーブ、電磁誘導等を用いることができる。検水Wの加
熱温度は、高い方が好ましく、例えば80℃以上が好ま
しく、90℃以上がより好ましい。更に、本実施形態で
は、加熱水を加熱した温度にほぼ保持したまま減圧塔5
に通すことにより加熱水中の気泡を脱泡し、後段のセル
7Aへ気泡を含まない加熱水を供給し、水質計7で抵抗
率を精度良く測定する。また、排気装置8は減圧塔5内
に減圧空間を作ることができれば特に制限されないが、
排気装置8としては例えば真空ポンプ、アスピレータが
用いられる。本実施形態では脱気手段として排気装置8
を有する減圧塔5を用いたものを示したが、脱気手段と
しては、その他にポンプあるいは超音波振動を利用した
キャビテーションの発生によって脱気を促進する方法も
あるが、単に常圧塔を通すだけでも検水中に混じった気
泡を検水から分離することができる。また、加熱水が高
温であるため、セル7Aは耐熱性のあるものが用いられ
ることは云うまでもない。図1では炭酸ガスの脱気を促
進する手段として加熱装置4を用いたが、加熱装置4に
代えて脱気膜手段や曝気手段を用いることができる。
Therefore, in the present embodiment, the test water W is heated using the heating device 4 to lower the solubility of the gas contained in the atmosphere. In the case of carbon dioxide gas, the solubility of the molecular carbon dioxide gas is reduced by the heating device 4 to shift the above-mentioned chemical equilibrium, so that the carbon dioxide gas can be efficiently degassed. As the heating device 4, for example, an electric heater, microwave, electromagnetic induction, or the like can be used. The heating temperature of the test water W is preferably higher, for example, preferably 80 ° C. or higher, more preferably 90 ° C. or higher. Further, in the present embodiment, the pressure reducing tower 5 is kept substantially at the temperature at which the heated water is heated.
To remove bubbles in the heated water, supply heated water containing no bubbles to the subsequent cell 7A, and accurately measure the resistivity with the water quality meter 7. The exhaust device 8 is not particularly limited as long as a decompression space can be created in the decompression tower 5,
As the exhaust device 8, for example, a vacuum pump or an aspirator is used. In this embodiment, the exhaust device 8 is used as the deaeration means.
Although the method using the pressure reducing tower 5 having the above is shown, as a degassing means, there is another method of promoting degassing by generating cavitation using a pump or ultrasonic vibration. By itself, bubbles mixed in the sample can be separated from the sample. Since the temperature of the heated water is high, it is needless to say that the cell 7A having heat resistance is used. In FIG. 1, the heating device 4 is used as a means for promoting the degassing of the carbon dioxide gas. However, instead of the heating device 4, a degassing film means or an aeration means can be used.

【0021】上記脱気膜手段としてはた例えば図2に示
す中空糸膜モジュールを用いた装置が用いられる。この
脱気膜装置10は、中空糸膜11Aを有する中空糸膜モ
ジュール11と、この中空糸膜モジュール11のシェル
11Bに配管12を介して接続され且つ不活性ガスとし
て窒素ガスを供給するガス供給源13と、中空糸膜モジ
ュール11のシェル11Bに配管12を介して接続され
且つシェル11B内に減圧空間を作る真空ポンプ14と
を備えている。中空糸膜モジュール11では検水Wが中
空糸膜11Aの一端からその内側へ流入して他端から流
出し、ガス供給源13から供給された窒素ガスが真空ポ
ンプ14で吸引されて中空糸膜11Aの外側でシェル1
1Bの内側を予め設定された真空度(例えば、50Tor
r)で流通する。このようにシェル11B内に窒素ガス
を流通させてシェル11B内の窒素ガスの分圧を高め、
炭酸ガスの分圧を低下させることでヘンリーの法則に基
づいて溶存炭酸ガスの脱気を促進することができる。検
水中に窒素ガスが残留しても後段の水質計7への障害は
なく、より精度の高い抵抗率を測定することができる。
本実施形態において、不活性ガスとしては抵抗率に悪影
響を及ぼさない(検水中に溶解しても解離イオンを生成
しない)ガスであれば特に制限されないが、窒素ガスが
好ましい。また、上記曝気手段では検水中に不活性ガス
をバブリングさせて検水Wの抵抗率に悪影響を及ぼす溶
存ガスである炭酸ガスを脱気する。尚、中空糸膜の外側
に検水Wを流し、中空糸膜の内側の一端から不活性ガス
を流し中空糸膜の内側の他端から真空ポンプで減圧する
タイプの中空糸膜モジュールも用いることができる。
As the degassing means, for example, an apparatus using a hollow fiber membrane module shown in FIG. 2 is used. The degassing membrane device 10 includes a hollow fiber membrane module 11 having a hollow fiber membrane 11A, and a gas supply connected to a shell 11B of the hollow fiber membrane module 11 via a pipe 12 and supplying nitrogen gas as an inert gas. A source 13 and a vacuum pump 14 connected to the shell 11B of the hollow fiber membrane module 11 via the pipe 12 and creating a reduced pressure space in the shell 11B are provided. In the hollow fiber membrane module 11, the water sample W flows into the hollow fiber membrane 11A from one end to the inside thereof and flows out from the other end, and the nitrogen gas supplied from the gas supply source 13 is sucked by the vacuum pump 14 and the hollow fiber membrane Shell 1 outside of 11A
The inside of 1B is set to a preset vacuum degree (for example, 50 Torr).
Distribution in r). In this way, the nitrogen gas is circulated in the shell 11B to increase the partial pressure of the nitrogen gas in the shell 11B,
By reducing the partial pressure of carbon dioxide, degassing of dissolved carbon dioxide can be promoted based on Henry's law. Even if nitrogen gas remains in the test water, there is no obstacle to the water quality meter 7 at the subsequent stage, and a more accurate resistivity can be measured.
In the present embodiment, the inert gas is not particularly limited as long as it does not adversely affect the resistivity (does not generate dissociated ions even when dissolved in the sample water), but nitrogen gas is preferable. In addition, in the aeration means, an inert gas is bubbled into the test water to degas carbon dioxide gas, which is a dissolved gas that adversely affects the resistivity of the test water W. In addition, a hollow fiber membrane module of a type in which the sample W is flowed outside the hollow fiber membrane, an inert gas is flowed from one end inside the hollow fiber membrane, and the pressure is reduced by a vacuum pump from the other end inside the hollow fiber membrane is also used. Can be.

【0022】本実施形態の水質監視装置1は、例えば図
3に示すように、2台の逆浸透膜装置21を直列に接続
した脱塩装置20に対して適用することができる。この
脱塩装置20は、前段の逆浸透膜装置21の入口に検水
Wを供給する送水ポンプ22が配管23を介して接続さ
れ、後段の逆浸透膜装置21の出口に本実施形態の水質
監視装置1が配管23を介して接続されている。逆浸透
膜装置21は懸濁成分やイオン成分を除去できるが、溶
存ガスは除去することができず、炭酸ガス等の溶存ガス
を含んでいる。しかし、この脱塩装置20には本実施形
態の水質監視装置1が配管23を介して接続されてい
る。従って、脱塩装置20によって得られた脱塩水の抵
抗率は本実施形態の水質監視装置1によって溶存炭酸ガ
スを除去した状態で正確に測定することがでできる。と
ころが、この脱塩装置20に従来の水質監視装置を適用
したものであれば、溶存炭酸ガスを除去することができ
ないため、脱塩水本来の抵抗率を測定することができな
い。
The water quality monitoring device 1 of the present embodiment can be applied to a desalination device 20 in which two reverse osmosis membrane devices 21 are connected in series as shown in FIG. 3, for example. In the desalination apparatus 20, a water pump 22 for supplying water W is connected to an inlet of a reverse osmosis membrane device 21 at a front stage through a pipe 23, and a water quality of the present embodiment is connected to an outlet of the reverse osmosis membrane device 21 at a rear stage. The monitoring device 1 is connected via a pipe 23. The reverse osmosis membrane device 21 can remove suspended components and ionic components, but cannot remove dissolved gases and contains dissolved gases such as carbon dioxide. However, the water quality monitoring device 1 of the present embodiment is connected to the desalination device 20 via a pipe 23. Therefore, the resistivity of the desalted water obtained by the desalination device 20 can be accurately measured in a state where the dissolved carbon dioxide gas is removed by the water quality monitoring device 1 of the present embodiment. However, if the conventional water quality monitoring device is applied to the desalination device 20, the dissolved carbon dioxide gas cannot be removed, so that the original resistivity of the desalted water cannot be measured.

【0023】[0023]

【実施例】実施例1 本実施例では、タンク2に貯留された超純水(抵抗率:
18.0MΩ・cm以上、導電率:0.056μS/c
m以下)を検水として図1に示す水質監視装置1に供給
し、この水質監視装置1を表1に示す条件に設定して超
純水の抵抗率を測定し、その結果を表1に示した。水質
監視装置1は、減圧塔5が直径10cm、高さ100c
mで、抵抗率計6が電気化学工業(株)製のAQ−10
で99℃以下で測定可能範囲なものから構成されてい
る。尚、減圧塔5はアスピレータを用いて減圧して使用
し、また、常圧塔としても使用した。また、比較例とし
て表1に示す条件で超純水の抵抗率を測定し、その結果
を表1に示した。
Embodiment 1 In this embodiment, ultrapure water (resistivity:
18.0 MΩ · cm or more, conductivity: 0.056 μS / c
m or less) is supplied to the water quality monitoring device 1 shown in FIG. 1 as a water sample, the resistivity of the ultrapure water is measured by setting the water quality monitoring device 1 to the conditions shown in Table 1, and the results are shown in Table 1. Indicated. In the water quality monitoring device 1, the pressure reducing tower 5 has a diameter of 10 cm and a height of 100 c.
m, the resistivity meter 6 is AQ-10 manufactured by Denki Kagaku Kogyo KK
It is composed of those which can be measured at 99 ° C. or less. The pressure reducing tower 5 was used under reduced pressure using an aspirator, and was also used as a normal pressure tower. As a comparative example, the resistivity of ultrapure water was measured under the conditions shown in Table 1, and the results are shown in Table 1.

【0024】表1の結果に示す比較例1〜4からも明ら
かなように、無処理の検水の場合(比較例1の場合)に
は抵抗率が1.5MΩ・cmで、従来の水質監視装置を
用いて常温下で減圧処理のみを行った場合(比較例2〜
4の場合)には抵抗率は最高値で4.6MΩ・cmであ
った。しかし、試験例2〜4からも明らかなように、加
熱処理を行うことにより溶存炭酸ガスが除去されて従来
法より抵抗率が大きくなり、溶存炭酸ガスの影響が小さ
くなっていることが判る。また、試験例2と試験例7の
比較からも明らかなように加熱処理をした上に減圧処理
を行うことにより更に抵抗率が大きくなって溶存炭酸ガ
スの影響が小さくなっていることが判る。試験例1、2
及び試験例5からも明らかなように、40℃程度の加熱
処理では溶存炭酸ガスを殆ど除去できず、80℃以上に
加熱効果が顕著に現れることも判った。
As is clear from Comparative Examples 1 to 4 shown in the results of Table 1, in the case of untreated water sample (Comparative Example 1), the resistivity was 1.5 MΩ · cm, and the When only decompression treatment was performed at room temperature using a monitoring device (Comparative Examples 2 to 5)
4), the resistivity was 4.6 MΩ · cm at the highest value. However, as is clear from Test Examples 2 to 4, it can be seen that the dissolved carbon dioxide gas is removed by performing the heat treatment, the resistivity is higher than in the conventional method, and the influence of the dissolved carbon dioxide gas is reduced. Further, as is clear from the comparison between Test Example 2 and Test Example 7, it can be seen that the resistance is further increased and the influence of dissolved carbon dioxide gas is reduced by performing the heat treatment and then performing the decompression treatment. Test Examples 1 and 2
As is clear from Test Example 5, the dissolved carbon dioxide gas could hardly be removed by the heat treatment at about 40 ° C., and the heating effect was remarkably exhibited at 80 ° C. or more.

【0025】従って、例えば水質の基準値が5.0MΩ
・cmである場合には、従来の水質監視手法によれば、
検水本来の抵抗率が基準値に達しているにも拘らず、溶
存炭酸ガスの影響によるものであることを認識できず、
本来不要な脱塩処理用設備を付設する。ところが、本実
施例の場合には80℃以上に加熱すれば基準値を達成こ
とができ、無駄な設備投資を無くすことができる。
Therefore, for example, the reference value of the water quality is 5.0 MΩ.
・ If the value is cm, according to the conventional water quality monitoring method,
Despite the fact that the original resistivity of the test water has reached the reference value, it cannot be recognized that it is due to the influence of dissolved carbon dioxide gas,
Equipment for desalination that is originally unnecessary will be installed. However, in the case of the present embodiment, the reference value can be achieved by heating to 80 ° C. or higher, and wasteful capital investment can be eliminated.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例2 本実施例では工業用水を凝集濾過し、濾過水を安全フィ
ルタを通した後、図3に示す逆浸透膜装置20を用いて
脱塩水を作り、この脱塩水の抵抗率を実施例1で用いた
水質監視装置1を用いて抵抗率を測定し(試験例8〜1
0)、その結果を表2に示した。また、試験例11とし
て脱塩水を窒素ガスにより曝気処理(常温、窒素ガス流
量=1NL/分)して抵抗率を測定し、その結果を表2
に示した。逆浸透膜装置20として日東電工社製ES2
0を用いた。ここで、試験例8は試験例2と、試験例9
は試験例3と、試験例10は試験例7と同一測定条件で
あった。また、比較例5は比較例1と、比較例6は比較
例4と同一測定条件であった。
Embodiment 2 In this embodiment, industrial water is subjected to coagulation filtration, filtered water is passed through a safety filter, and then desalinated water is produced using a reverse osmosis membrane device 20 shown in FIG. Was measured using the water quality monitoring device 1 used in Example 1 (Test Examples 8 to 1).
0) and the results are shown in Table 2. Also, as Test Example 11, the desalted water was aerated with nitrogen gas (normal temperature, nitrogen gas flow rate = 1 NL / min), and the resistivity was measured.
It was shown to. Nitto Denko ES2 as reverse osmosis membrane device 20
0 was used. Here, Test Example 8 includes Test Example 2 and Test Example 9
Were the same measurement conditions as in Test Example 3 and Test Example 10 as in Test Example 7. Further, Comparative Example 5 was under the same measurement conditions as Comparative Example 1 and Comparative Example 6 was under the same measurement conditions as Comparative Example 4.

【0028】表2の結果に示す比較例5、6では検水の
抵抗率は1MΩ・cm以下であった。しかし、試験例8
〜11では検水の抵抗率が1MΩ・cm以上になり、明
らかに溶存炭酸ガスの影響が除去され、抵抗率が大きく
なっている。
In Comparative Examples 5 and 6 shown in the results in Table 2, the resistivity of the sample was 1 MΩ · cm or less. However, Test Example 8
In Nos. To 11, the resistivity of the sample was 1 MΩ · cm or more, the influence of dissolved carbon dioxide was clearly removed, and the resistivity increased.

【0029】[0029]

【表2】 [Table 2]

【0030】以上説明したように本実施形態によれば、
大気との接触により大気中のガスが溶存する脱塩水の抵
抗率を導電率計により測定し、この測定値に基づいて脱
塩水の水質を監視する場合、脱塩水を加熱して溶存炭酸
ガスを除去する加熱装置4を水質計(導電率計)6の前
段に設けたため、溶存炭酸ガスの影響を格段に抑制し、
脱塩水等の検水本来の抵抗率を簡単且つ確実に測定する
ことができる。また、加熱装置4の後段に減圧塔5を設
け、減圧塔5に加熱水を通水するようにしたため、減圧
塔5によって更に溶存炭酸ガスを除去し、脱塩水本来の
抵抗率により正確に測定することができる。
As described above, according to the present embodiment,
When the resistivity of demineralized water in which gas in the atmosphere is dissolved by contact with the atmosphere is measured by a conductivity meter and the quality of the demineralized water is monitored based on the measured value, the decarbonated water is heated to remove dissolved carbon dioxide gas. Since the heating device 4 to be removed is provided in front of the water quality meter (conductivity meter) 6, the influence of dissolved carbon dioxide is significantly suppressed,
It is possible to easily and reliably measure the original resistivity of a sample such as demineralized water. In addition, since the decompression tower 5 is provided at the subsequent stage of the heating device 4 and the heated water is passed through the decompression tower 5, the dissolved carbon dioxide gas is further removed by the decompression tower 5, and the measurement is accurately performed based on the original resistivity of the demineralized water. can do.

【0031】また、脱塩水中に窒素ガスをバブリングす
る曝気手段を水質計7の前段に設けることにより、溶存
炭酸ガスを除去することができ、脱塩水本来の抵抗率を
より正確に測定することができる。また、逆浸透膜装置
20等の脱塩装置に本実施形態の水質監視装置1を設け
ることにより、炭酸ガスの影響のない透過水本来の抵抗
率を正確に知ることができる。
Further, by providing an aeration means for bubbling nitrogen gas into the demineralized water in front of the water quality meter 7, the dissolved carbon dioxide gas can be removed and the original resistivity of the demineralized water can be measured more accurately. Can be. Further, by providing the water quality monitoring device 1 of the present embodiment in a desalination device such as the reverse osmosis membrane device 20, it is possible to accurately know the original resistivity of the permeated water without the influence of carbon dioxide gas.

【0032】尚、上記各実施形態では、水質監視装置に
加熱装置、減圧装置、あるいは曝気装置を設けたものに
ついて説明したが、本発明は上記各実施形態に何等制限
されるものではなく、必要に応じて各構成要素を適宜設
計変更することができる。
In each of the above embodiments, the water quality monitoring device is provided with a heating device, a decompression device, or an aeration device. However, the present invention is not limited to the above embodiments and is not limited to the above embodiments. The design of each component can be appropriately changed according to the requirements.

【0033】[0033]

【発明の効果】本発明の請求項1〜請求項8に記載の発
明によれば、溶存炭酸ガスの影響を格段に抑制し、脱塩
水等の検水の本来の抵抗率を簡単且つ確実に測定するこ
とができる水質監視装置及び水質監視方法を提供するこ
とができる。
According to the first to eighth aspects of the present invention, the influence of dissolved carbon dioxide is remarkably suppressed, and the original resistivity of sample water such as demineralized water can be easily and reliably increased. A water quality monitoring device and a water quality monitoring method capable of measuring can be provided.

【0034】また、本発明の請求項9に記載の発明によ
れば、溶存炭酸ガスの影響を格段に抑制し、逆浸透膜装
置の透過水本来の抵抗率を簡単且つ確実に知ることがで
きる脱塩装置を提供することができる。
According to the ninth aspect of the present invention, the influence of dissolved carbon dioxide can be remarkably suppressed, and the original resistivity of the permeated water of the reverse osmosis membrane device can be easily and reliably known. A desalination device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水質監視装置の一実施形態を示すフロ
ー図である。
FIG. 1 is a flowchart showing one embodiment of a water quality monitoring device of the present invention.

【図2】本発明の水質監視装置の他の実施形態も要部を
示す模式図である。
FIG. 2 is a schematic diagram showing a main part of another embodiment of the water quality monitoring device of the present invention.

【図3】本発明の水質監視装置を備えた脱塩装置の一例
を示すフロー図である。
FIG. 3 is a flowchart showing an example of a desalination apparatus provided with the water quality monitoring device of the present invention.

【符号の説明】[Explanation of symbols]

4 加熱装置(加熱手段) 5 減圧塔(脱気手段) 7 水質計(導電率計) 10 脱気膜装置(脱気膜手段) 11 中空糸膜モジュール Reference Signs List 4 heating device (heating means) 5 decompression tower (degassing means) 7 water quality meter (conductivity meter) 10 degassing membrane device (degassing means) 11 hollow fiber membrane module

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 61/02 B01D 61/02 C02F 1/20 C02F 1/20 1/44 1/44 A G01N 33/18 G01N 33/18 Z Fターム(参考) 2G060 AA05 AC01 AE16 AE17 AE19 AF07 HC06 4D006 GA03 HA01 JA51A KA72 KB17 KE19Q LA08 4D011 AA12 AA14 AA15 AA16 AA17 AD01 AD03 4D037 AA03 AB11 BA23 BB02 BB05 BB06 BB07 CA02 CA03 CA08Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B01D 61/02 B01D 61/02 C02F 1/20 C02F 1/20 1/44 1/44 A G01N 33/18 G01N 33 / 18Z F term (reference) 2G060 AA05 AC01 AE16 AE17 AE19 AF07 HC06 4D006 GA03 HA01 JA51A KA72 KB17 KE19Q LA08 4D011 AA12 AA14 AA15 AA16 AA17 AD01 AD03 4D037 AA03 AB11 BA23 BB02 CA03 BB06 BB06 CA08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 大気との接触により大気中のガスが溶存
する検水の抵抗率を導電率計により測定し、この測定値
に基づいて上記検水の水質を監視する方法において、上
記検水の抵抗率を測定するに先立って、上記検水を加熱
手段により加熱して溶存炭酸ガスを除去することを特徴
とする水質監視方法。
1. A method for measuring the resistivity of a test water in which gas in the atmosphere is dissolved by contact with the atmosphere by a conductivity meter, and monitoring the quality of the test water based on the measured value. Prior to measuring the resistivity of the sample, the water sample is heated by a heating means to remove dissolved carbon dioxide gas.
【請求項2】 上記加熱手段により加熱された検水を脱
気することを特徴とする請求項1に記載の水質監視方
法。
2. The water quality monitoring method according to claim 1, wherein the test water heated by the heating means is degassed.
【請求項3】 上記加熱手段による加熱温度が80℃以
上であることを特徴とする請求項1または請求項2に記
載の水質監視方法。
3. The water quality monitoring method according to claim 1, wherein a heating temperature of the heating means is 80 ° C. or higher.
【請求項4】 大気との接触により大気中のガスが溶存
する検水の抵抗率を導電率計により測定し、この測定値
に基づいて上記検水の水質を監視する水質監視装置にお
いて、上記検水を加熱して溶存炭酸ガスを除去する加熱
手段を上記導電率計の前段に設けたことを特徴とする水
質監視装置。
4. A water quality monitoring device for measuring the resistivity of a test sample in which gas in the atmosphere is dissolved by contact with the atmosphere with a conductivity meter and monitoring the test sample water quality based on the measured value. A water quality monitoring device, wherein a heating means for heating a test water to remove dissolved carbon dioxide gas is provided in a stage preceding the conductivity meter.
【請求項5】 上記加熱手段の後段に脱気手段を設け、
この脱気手段に加熱水を通水することを特徴とする請求
項4に記載の水質監視装置。
5. A degassing means is provided after the heating means,
The water quality monitoring device according to claim 4, wherein heated water is passed through the deaeration means.
【請求項6】 上記脱気手段として脱気膜装置を用いる
ことを特徴とする請求項5に記載の水質監視装置。
6. The water quality monitoring device according to claim 5, wherein a degassing device is used as the degassing means.
【請求項7】 大気との接触により大気中のガスが溶存
する検水の抵抗率を導電率計により測定し、この測定値
に基づいて上記検水の水質を監視する水質監視装置にお
いて、減圧下で上記検水の溶存炭酸ガスを脱気する脱気
膜手段を上記導電率計の前段に設け、且つ、上記脱気膜
手段の減圧空間に不活性ガスを供給するガス供給手段を
設けたことを特徴とする水質監視装置。
7. A water quality monitoring device for measuring the resistivity of a sample in which gas in the atmosphere is dissolved by contact with the atmosphere with a conductivity meter and monitoring the quality of the sample based on the measured value. Degassing membrane means for degassing the dissolved carbon dioxide gas under the test water is provided in front of the conductivity meter, and gas supply means for supplying an inert gas to a reduced pressure space of the degassing membrane means is provided. A water quality monitoring device, characterized in that:
【請求項8】 大気との接触により大気中のガスが溶存
する検水の抵抗率を導電率計により測定し、この測定値
に基づいて上記検水の水質を監視する水質監視装置にお
いて、上記検水中に不活性ガスをバブリングする曝気手
段を上記導電率計の前段に設けたことを特徴とする水質
監視装置。
8. A water quality monitoring device for measuring the resistivity of a sample in which gas in the atmosphere is dissolved by contact with the atmosphere by a conductivity meter and monitoring the quality of the sample based on the measured value. A water quality monitoring device, characterized in that aeration means for bubbling an inert gas during test water is provided at a stage preceding the conductivity meter.
【請求項9】 逆浸透膜装置の後段に請求項4〜請求項
8のいずれか1項に記載の水質監視装置を備えたことを
特徴とする脱塩装置。
9. A desalination device comprising the water quality monitoring device according to claim 4 subsequent to a reverse osmosis membrane device.
JP08676799A 1999-03-29 1999-03-29 Deionized water quality monitoring method Expired - Fee Related JP3712225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08676799A JP3712225B2 (en) 1999-03-29 1999-03-29 Deionized water quality monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08676799A JP3712225B2 (en) 1999-03-29 1999-03-29 Deionized water quality monitoring method

Publications (3)

Publication Number Publication Date
JP2000283939A true JP2000283939A (en) 2000-10-13
JP2000283939A5 JP2000283939A5 (en) 2005-04-07
JP3712225B2 JP3712225B2 (en) 2005-11-02

Family

ID=13895911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08676799A Expired - Fee Related JP3712225B2 (en) 1999-03-29 1999-03-29 Deionized water quality monitoring method

Country Status (1)

Country Link
JP (1) JP3712225B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214221A (en) * 2000-12-13 2002-07-31 Samsung Electronics Co Ltd Impurities detector and impurities detection method
WO2013129741A1 (en) * 2012-02-27 2013-09-06 한국수자원공사 Apparatus for measuring water quality
JP2013220394A (en) * 2012-04-17 2013-10-28 Chugoku Electric Power Co Inc:The Electric conductivity reduction method and device for pure water
JP2018020272A (en) * 2016-08-02 2018-02-08 オルガノ株式会社 Ultrapure water production device and ultrapure water production method
CN109406705A (en) * 2018-11-29 2019-03-01 南京大学 A kind of liquid chromatogram combination type organic carbon detector and its application method
US11111911B2 (en) 2016-10-14 2021-09-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Degassing apparatus
WO2022163613A1 (en) * 2021-01-28 2022-08-04 三菱重工業株式会社 Water quality diagnosis method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872512B (en) * 2018-06-20 2019-07-09 三峡大学 The device and method of fast slowdown monitoring water body dissolution trace gas concentration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214221A (en) * 2000-12-13 2002-07-31 Samsung Electronics Co Ltd Impurities detector and impurities detection method
WO2013129741A1 (en) * 2012-02-27 2013-09-06 한국수자원공사 Apparatus for measuring water quality
JP2013220394A (en) * 2012-04-17 2013-10-28 Chugoku Electric Power Co Inc:The Electric conductivity reduction method and device for pure water
JP2018020272A (en) * 2016-08-02 2018-02-08 オルガノ株式会社 Ultrapure water production device and ultrapure water production method
US11111911B2 (en) 2016-10-14 2021-09-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Degassing apparatus
CN109406705A (en) * 2018-11-29 2019-03-01 南京大学 A kind of liquid chromatogram combination type organic carbon detector and its application method
CN109406705B (en) * 2018-11-29 2024-04-09 南京大学 Liquid chromatography combined organic carbon detector and application method thereof
WO2022163613A1 (en) * 2021-01-28 2022-08-04 三菱重工業株式会社 Water quality diagnosis method

Also Published As

Publication number Publication date
JP3712225B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP4867182B2 (en) Pure water production equipment
US6858145B2 (en) Method of removing organic impurities from water
KR101563169B1 (en) Pure water production apparatus and pure water production method
TWI391332B (en) Pure water manufacturing device
CN108779006B (en) Ultrapure water production system
JP4779391B2 (en) Pure water production equipment
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
KR20030007692A (en) Regeneration of Plating Baths
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP5320665B2 (en) Ultrapure water production apparatus and method
JP2000283939A (en) Water quality monitoring system, water quality monitoring method, and demineralizer
László et al. Effect of preozonation on the filterability of model dairy waste water in nanofiltration
JP2014000575A (en) Apparatus and method for producing purified water
JP2007307561A (en) High-purity water producing apparatus and method
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP3758011B2 (en) Equipment for recovering and reusing recycled developer from photoresist developer waste
JP2000283939A5 (en)
JPH09253638A (en) Ultrapure water making apparatus
WO2018105569A1 (en) Water treatment method and water treatment device
JP6716992B2 (en) Wet cleaning device and wet cleaning method
JP2007268352A (en) Water treatment method and water treatment apparatus
JP2002307080A (en) Apparatus for producing ultrapure water
JP3727156B2 (en) Desalination equipment
JP4691998B2 (en) Pure water production equipment
CN115551809A (en) Boron removal apparatus and method, pure water production apparatus, and pure water production method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees