JP2000283621A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2000283621A
JP2000283621A JP11090135A JP9013599A JP2000283621A JP 2000283621 A JP2000283621 A JP 2000283621A JP 11090135 A JP11090135 A JP 11090135A JP 9013599 A JP9013599 A JP 9013599A JP 2000283621 A JP2000283621 A JP 2000283621A
Authority
JP
Japan
Prior art keywords
compressor
evaporator
temperature
refrigerator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11090135A
Other languages
Japanese (ja)
Inventor
Noriyuki Isojima
宣之 磯島
Hiroshi Iwata
博 岩田
Taichi Tanaami
太一 店網
Hiroaki Matsushima
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11090135A priority Critical patent/JP2000283621A/en
Publication of JP2000283621A publication Critical patent/JP2000283621A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a refrigerant from becoming insufficient liquid from returning in a refrigerator using a lateral revolution high pressure container type compressor sing a hydrocarbon refrigerant such as isobutane. SOLUTION: A refrigerator is adapted such that it has a freezing cycle in which there in formed into a series closed circuit of a high pressure container type compressor 1, a condenser 2, pressure reduction means 3, and an evaporator 4. In the refrigerator, there is provided heating means 7 for heating refrigerating machine oil encapsulated in a high pressure container of the compressor, and the refrigerating machine oil is heated with the heating means until compressor temperature rises to a temperature where a refrigerant amount is not insufficient after power supply to the refrigerator, and then the compressor 1 is started. Further, there is provided heating means for heating refrigerating machine oil wherein when detected fresh air temperature is lowered to a temperature near a temperature where the detected fresh air temperature causes lack of the refrigerant amount after interruption of a compressor subjected to intermittent operation, a cooling fan 5 for the compressor is interrupted or revolutions of the cooling fan are reduced, and then the compressor is started after the refrigerating machine oil is heated until the compressor temperature rises to the temperature where no lack of a refrigerant amount is caused.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イソブタンなどの
炭化水素系冷媒を封入し、高圧容器型圧縮機を用いる冷
蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator in which a hydrocarbon-based refrigerant such as isobutane is sealed and a high-pressure container-type compressor is used.

【0002】[0002]

【従来の技術】従来の冷蔵庫としては図5に示す特開平
10−292971号公報に示されているものがある。
前記冷蔵庫は作動冷媒として180g程度のHFC13
4a((1、2、2、2−テトラフルオロエタン)を用
い、冷凍機油として冷媒と相溶性の小さいエステル油を
低圧容器型のレシプロ圧縮機内に封入している。
2. Description of the Related Art As a conventional refrigerator, there is one disclosed in Japanese Patent Application Laid-Open No. Hei 10-292971 shown in FIG.
The refrigerator has about 180 g of HFC13 as a working refrigerant.
Using 4a ((1,2,2,2-tetrafluoroethane)), an ester oil having low compatibility with the refrigerant is sealed in a low-pressure container type reciprocating compressor as a refrigerating machine oil.

【0003】庫内温度制御は低圧容器型圧縮機(蒸発器
からの低圧冷媒は冷凍機油の封入された圧縮機容器内に
一旦収容された後に圧縮部(例えばシリンダ)に入れら
れて圧縮され、且つ圧縮機の圧縮部から直接に高圧とな
った冷媒が圧縮機外へ吐出される型式のもの)の運転―
停止によって行われるが、圧縮機の停止時には凝縮器内
の高温高圧冷媒が配管を介して蒸発器内に流入する。ま
た、低温の蒸発器内で液体の状態のまま残った冷媒が圧
縮機の再起動時には圧縮機吸込配管を介して、一部は気
化しないまま圧縮機に流入する。
[0003] The internal temperature control is performed by a low-pressure container type compressor (low-pressure refrigerant from an evaporator is once stored in a compressor container in which refrigerating machine oil is sealed, and then put into a compression unit (for example, a cylinder) and compressed. And operation in which the high-pressure refrigerant is discharged from the compressor directly out of the compressor)
Although this is performed by stopping the compressor, when the compressor is stopped, the high-temperature and high-pressure refrigerant in the condenser flows into the evaporator via the pipe. Further, when the compressor is restarted, a part of the refrigerant remaining in a liquid state in the low-temperature evaporator flows into the compressor via the compressor suction pipe without being vaporized.

【0004】圧縮機内部で、冷媒はまず低圧容器に流入
し液冷媒が残っている場合には低圧容器内で気化した
後、圧縮部に吸入されるため、液圧縮或いは液冷媒によ
る潤滑部の冷凍機油の流出といった現象が防止されてい
る。
[0004] In the compressor, the refrigerant first flows into the low-pressure vessel, and if liquid refrigerant remains, it is vaporized in the low-pressure vessel and then sucked into the compression section. Phenomenon such as spill of refrigerating machine oil is prevented.

【0005】また、長期間運転停止後、冷蔵庫を運転す
る場合、圧縮機の温度が設置されている周囲の室温まで
低下するため、通常運転時に比べ圧縮機内の冷凍機油へ
の冷媒溶解量が増加する(温度が低いほど、圧力が高い
ほど、冷凍機油への冷媒溶解量は大となる)。そのため
起動直後は冷凍サイクルの冷媒量は不足気味となるが、
冷媒HFC134aと冷凍機油エステル油との相溶性が
小さいこと、冷媒の封入量が180g程度と多いこと、
さらに低圧容器型圧縮機であるため起動後、冷凍機油の
ある低圧容器室の圧力が低下するため、溶解している冷
媒が冷凍サイクルへ放出される構造になっていることに
より、冷凍サイクルの冷媒不足は短時間の内に解消さ
れ、冷蔵庫内の冷却を迅速に行うことができるようにな
っている。
[0005] When the refrigerator is operated after a long-term shutdown, the temperature of the compressor drops to the ambient room temperature where the compressor is installed, so that the amount of refrigerant dissolved in the refrigerating machine oil in the compressor increases as compared with the normal operation. (The lower the temperature and the higher the pressure, the greater the amount of refrigerant dissolved in the refrigerating machine oil). For this reason, the refrigerant amount of the refrigeration cycle becomes short immediately after startup,
That the compatibility between the refrigerant HFC134a and the refrigerating machine ester oil is small, and that the amount of the charged refrigerant is as large as about 180 g;
Furthermore, since the compressor is a low-pressure container type compressor, the pressure in the low-pressure container chamber containing the refrigerating machine oil decreases after startup, so that the refrigerant that has been dissolved is discharged to the refrigeration cycle. The shortage is resolved within a short time, and the refrigerator can be cooled quickly.

【0006】再度、ここで冷凍機油への冷媒溶解度につ
いての現象を説明する。低圧容器型圧縮機(蒸発器から
の冷媒は冷凍機油の封入された圧縮機容器内に一旦収容
された後に圧縮部(例えばシリンダ)に入れられて圧縮
され、且つ圧縮機の圧縮部から直接に冷媒が圧縮機外へ
吐出される型式のもの)における冷媒の挙動についてで
あるが、長期間に亘って圧縮機を停止した状態では、サ
イクル内の圧力は均一になった状態で、運転時より低圧
室内の圧力が上昇するとともに、圧縮機及び圧縮機内の
冷凍機油の温度は室温まで低下するため、冷凍機油への
冷媒溶解度が大となる。圧縮機が起動されると、温度は
殆ど一定のまま、冷凍機油の封入されている低圧容器内
の圧力は下がるため冷媒の溶解度は低下する。このた
め、冷凍機油に溶解していた冷媒が冷凍サイクルに放出
されるため、冷凍サイクルの冷媒量が不足することがな
い。
[0006] Here again, the phenomenon regarding the solubility of the refrigerant in the refrigerating machine oil will be described. Low-pressure container type compressor (the refrigerant from the evaporator is once stored in a compressor container in which refrigerating machine oil is sealed, then put into a compression unit (for example, a cylinder) and compressed, and directly from the compression unit of the compressor. In the case where the compressor is stopped for a long period of time, the pressure in the cycle is uniform, and As the pressure in the low-pressure chamber increases, the temperature of the compressor and the refrigerating machine oil in the compressor decreases to room temperature, so that the refrigerant solubility in the refrigerating machine oil increases. When the compressor is started, while the temperature remains almost constant, the pressure in the low-pressure container in which the refrigerating machine oil is sealed decreases, so that the solubility of the refrigerant decreases. For this reason, since the refrigerant dissolved in the refrigerating machine oil is discharged to the refrigeration cycle, the amount of refrigerant in the refrigeration cycle does not run short.

【0007】高圧容器型圧縮機(蒸発器からの冷媒は冷
凍機油の封入された圧縮機容器の圧縮部(例えば、シリ
ンダ)へ直接に導入され、且つシリンダで圧縮された冷
媒は高圧容器内に吐出されて高圧容器の出口から冷媒が
凝縮器に送給される型式のもの)における冷媒の挙動に
ついてであるが、長期間に亘って圧縮機を停止した状態
では、サイクル内の圧力は均一になった状態で、運転時
より高圧室内の圧力は低下するが、圧縮機及び圧縮機内
の冷凍機油の温度は室温まで低下するため冷凍機油への
冷媒溶解度は大となる。圧縮機が起動されると、温度は
殆ど一定のまま、冷凍機油の封入されている高圧容器内
の圧力が上がるため、冷凍機油への冷媒溶解度が上昇す
る。したがって、起動によって冷凍サイクル中の冷媒ま
でが冷凍機油に溶解し、冷凍サイクルの冷媒不足が生じ
る。その後、圧縮機への通電による発熱で圧縮機温度と
共に冷凍機油温度が上昇することで、溶解していた冷媒
が徐々に冷凍サイクルに放出され、最終的に圧縮機温度
が定常状態の温度まで上昇したときに、当初冷凍機油に
溶解していた冷媒の多くがサイクル中に放出され、冷蔵
庫内の冷却を十分に行うことができる。圧縮機の熱容量
が大きいため冷凍機油の温度が上昇するには長時間必要
であり、その間冷凍サイクルは冷媒不足となるため冷蔵
庫内の冷却を十分行うことができない。
[0007] A high-pressure container type compressor (the refrigerant from the evaporator is directly introduced into a compression section (for example, a cylinder) of the compressor container in which the refrigerating machine oil is filled, and the refrigerant compressed by the cylinder is placed in the high-pressure container. This is the type of refrigerant that is discharged and the refrigerant is supplied to the condenser from the outlet of the high-pressure vessel.) In the state where the compressor is stopped for a long time, the pressure in the cycle is uniform. In this state, the pressure in the high-pressure chamber is lower than during operation, but the temperature of the compressor and the refrigerating machine oil in the compressor drops to room temperature, so that the refrigerant solubility in the refrigerating machine oil increases. When the compressor is started, the pressure in the high-pressure container in which the refrigerating machine oil is sealed increases while the temperature remains almost constant, so that the solubility of the refrigerant in the refrigerating machine oil increases. Accordingly, even the refrigerant in the refrigeration cycle is dissolved in the refrigerating machine oil by the start, and the shortage of the refrigerant in the refrigeration cycle occurs. After that, the temperature of the refrigerating machine oil rises with the compressor temperature due to the heat generated by energizing the compressor, and the dissolved refrigerant is gradually released to the refrigerating cycle, and finally the compressor temperature rises to a steady state temperature At that time, much of the refrigerant initially dissolved in the refrigerating machine oil is released during the cycle, and the inside of the refrigerator can be sufficiently cooled. Since the heat capacity of the compressor is large, it takes a long time to raise the temperature of the refrigerating machine oil. During this time, the refrigerating cycle runs short of the refrigerant, so that the refrigerator cannot be sufficiently cooled.

【0008】[0008]

【発明が解決しようとする課題】現在使用されている冷
媒HFC134aはオゾン層破壊能力はないものの二酸
化炭素比で約1,300倍の地球温暖化作用を有するた
め、オゾン層破壊能力が無く、且つ地球温暖化作用の小
さいイソブタンやプロパンといった炭化水素系冷媒への
代替が近年社会的に求められるようになっている。
The refrigerant HFC134a currently used has no ozone depleting ability, but has a global warming effect of about 1,300 times as high as the carbon dioxide ratio. In recent years, there has been a social demand for an alternative to hydrocarbon refrigerants such as isobutane and propane, which have a small global warming effect.

【0009】冷蔵庫用冷媒としては熱物性から冷凍サイ
クルの効率の高いイソブタンが有力視されているが、イ
ソブタンを使用した場合には物性の違いから、圧縮機行
程容積大型化(イソブタンの比容積が大きいため)、冷
凍機油を相溶性の大きい鉱油に変更(イソブタンは従来
のエステル油とは非相溶であり、潤滑面で問題が生じる
ので、相溶性は大きいが鉱油を用いる)、冷媒封入量減
(50g程度)(イソブタンは比容積が大きいため)、
といった変更が必要となる。
As a refrigerant for refrigerators, isobutane having high refrigeration cycle efficiency is considered to be promising because of its thermophysical properties. However, when isobutane is used, the compressor stroke volume is increased due to the difference in physical properties (the specific volume of isobutane is increased). Refrigerator oil was changed to mineral oil with high compatibility (because it is large) (isobutane is incompatible with conventional ester oil and causes problems in lubrication, so compatibility is high, but mineral oil is used.) Reduction (about 50 g) (since isobutane has a large specific volume),
Such a change is required.

【0010】レシプロ圧縮機で圧縮機行程容積を大型化
すると、それに伴い圧縮機全体の大きさが大きくなるた
め、圧縮機を収納する機械室部分のスペースを広くし、
その分、食品貯蔵室の収納容量を小さくしなければなら
ない。食品貯蔵室の収納容量を小さくすることなく圧縮
機行程容積を大型化するには、機械室内での収納性が良
く、且つ圧縮機としての効率の高い横置き型の回転式圧
縮機への変更により対応することが有望である。
When the reciprocating compressor is used to increase the compressor stroke volume, the size of the entire compressor is accordingly increased, so that the space in the machine room for accommodating the compressor is increased,
Accordingly, the storage capacity of the food storage room must be reduced. In order to increase the compressor stroke volume without reducing the storage capacity of the food storage room, change to a horizontal type rotary compressor with good storage efficiency in the machine room and high efficiency as a compressor It is promising to respond to

【0011】しかしながら、従来用いられている回転式
圧縮機は、その構造上、高圧容器型圧縮機(蒸発器から
吸入された冷媒は直接圧縮部のシリンダに導入され、シ
リンダで圧縮後、冷凍機油の封入された高圧容器内に吐
出されて高圧容器の出口から冷媒が凝縮器に送給される
型式のもの)となるため、例えば長期間運転停止後、冷
蔵庫を運転する場合、冷媒封入量が50g程度と少ない
反面、冷媒イソブタンと冷凍機油である鉱油との相溶性
が大きいことから、冷凍機油への冷媒の溶解による起動
直後の冷凍サイクルの冷媒量不足の影響が大きくなる。
However, because of the structure of the conventionally used rotary compressor, the structure of the high-pressure container type compressor (the refrigerant sucked from the evaporator is directly introduced into the cylinder of the compression section, and compressed by the cylinder. Is discharged into the high-pressure container in which the refrigerant is discharged and the refrigerant is supplied from the outlet of the high-pressure container to the condenser). On the other hand, although the amount is as small as about 50 g, the compatibility between the refrigerant isobutane and the mineral oil as the refrigerating machine oil is large, so that the effect of the shortage of the refrigerant amount in the refrigerating cycle immediately after the start due to the dissolution of the refrigerant in the refrigerating machine oil increases.

【0012】さらに高圧容器型圧縮機であるため、起動
とともに冷凍機油の封入されている高圧容器室の圧力が
上昇し、溶解している冷媒が冷凍サイクルに放出されに
くい構造となり、圧縮機の通電発熱による温度上昇によ
って冷凍機油から冷媒が放出されることを待たねばなら
なくなることから、冷凍サイクルの冷媒不足が長時間継
続し、冷蔵庫内の冷却に時間がかかるという課題があ
る。
Further, since the compressor is a high-pressure container type compressor, the pressure in the high-pressure container chamber in which the refrigerating machine oil is filled rises upon start-up, so that the structure is such that the dissolved refrigerant is not easily discharged to the refrigeration cycle. Since it is necessary to wait for the refrigerant to be released from the refrigerating machine oil due to the temperature rise due to heat generation, there is a problem that the refrigerant shortage of the refrigeration cycle continues for a long time and the cooling in the refrigerator takes time.

【0013】また冬季に周囲温度が低下した場合、断続
運転の圧縮機停止時にも、圧縮機温度の低下により、同
様に冷凍機油への冷媒溶解量増加に伴う冷凍サイクルの
冷媒不足が生じる虞があるという課題がある。
[0013] Further, when the ambient temperature decreases in winter, even when the compressor in the intermittent operation is stopped, the compressor temperature may decrease and the refrigerant in the refrigeration cycle may similarly run short due to an increase in the amount of refrigerant dissolved in the refrigeration oil. There is a problem that there is.

【0014】さらにまた、高圧容器型圧縮機では、低圧
容器型圧縮機と違い、蒸発器からの吸込配管が圧縮機内
で直に圧縮部(例えば、シリンダ)に接続される構成と
なっていることから、液圧縮回避のため起動時の圧縮機
への液戻り防止機構が必要という課題がある。
Furthermore, unlike the low-pressure container type compressor, the high-pressure container type compressor has a configuration in which the suction pipe from the evaporator is directly connected to a compression section (for example, a cylinder) in the compressor. Therefore, there is a problem that a mechanism for preventing the liquid from returning to the compressor at the time of start-up is required to avoid liquid compression.

【0015】また冷蔵庫の機械室内に横置き型圧縮機を
収納した場合、圧縮機配管が圧縮機の回転軸の軸方向に
接続されていると、圧縮機配管のろう付け接続作業を行
うことが作業スペース上困難であるという課題がある。
[0015] When a horizontal compressor is housed in the refrigerator machine room, if the compressor piping is connected in the axial direction of the compressor rotating shaft, brazing of the compressor piping may be performed. There is a problem that the work space is difficult.

【0016】[0016]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0017】高圧容器型圧縮機、凝縮器、減圧手段、蒸
発器、を直列閉回路に形成してなる冷凍サイクルを有す
る冷蔵庫であって、前記圧縮機の高圧容器内に封入され
た冷凍機油を加熱する加熱手段を設け、冷蔵庫への通電
後、圧縮機温度が冷媒量不足を生じない温度に上昇する
まで前記加熱手段により前記冷凍機油を加熱した後に、
前記圧縮機を起動する冷蔵庫。
A refrigerator having a refrigerating cycle in which a high-pressure vessel type compressor, a condenser, a decompression means, and an evaporator are formed in a series closed circuit, wherein refrigerating machine oil sealed in a high-pressure vessel of the compressor is provided. Providing heating means for heating, after energizing the refrigerator, after heating the refrigerating machine oil by the heating means until the compressor temperature rises to a temperature that does not cause shortage of the refrigerant amount,
A refrigerator that starts the compressor.

【0018】また、高圧容器型圧縮機、凝縮器、減圧手
段、蒸発器、を直列閉回路に形成してなる冷凍サイクル
と、前記蒸発器の送風用ファンと、外気温度を検知する
外気温度検知手段と、を備えた冷蔵庫であって、前記圧
縮機の高圧容器内に封入された冷凍機油を加熱する加熱
手段を設け、断続運転する前記圧縮機の停止後に、前記
検知された外気温度が冷媒量不足を生じる近傍の温度に
まで低下した場合には、前記圧縮機の冷却用ファンを停
止又は前記冷却用ファンの回転数を低下させ、次いで、
圧縮機温度が冷媒量不足を生じない温度に上昇するまで
前記冷凍機油を加熱した後に前記圧縮機を起動する冷蔵
庫。
Also, a refrigeration cycle in which a high-pressure container type compressor, a condenser, a pressure reducing means, and an evaporator are formed in a series closed circuit, a fan for blowing the evaporator, and an outside air temperature detection for detecting an outside air temperature And a heating means for heating refrigerating machine oil sealed in a high-pressure container of the compressor, wherein after the compressor that performs the intermittent operation is stopped, the detected outside air temperature is a refrigerant. When the temperature has decreased to a temperature near the shortage of the amount, the cooling fan of the compressor is stopped or the rotation speed of the cooling fan is reduced,
A refrigerator that starts the compressor after heating the refrigerating machine oil until the compressor temperature rises to a temperature that does not cause a shortage of the refrigerant amount.

【0019】また、高圧容器型圧縮機、凝縮器、第一の
減圧手段、第一の蒸発器、前記第一の減圧手段及び第一
の蒸発器の流路と並列に設けられた第二の減圧手段と第
二の蒸発器、前記第一の蒸発器と前記第二の蒸発器への
流路切り替え手段、を有する冷凍サイクルと、前記圧縮
器の冷却用ファンと、前記第一と第二の蒸発器の送風用
ファンと、前記第一と第二の蒸発器に対応して温度の異
なる少なくとも2室と、を備えた冷蔵庫であって、断続
運転する前記圧縮機の停止後に、前記第一と第二の蒸発
器の内で低温側の蒸発器側の流路を閉じた状態で、冷蔵
庫内の温度制御にしたがって前記圧縮機を再起動する冷
蔵庫。
Further, a high-pressure vessel type compressor, a condenser, a first decompression means, a first evaporator, a second evacuation means and a second evaporator provided in parallel with the flow path of the first evaporator are provided. A refrigeration cycle having a pressure reducing means and a second evaporator, a means for switching a flow path to the first evaporator and the second evaporator, a cooling fan for the compressor, the first and second A fan for blowing air of the evaporator, and at least two chambers having different temperatures corresponding to the first and second evaporators, the refrigerator comprising: A refrigerator that restarts the compressor in accordance with temperature control in the refrigerator while closing a flow path on a low-temperature side of the evaporator in the first and second evaporators.

【0020】[0020]

【発明の実施の形態】以下本発明の実施形態について、
図面に基づいて説明する。図1は本発明の実施形態に係
る冷蔵庫の冷凍サイクルを示す図であり、図8は本発明
の実施形態に係る冷蔵庫の起動時のフローチャートを示
す図である。図1において、1は圧縮機、2は凝縮器、
3は減圧手段、4は蒸発器、5は前記凝縮器2と圧縮機
1の冷却ファン、6は前記蒸発器4の送風ファン、7は
前記圧縮機1内の冷凍機油の加熱手段、8は圧縮機温度
検知手段、9は外気温度検知手段、10は制御手段、を
それぞれ表す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described with reference to the drawings. FIG. 1 is a diagram illustrating a refrigeration cycle of a refrigerator according to an embodiment of the present invention, and FIG. 8 is a diagram illustrating a flowchart when the refrigerator according to the embodiment of the present invention is started. In FIG. 1, 1 is a compressor, 2 is a condenser,
3 is a decompression means, 4 is an evaporator, 5 is a cooling fan for the condenser 2 and the compressor 1, 6 is a blower fan for the evaporator 4, 7 is a means for heating refrigerating machine oil in the compressor 1, and 8 is Compressor temperature detecting means, 9 indicates outside air temperature detecting means, and 10 indicates control means.

【0021】図8のS2において、t_待機はコンセン
トを入れて冷蔵庫に通電後、圧縮機1起動までに待機す
る時間t_set(短時間の間隔でコンセントを抜き差
しした場合の圧縮機起動不良防止のための待機時間)を
計測するタイマのカウント時間である。S4において、
T_lowは冷媒不足が生じない下限の冷凍機油温度で
ある。
In S2 of FIG. 8, t_standby is a time period t_set to wait until the compressor 1 is started after the outlet is turned on and the refrigerator is energized. Is a count time of a timer for measuring the standby time of the timer. In S4,
T_low is the lower limit of the refrigerating machine oil temperature at which the refrigerant shortage does not occur.

【0022】冷媒にはイソブタンなどの炭化水素系冷媒
を用い、冷凍機油に相溶性のある鉱油を用いる。購入直
後のような長期間運転が行われていない状態から、冷蔵
庫を運転する場合の本発明の制御手段10の動作を図8
に基づいて説明する。圧縮機1及び圧縮機1内の冷凍機
油の温度は周囲の室温まで低下し、冷凍機油への冷媒溶
解量が増加して、冷凍サイクルは冷媒不足気味となって
いる。ここで、冷媒の冷凍機油への相溶性は温度が低い
ほど、また圧力が高いほど大である。
A hydrocarbon-based refrigerant such as isobutane is used as the refrigerant, and a mineral oil compatible with the refrigerating machine oil is used. FIG. 8 shows the operation of the control means 10 of the present invention when the refrigerator is operated from a state in which the operation has not been performed for a long time such as immediately after purchase.
It will be described based on. The temperature of the compressor 1 and the refrigerating machine oil in the compressor 1 decreases to the ambient room temperature, the amount of refrigerant dissolved in the refrigerating machine oil increases, and the refrigeration cycle tends to be short of refrigerant. Here, the compatibility of the refrigerant with the refrigerating machine oil increases as the temperature decreases and as the pressure increases.

【0023】S1で冷蔵庫への通電後、S2で制御手段
10内の圧縮機起動待機タイマがカウントを開始する。
短時間の間隔でコンセントを抜き差しした場合の圧縮機
起動不良防止のため、圧縮機1は通電後すぐには起動し
ない。S3で圧縮機温度T_compを検知し、S4に
おいて該温度T_compが冷媒不足を生じるまで低下
しているかどうかを判定する。T_lowはあらかじめ
実験などにより求めておく。圧縮機温度が高く、冷媒量
不足が生じないと判定した場合には、S9に飛び、起動
待機時間t_set経過後、S10において圧縮機を起
動する。
After power is supplied to the refrigerator in S1, the compressor start standby timer in the control means 10 starts counting in S2.
The compressor 1 does not start immediately after energization in order to prevent the compressor starting failure when the outlet is plugged in and out at short intervals. In S3, the compressor temperature T_comp is detected, and in S4, it is determined whether or not the temperature T_comp has decreased until a refrigerant shortage occurs. T_low is obtained in advance by an experiment or the like. When it is determined that the compressor temperature is high and the refrigerant amount is not insufficient, the process jumps to S9, and after the startup standby time t_set has elapsed, starts the compressor in S10.

【0024】S4において圧縮機温度が低く冷媒量不足
が生じると判定した場合には、S5に移り冷凍機油加熱
手段7で冷凍機油を加熱し、冷凍機油に溶解している冷
媒を冷凍サイクル中に放出する。冷凍機油加熱手段7と
しては、圧縮機1内の例えば冷凍機油中にヒータを設置
しても良いし、或いは圧縮機1の電動機コイルにコイル
通電を行って加熱してもよい。
If it is determined in S4 that the compressor temperature is low and the refrigerant amount is insufficient, the flow proceeds to S5 where the refrigerating machine oil is heated by the refrigerating machine oil heating means 7 and the refrigerant dissolved in the refrigerating machine oil is discharged during the refrigerating cycle. discharge. As the refrigerating machine oil heating means 7, a heater may be installed in the refrigerating machine oil in the compressor 1, for example, or heating may be performed by energizing a motor coil of the compressor 1.

【0025】S6に移って所定時間毎に圧縮機温度を検
知し、S7で冷媒不足を生じない所定温度T_lowを
超えるまで冷凍機油の加熱を行う。冷凍機油温度が上昇
後S8で加熱を停止し、S9において圧縮機起動待機時
間t_set到達後S10で圧縮機を起動し、冷凍サイ
クルを運転する。
In S6, the compressor temperature is detected at predetermined time intervals, and in S7, the refrigerating machine oil is heated until the temperature exceeds a predetermined temperature T_low at which refrigerant shortage does not occur. After the refrigerating machine oil temperature rises, the heating is stopped in S8, the compressor is started in S10 after the compressor startup standby time t_set has been reached in S9, and the refrigeration cycle is operated.

【0026】本発明のように構成された冷蔵庫では、冷
凍機油中に溶解した冷媒を、あらかじめ冷凍サイクルに
放出した後、圧縮機を起動するため、高圧容器型圧縮機
を搭載し、長期間運転休止後の冷蔵庫であっても、起動
時の冷凍サイクルが過度の冷媒不足となることが無く短
時間で冷蔵庫内の冷却を行うことができる。また、冷凍
機油の加熱は圧縮機起動待機時間を利用して行うため、
加熱に要する時間が特別に必要となるわけではない。
The refrigerator constructed as in the present invention is equipped with a high-pressure container type compressor for starting the compressor after the refrigerant dissolved in the refrigerating machine oil is discharged to the refrigerating cycle in advance, and is operated for a long time. Even if the refrigerator is not in operation, the refrigerator can be cooled in a short time without causing an excessive shortage of refrigerant in the refrigeration cycle at the time of startup. Also, since the heating of the refrigerating machine oil is performed using the compressor start standby time,
No special time is required for the heating.

【0027】図10に示す従来技術における圧縮機起動
までの制御フローからも分かるように、冷蔵庫へ通電
(S19)した後に、圧縮機を起動するまでに諸要件を
満たすようにセット時間がタイマでセットされ、起動が
待機されるのである。本発明の実施形態においては、図
10の待機時間内に、図8の如く、冷凍機油を加熱しよ
うとするものである。
As can be seen from the control flow up to the start of the compressor in the prior art shown in FIG. 10, after the power is supplied to the refrigerator (S19), the set time is set by the timer so as to satisfy various requirements before the start of the compressor. It is set and waiting for activation. In the embodiment of the present invention, as shown in FIG. 8, the refrigerating machine oil is to be heated within the standby time shown in FIG.

【0028】また、図9に示すような制御を行っても上
記の実施形態と同様の効果を得ることができる。以下に
その制御を図9のフローチャートによって説明する。
Further, even if the control as shown in FIG. 9 is performed, the same effect as the above embodiment can be obtained. The control will be described below with reference to the flowchart of FIG.

【0029】S11において冷蔵庫への通電開始後、S
12で起動待機タイマがカウントを開始する。続いてS
13で冷凍機油を加熱開始し、加熱時間t_heatが
所定時間t_set2に到達するまでS14,S15に
おいて冷凍機油を加熱し、溶解している冷媒を冷凍サイ
クルに放出する。t_set2は実験などによりあらか
じめ求めておく。加熱時間タイマがt_set2に到達
後S16で加熱を停止し、S17で圧縮機待機時間が経
過するまで待機した後、S18で圧縮機を起動し、冷凍
サイクルを運転する。
After power supply to the refrigerator is started in S11, S
At 12, the activation standby timer starts counting. Then S
At 13, heating of the refrigerating machine oil is started, and the refrigerating machine oil is heated at S14 and S15 until the heating time t_heat reaches the predetermined time t_set2, and the dissolved refrigerant is discharged to the refrigerating cycle. t_set2 is obtained in advance by an experiment or the like. After the heating time timer reaches t_set2, heating is stopped in S16, and after waiting in S17 until the compressor standby time has elapsed, the compressor is started in S18 to operate the refrigeration cycle.

【0030】また、冬季の夜間のように冷蔵庫の外気温
度が低下した場合、冷蔵庫の熱負荷が減少するため冷凍
サイクルの停止時間が長くなる。このため停止中の圧縮
機温度が低下し、冷凍機油への冷媒溶解量が増加し、冷
凍サイクルの冷媒量不足を引き起こす虞がある。このよ
うな事態を防止する本発明の別の実施形態について、図
1に示す冷蔵庫の冷凍サイクルと図11に示す制御フロ
ーチャートに基づいて以下に説明する。
Further, when the outside air temperature of the refrigerator decreases, such as during the night of winter, the refrigeration cycle must be stopped for a longer time because the heat load of the refrigerator decreases. For this reason, the temperature of the compressor during stoppage decreases, the amount of refrigerant dissolved in the refrigerating machine oil increases, and there is a possibility that the refrigerant amount in the refrigeration cycle becomes insufficient. Another embodiment of the present invention for preventing such a situation will be described below based on a refrigeration cycle of the refrigerator shown in FIG. 1 and a control flowchart shown in FIG.

【0031】S30で圧縮機1停止後は、S31で所定
時間毎に圧縮機1の温度を検知する。ファン5は圧縮機
の冷却を続けているが(圧縮機の動作に伴う圧縮機温度
上昇をファン5により抑制し冷却する)、引き続いて冷
却を行えば、圧縮機温度が冷媒量不足を生じる温度T_
low2まで低下した場合、S33でファン5を停止或
いは可変速ファンを用いている場合には回転数を低下さ
せる。T_low2は実験などによりあらかじめ求めて
おく。
After the compressor 1 is stopped in S30, the temperature of the compressor 1 is detected every predetermined time in S31. Although the fan 5 continues to cool the compressor (the compressor 5 suppresses a rise in compressor temperature due to the operation of the compressor and cools it), if the cooling is subsequently performed, the compressor temperature becomes a temperature at which the refrigerant amount becomes insufficient. T_
If it has decreased to low2, the fan 5 is stopped in S33, or the rotational speed is reduced if a variable speed fan is used. T_low2 is obtained in advance by an experiment or the like.

【0032】S34に移って所定時間毎に庫内温度T_
庫内を検知し、庫内が設定温度T_set1以上に上昇
していればS41に飛び、圧縮機1を起動し冷却する。
T_set1以下の場合には、圧縮機温度が冷媒量不足
を起こす温度T_low3以下に下がっているかどうか
を検知する。ここで、T_low3は冷凍機油を積極的
に加熱を行わなければ冷媒量不足を起こす温度であり、
T_low2は(T_low3+ΔT)であって冷媒量
不足温度T_low3に若干余裕をもたせた温度として
いる。
In S34, the internal temperature T_
The interior of the refrigerator is detected, and if the temperature of the refrigerator is higher than the set temperature T_set1, the process jumps to S41, where the compressor 1 is started and cooled.
If it is equal to or lower than T_set1, it is detected whether or not the compressor temperature is lower than or equal to a temperature T_low3 at which the refrigerant amount becomes insufficient. Here, T_low3 is a temperature at which the refrigerant amount becomes insufficient unless the refrigerating machine oil is actively heated.
T_low2 is (T_low3 + ΔT), which is a temperature that has a margin for the refrigerant shortage temperature T_low3.

【0033】圧縮機温度がT_low3以下に低下した
場合にはS37,S38,S39で冷凍機油を過熱し、
冷凍機油に溶解した冷媒を冷凍サイクルに放出する。S
40で庫内温度が設定温度より上昇し、S41で圧縮機
1を起動するが、過度に冷凍機油に冷媒が溶解していな
いため、冷凍サイクルが冷媒不足となることなく、迅速
に冷蔵庫内の冷却を行うことができる。
When the compressor temperature falls below T_low3, the refrigerating machine oil is overheated in S37, S38 and S39,
The refrigerant dissolved in the refrigerating machine oil is discharged to the refrigerating cycle. S
At 40, the internal temperature rises above the set temperature, and the compressor 1 is started at S41. However, since the refrigerant is not excessively dissolved in the refrigeration oil, the refrigeration cycle does not run out of refrigerant, and the refrigeration cycle quickly starts. Cooling can be performed.

【0034】以上の説明では、冬季夜間における冷蔵庫
の外気温度が低下した場合の圧縮機再起動の態様を、圧
縮機温度の検知で実施すること(S31、S32)を述
べたが、これに代えて、所定時間毎に外気温度T_ai
rを検知して、このT_airとT_low2とを比較
して、外気温度が冷媒量不足を生じる温度T_low2
まで低下した場合、S33のようにファン5を停止或い
は可変速ファンを用いている場合には回転数を低下させ
るように構成しても良い。その後の動作態様は図11の
S34と同様とする。この実施形態では、冬季夜間の外
気温度を直接に検知し且つ圧縮機温度を検知する必要が
ないので、図11の実施形態に比べてより実用的である
と云える。
In the above description, the restart of the compressor when the outside air temperature of the refrigerator has decreased during the nighttime in winter has been described by detecting the compressor temperature (S31, S32). And the outside air temperature T_ai
r is detected, T_air is compared with T_low2, and the outside air temperature becomes the temperature T_low2 at which the refrigerant amount becomes insufficient.
In the case where the rotation speed has decreased to a lower value, the fan 5 may be stopped or the rotation speed may be reduced when a variable speed fan is used as in S33. The subsequent operation mode is the same as S34 in FIG. In this embodiment, since it is not necessary to directly detect the outside air temperature during the winter night and to detect the compressor temperature, it can be said that this embodiment is more practical than the embodiment of FIG.

【0035】次に、本発明の別の実施形態を図2、図3
及び図12に基づいて説明する。図1と同一構成要素の
ものは同一符号を付与する。図2において、11は第一
の蒸発器、12は前記第一の蒸発器11の送風ファン、
13は第一の減圧手段、14は第一の開閉弁、15は第
二の蒸発器、16は前記第二の蒸発器15の送風ファ
ン、17は第二の減圧手段、18は第二の開閉弁、19
は前記第二の蒸発器15の除霜ヒータである。
Next, another embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. The same components as those in FIG. 1 are denoted by the same reference numerals. In FIG. 2, 11 is a first evaporator, 12 is a blower fan of the first evaporator 11,
13 is a first pressure reducing means, 14 is a first opening / closing valve, 15 is a second evaporator, 16 is a blower fan of the second evaporator 15, 17 is a second pressure reducing means, and 18 is a second pressure reducing means. On-off valve, 19
Denotes a defrost heater of the second evaporator 15.

【0036】前記第一の蒸発器11は図3に示すように
冷蔵室102の冷却に用いられ、前記第二の蒸発器15
は冷凍室101の冷却に用いられる。冷媒にはイソブタ
ンなどの炭化水素系冷媒を用い、冷凍機油に相溶性のあ
る鉱油を用いる。
The first evaporator 11 is used for cooling the refrigerator 102 as shown in FIG.
Is used for cooling the freezing room 101. A hydrocarbon-based refrigerant such as isobutane is used as the refrigerant, and a mineral oil compatible with the refrigerating machine oil is used.

【0037】このように形成された冷凍サイクルを備え
た冷蔵庫の、断続運転の圧縮機起動時の圧縮機への液冷
媒戻り防止法及び除霜終了後の液冷媒戻り防止法につい
て、図12に示すフローチャートに基づいて以下に説明
する。
FIG. 12 shows a method for preventing the liquid refrigerant from returning to the compressor when the compressor is started in the intermittent operation and a method for preventing the liquid refrigerant from returning after the defrosting, in the refrigerator having the refrigeration cycle thus formed. This will be described below based on the flowchart shown.

【0038】断続運転の圧縮機1停止時に、S51で第
一の開閉手段14(以下、V_Rと表記する)を開、第
二の開閉手段18(以下、V_Fと表記する)を開とす
ると、温度の低い第一の蒸発器11と第二の蒸発器15
に冷凍サイクル中の冷媒の多くが滞留するが、特に、よ
り温度の低い(運転時の圧力が最も低い)第二の蒸発器
15に滞留する量が多くなる。所定時間経過後、S53
でV_Rを開、V_Fを閉とする。S54,S55で庫
内温度T_庫内が設定温度T_Set以上に達すると、
S56で圧縮器1を起動する。
When the compressor 1 in the intermittent operation is stopped, the first opening / closing means 14 (hereinafter referred to as V_R) and the second opening / closing means 18 (hereinafter referred to as V_F) are opened in S51. Low temperature first evaporator 11 and second evaporator 15
Most of the refrigerant in the refrigerating cycle stays in the second evaporator 15, but in particular, the amount of staying in the second evaporator 15 having a lower temperature (the lowest pressure during operation) increases. After a lapse of a predetermined time, S53
To open V_R and close V_F. When the inside temperature T_ inside the storage reaches the set temperature T_Set or more in S54 and S55,
The compressor 1 is started in S56.

【0039】圧縮器1起動時には、V_R14を開、V
_F18を閉として冷凍サイクルを運転すると、S57
で冷蔵室側の冷却が第一の蒸発器11で行われる。この
とき第二の蒸発器15に滞留した液冷媒はV_F18が
閉であるため、一度に液冷媒のまま圧縮機に流入せず、
気化したガス冷媒が圧縮機1に吸入され、圧縮機1で液
圧縮が生じない。S58で冷蔵室温度T_R室が設定温
度T_Rset以下に冷却されたところで、S59によ
りV_Rを閉、V_Fを開として、冷凍室側の冷却に移
行する。
When the compressor 1 is started, V_R 14 is opened,
When the refrigeration cycle is operated with _F18 closed, S57
Thus, the cooling in the refrigerator compartment is performed in the first evaporator 11. At this time, the liquid refrigerant retained in the second evaporator 15 does not flow into the compressor at once as the liquid refrigerant because the V_F 18 is closed.
The vaporized gas refrigerant is sucked into the compressor 1, and no liquid compression occurs in the compressor 1. When the refrigerating compartment temperature T_R is cooled below the set temperature T_Rset in S58, V_R is closed and V_F is opened in S59, and the process shifts to cooling in the freezing compartment.

【0040】開閉弁14,18の代わりに図4に示すよ
うに切り替え弁20を用いて上記した作用と同等の作用
を得ることができる。
Using the switching valve 20 as shown in FIG. 4 in place of the on-off valves 14 and 18, an operation equivalent to the above operation can be obtained.

【0041】本発明の別の実施形態を図2及び図13を
用いて説明する。これまでと同一のものには同一符号を
与えて、その構成要素の説明を省略する。以下図13に
示すフローチャートに基づいて説明する。S61で前回
除霜からの圧縮機1の積算運転時間t_compが所定
時間t_setを超えた場合、S62で圧縮機1を停止
し、S63でV_R14、V_F18を開いて、S64
で第二の蒸発器15を除霜手段19で加熱除霜する。除
霜終了後は冷凍サイクルで最も低温となる第一の蒸発器
11に冷媒が最も多く滞留する(除霜時の加熱により第
二の蒸発器15の温度は第一の蒸発器11よりも高くな
る)。
Another embodiment of the present invention will be described with reference to FIGS. The same components as those described above are denoted by the same reference numerals, and description of the components will be omitted. Hereinafter, description will be made based on the flowchart shown in FIG. If the accumulated operation time t_comp of the compressor 1 since the previous defrost exceeds the predetermined time t_set in S61, the compressor 1 is stopped in S62, and the V_R14 and V_F18 are opened in S63, and S64.
Then, the second evaporator 15 is heated and defrosted by the defrosting means 19. After the completion of the defrosting, the refrigerant stays most in the first evaporator 11 which has the lowest temperature in the refrigeration cycle (the temperature of the second evaporator 15 is higher than that of the first evaporator 11 due to heating during defrosting). Become).

【0042】この状態で所定時間経過後にS65でV_
R14を閉、V_F18を開とし、S66で圧縮機を起
動すると、第一の蒸発器11に滞留する液冷媒は一度に
液冷媒のまま圧縮機1に流入せず、気化したガス冷媒が
圧縮機1に吸入され、圧縮機1で液圧縮が生じない。S
67,S68で冷凍室を設定温度T_Fsetまで冷却
後、S69でV_R14開、V_F18閉として冷蔵室
の冷却に切り替える。開閉弁14,18の代わりに図4
に示すように、切り替え弁20を用いて上記した作用と
同等の作用を得ることができる。
In this state, after a predetermined time has passed, V_
When R14 is closed and V_F18 is opened and the compressor is started in S66, the liquid refrigerant remaining in the first evaporator 11 does not flow into the compressor 1 as a liquid refrigerant at a time, and the vaporized gas refrigerant is discharged from the compressor. 1 and no liquid compression occurs in the compressor 1. S
After the freezer compartment is cooled to the set temperature T_Fset in 67 and S68, the V_R 14 is opened and the V_F 18 is closed in S69 to switch to the cooling of the refrigerator compartment. FIG. 4 in place of the on-off valves 14 and 18
As shown in (5), an operation equivalent to the above-described operation can be obtained by using the switching valve 20.

【0043】次に本発明の別の実施形態を図6、図7に
基づいて説明する。図6は冷蔵庫の機械室26を示した
もので、1は圧縮機、21は吐出管、22は吸込管、2
3,24はろう付け個所、25は蒸発皿(蒸発器からの
除霜水を収容する皿であって、圧縮機の排熱で溜まった
水を蒸発させるもの)、をそれぞれ表す。圧縮機1と吐
出管21、吸込管22は圧縮機1の回転軸と交差する方
向に、機械室の外側向きの個所23,24で、ろう付け
されている。
Next, another embodiment of the present invention will be described with reference to FIGS. FIG. 6 shows a machine room 26 of the refrigerator, where 1 is a compressor, 21 is a discharge pipe, 22 is a suction pipe,
Reference numerals 3 and 24 denote brazing points, and reference numeral 25 denotes an evaporating dish (a dish for storing defrosted water from the evaporator, which evaporates water collected by exhaust heat of the compressor). The compressor 1, the discharge pipe 21, and the suction pipe 22 are brazed at locations 23, 24 facing the outside of the machine room in a direction intersecting the rotation axis of the compressor 1.

【0044】図7は従来の高圧容器型圧縮機1の出入口
配管21,22の接続例を示したもので圧縮機1の回転
軸の軸方向に配管を接続した場合である。構造上横長と
なる圧縮機の両端で配管を接続すると、図7に示すよう
に配管の取り回し分だけ横幅が必要であり、集約された
機械室構造を構成する上で不利となる。
FIG. 7 shows an example of connection of inlet / outlet pipes 21 and 22 of the conventional high-pressure vessel type compressor 1, in which pipes are connected in the axial direction of the rotary shaft of the compressor 1. If pipes are connected at both ends of the compressor, which is structurally horizontally long, a horizontal width is required for the pipe arrangement as shown in FIG. 7, which is disadvantageous in forming an integrated machine room structure.

【0045】また特にろう付け個所23のように圧縮機
1やファン7により奥まった個所を確実にろう付けしな
ければならなくなり、作業上好ましくない。
In particular, it is necessary to securely braze the recessed portion by the compressor 1 and the fan 7 like the brazing portion 23, which is not preferable in terms of work.

【0046】そこで、本発明の実施形態である図6のよ
うに、配管21,22を圧縮機1の回転軸と交差する方
向に接続すれば、配管接続個所の全周が機械室外側から
容易に作業可能となるため、ろう付け作業を容易かつ確
実に行うことができる。さらに図7に示すように圧縮機
1の左右に配管があるものとは異なり、図6のように圧
縮機左右に配管がないため集約された機械室を構成する
ことができる。
Therefore, as shown in FIG. 6, which is an embodiment of the present invention, if the pipes 21 and 22 are connected in a direction intersecting with the rotation axis of the compressor 1, the entire circumference of the pipe connection point can be easily formed from outside the machine room. Therefore, the brazing operation can be performed easily and reliably. Further, unlike the case where there is a pipe on the left and right of the compressor 1 as shown in FIG. 7, there is no pipe on the left and right of the compressor as shown in FIG. 6, so that an integrated machine room can be formed.

【0047】[0047]

【発明の効果】本発明によれば、冷凍機油加熱手段によ
り冷凍機油を加熱して、溶解した冷媒を放出した後に高
圧容器型圧縮機を起動するため、長期運転停止後の起動
時であっても、冷凍サイクルが冷媒不足となることな
く、迅速に冷蔵庫内の冷却を行うことができる。
According to the present invention, since the refrigerating machine oil is heated by the refrigerating machine oil heating means and the dissolved refrigerant is discharged, the high-pressure container type compressor is started. In addition, it is possible to quickly cool the inside of the refrigerator without running out of the refrigerant in the refrigeration cycle.

【0048】また本発明の別の実施形態によれば、冷蔵
庫の周囲温度が低い場合であっても、圧縮機冷却用ファ
ンの運転を停止或いは回転数を低下することで、冷凍機
油への溶解冷媒量を減少させ、圧縮機起動後、迅速に冷
蔵庫内の冷却を行うことができる。
According to another embodiment of the present invention, even if the ambient temperature of the refrigerator is low, the operation of the compressor cooling fan is stopped or the number of revolutions is reduced to dissolve the refrigerant in the refrigerating machine oil. The amount of the refrigerant can be reduced, and the inside of the refrigerator can be quickly cooled after the compressor is started.

【0049】また本発明の別の実施形態によれば、二つ
の蒸発器を有する冷蔵庫において、圧縮機起動時に低温
側蒸発器側の開閉弁を閉じ、高温側蒸発器側の開閉弁を
開くことで、低温側蒸発器に滞留した液冷媒を徐々に気
化させて圧縮機に吸入することができ、圧縮部(例え
ば、シリンダ)に液冷媒が流入することが無く、信頼性
の高い冷蔵庫を提供することができる。
According to another embodiment of the present invention, in a refrigerator having two evaporators, the on-off valve on the low-temperature side evaporator is closed and the on-off valve on the high-temperature side evaporator is opened when the compressor is started. Thus, the liquid refrigerant that has accumulated in the low-temperature side evaporator can be gradually vaporized and sucked into the compressor, so that the liquid refrigerant does not flow into the compression section (for example, a cylinder) and a highly reliable refrigerator is provided. can do.

【0050】また本発明の別の実施形態によれば、二つ
の蒸発器を有する冷蔵庫において、低温側蒸発器の除霜
終了後の圧縮機起動時に、低温側蒸発器側の開閉弁を開
き、高温側蒸発器側の開閉弁を閉じることで、高温側蒸
発器に滞留した液冷媒を徐々に気化させて圧縮機に吸入
することがができ、圧縮部に液冷媒が流入することが無
く、信頼性の高い冷蔵庫を提供することができる。
According to another embodiment of the present invention, in a refrigerator having two evaporators, when the compressor is started after defrosting of the low-temperature evaporator, the on-off valve on the low-temperature evaporator side is opened, By closing the on-off valve on the high-temperature side evaporator side, the liquid refrigerant retained in the high-temperature side evaporator can be gradually vaporized and sucked into the compressor, and the liquid refrigerant does not flow into the compression section, A highly reliable refrigerator can be provided.

【0051】さらに、圧縮機の回転軸から見て交差する
方向に圧縮機容器と配管を接続することにより、横置き
高圧容器型回転式圧縮機を効率的に機械室に収納でき、
冷凍機油である鉱油と相溶性のあるイソブタンなどの炭
化水素系冷媒を用いても、食品収納スペースを削減する
ことなく大型化した圧縮機を効率的に収納できる。
Further, by connecting the compressor container and the pipe in a direction intersecting when viewed from the rotation axis of the compressor, the horizontal type high pressure container type rotary compressor can be efficiently stored in the machine room.
Even if a hydrocarbon-based refrigerant such as isobutane that is compatible with mineral oil, which is a refrigerating machine oil, is used, a large-sized compressor can be efficiently stored without reducing the food storage space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る冷蔵庫の冷凍サイクル
を示す図である。
FIG. 1 is a diagram showing a refrigeration cycle of a refrigerator according to an embodiment of the present invention.

【図2】本実施形態に係る冷蔵庫の他の冷凍サイクルを
示す図である。
FIG. 2 is a diagram showing another refrigeration cycle of the refrigerator according to the embodiment.

【図3】本発明の実施形態に係る冷蔵庫の構成を示す図
である。
FIG. 3 is a diagram illustrating a configuration of a refrigerator according to the embodiment of the present invention.

【図4】本実施形態に係る冷蔵庫の他の冷凍サイクルの
変形例を示す図である。
FIG. 4 is a view showing a modification of another refrigeration cycle of the refrigerator according to the embodiment.

【図5】従来の冷蔵庫の構成を示す図である。FIG. 5 is a diagram showing a configuration of a conventional refrigerator.

【図6】本発明の実施形態に係る冷蔵庫の圧縮機周辺の
配置を示す図である。
FIG. 6 is a diagram showing an arrangement around a compressor of the refrigerator according to the embodiment of the present invention.

【図7】従来の冷蔵庫の圧縮機周辺の配置を示す図であ
る。
FIG. 7 is a diagram showing an arrangement around a compressor of a conventional refrigerator.

【図8】本発明の実施形態に係る冷蔵庫の冷凍機油加熱
に関する制御フローチャートである。
FIG. 8 is a control flowchart relating to heating of refrigerator oil in a refrigerator according to the embodiment of the present invention.

【図9】本発明の実施形態に係る冷蔵庫の冷凍機油加熱
に関する他の制御フローチャートである。
FIG. 9 is another control flowchart relating to refrigerator oil heating of the refrigerator according to the embodiment of the present invention.

【図10】従来技術に係る圧縮機起動に至る制御フロー
チャートである。
FIG. 10 is a control flowchart for starting a compressor according to the related art.

【図11】本発明の実施形態に係る冷蔵庫の冷凍機油加
熱に関する制御フローチャートである。
FIG. 11 is a control flowchart relating to refrigerator oil heating of the refrigerator according to the embodiment of the present invention.

【図12】図2に示す冷凍サイクルに関する制御フロー
チャートである。
FIG. 12 is a control flowchart relating to the refrigeration cycle shown in FIG. 2;

【図13】図2に示す冷凍サイクルに関する他の制御フ
ローチャートである。
FIG. 13 is another control flowchart relating to the refrigeration cycle shown in FIG. 2;

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧装置 4 蒸発器 5 冷却ファン 6 送風ファン 7 冷凍機油加熱手段 8 圧縮機温度検知手段 9 外気温度検知手段 10 制御手段 11 第一の蒸発器 12 冷却ファン 13 第一の減圧装置 14 第一の開閉弁 15 第二の蒸発器 16 冷却ファン 17 第二の減圧装置 18 第二の開閉弁 19 除霜ヒータ 20 切り替え弁 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Decompression device 4 Evaporator 5 Cooling fan 6 Blow fan 7 Refrigerator oil heating means 8 Compressor temperature detecting means 9 Outside air temperature detecting means 10 Control means 11 First evaporator 12 Cooling fan 13 First Decompression device 14 First on-off valve 15 Second evaporator 16 Cooling fan 17 Second decompression device 18 Second on-off valve 19 Defrost heater 20 Switching valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 店網 太一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 松嶋 弘章 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3L045 AA02 BA01 CA02 DA02 EA01 HA01 HA02 JA14 JA15 LA07 LA10 LA14 MA05 NA03 NA19 NA22 PA03 PA04 PA05 3L046 AA02 BA01 CA06 GA03 HA01 JA07 LA02 LA15 LA16 MA03 MA04 MA05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Taichi, Inventor Store Network 800, Tomita, Odai-machi, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Inside the Hitachi, Ltd.Cooling Division (72) Hiroaki Matsushima 502, Kandachicho, Tsuchiura-shi, Ibaraki, Japan F-term in Ritsumeikan Machinery Laboratory (reference) 3L045 AA02 BA01 CA02 DA02 EA01 HA01 HA02 JA14 JA15 LA07 LA10 LA14 MA05 NA03 NA19 NA22 PA03 PA04 PA05 3L046 AA02 BA01 CA06 GA03 HA01 JA07 LA02 LA15 LA16 MA03 MA04 MA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高圧容器型圧縮機、凝縮器、減圧手段、
蒸発器、を直列閉回路に形成してなる冷凍サイクルを有
する冷蔵庫であって、 前記圧縮機の高圧容器内に封入された冷凍機油を加熱す
る加熱手段を設け、 冷蔵庫への通電後、圧縮機温度が冷媒量不足を生じない
温度に上昇するまで前記加熱手段により前記冷凍機油を
加熱した後に、前記圧縮機を起動することを特徴とする
冷蔵庫。
1. A high pressure vessel type compressor, a condenser, a pressure reducing means,
A refrigerator having a refrigerating cycle in which an evaporator is formed in a series closed circuit, comprising: heating means for heating refrigerating machine oil sealed in a high-pressure container of the compressor; The refrigerator is characterized in that the compressor is started after the refrigerating machine oil is heated by the heating means until the temperature rises to a temperature that does not cause a shortage of the refrigerant amount.
【請求項2】 高圧容器型圧縮機、凝縮器、減圧手段、
蒸発器、を直列閉回路に形成してなる冷凍サイクルと、
前記蒸発器の送風用ファンと、外気温度を検知する外気
温度検知手段と、を備えた冷蔵庫であって、 前記圧縮機の高圧容器内に封入された冷凍機油を加熱す
る加熱手段を設け、 断続運転する前記圧縮機の停止後に、前記検知された外
気温度が冷媒量不足を生じる近傍の温度にまで低下した
場合には、前記圧縮機の冷却用ファンを停止又は前記冷
却用ファンの回転数を低下させ、 次いで、圧縮機温度が冷媒量不足を生じない温度に上昇
するまで前記冷凍機油を加熱した後に前記圧縮機を起動
することを特徴とする冷蔵庫。
2. A high pressure vessel type compressor, a condenser, a pressure reducing means,
A refrigeration cycle formed by forming an evaporator in a series closed circuit;
A refrigerator comprising: a blower fan of the evaporator; and an outside air temperature detecting unit that detects an outside air temperature, wherein a heating unit that heats refrigerating machine oil sealed in a high-pressure container of the compressor is provided. After the operation of the compressor is stopped, if the detected outside air temperature is reduced to a temperature near the shortage of the refrigerant amount, the cooling fan of the compressor is stopped or the rotation speed of the cooling fan is reduced. A refrigerator comprising: starting the compressor after heating the refrigerating machine oil until the compressor temperature rises to a temperature at which a shortage of refrigerant does not occur.
【請求項3】 高圧容器型圧縮機、凝縮器、第一の減圧
手段、第一の蒸発器、前記第一の減圧手段及び第一の蒸
発器の流路と並列に設けられた第二の減圧手段と第二の
蒸発器、前記第一の蒸発器と前記第二の蒸発器への流路
切り替え手段、を有する冷凍サイクルと、前記圧縮器の
冷却用ファンと、前記第一と第二の蒸発器の送風用ファ
ンと、前記第一と第二の蒸発器に対応して温度の異なる
少なくとも2室と、を備えた冷蔵庫であって、 断続運転する前記圧縮機の停止後に、前記第一と第二の
蒸発器の内で低温側の蒸発器側の流路を閉じた状態で、
冷蔵庫内の温度制御にしたがって前記圧縮機を再起動す
ることを特徴とする冷蔵庫。
3. A high pressure vessel type compressor, a condenser, a first decompression means, a first evaporator, a second evacuation means and a second evaporator provided in parallel with the flow path of the first evaporator. A refrigeration cycle having a pressure reducing means and a second evaporator, a means for switching a flow path to the first evaporator and the second evaporator, a cooling fan for the compressor, the first and second A refrigerator comprising: a blower fan for an evaporator; and at least two chambers having different temperatures corresponding to the first and second evaporators, wherein after stopping the compressor that operates intermittently, With the flow path on the low-temperature side evaporator side closed in the first and second evaporators,
The refrigerator according to claim 1, wherein the compressor is restarted in accordance with temperature control in the refrigerator.
【請求項4】 高圧容器型圧縮機、凝縮器、第一の減圧
手段、第一の蒸発器、前記第一の減圧手段及び第一の蒸
発器の流路と並列に設けられた第二の減圧手段と第二の
蒸発器、前記第一の蒸発器と前記第二の蒸発器への流路
切り替え手段、を有する冷凍サイクルと、前記圧縮器の
冷却用ファンと、前記第一と第二の蒸発器の送風用ファ
ンと、前記第一と第二の蒸発器に対応して温度の異なる
少なくとも2室と、前記第二の蒸発器の除霜手段と、を
備えた冷蔵庫であって、 低温側の第二の蒸発器の除霜に際して、圧縮機を停止し
て前記除霜手段で加熱除霜し、 除霜終了後に前記第一の蒸発器への流路を閉じるととも
に前記第二の蒸発器への流路を開くように前記流路切り
替え手段により流路を切り替えて圧縮機を再起動し、前
記第二の蒸発器に対応する室を冷却することを特徴とす
る冷蔵庫。
4. A high pressure vessel type compressor, a condenser, a first decompression means, a first evaporator, a second evacuation means and a second evaporator provided in parallel with a flow path of the first evaporator. A refrigeration cycle having a pressure reducing means and a second evaporator, a means for switching a flow path to the first evaporator and the second evaporator, a cooling fan for the compressor, the first and second A refrigerator comprising: a blowing fan of an evaporator; at least two chambers having different temperatures corresponding to the first and second evaporators; and a defrosting unit for the second evaporator. At the time of defrosting the second evaporator on the low temperature side, the compressor is stopped to perform defrosting by heating by the defrosting means, and after the defrosting is completed, the flow path to the first evaporator is closed and the second The compressor is restarted by switching the flow path by the flow path switching means so as to open the flow path to the evaporator, and the second evaporator is opened. Refrigerator, characterized in that cooling the chamber to respond.
【請求項5】 請求項1、2、3又は4に記載の冷蔵庫
において、 前記高圧容器型圧縮機を横置き型圧縮機とし、前記圧縮
機の回転軸に対して交差する方向に前記圧縮機の高圧容
器と接続される管路を形成することを特徴とする冷蔵
庫。
5. The refrigerator according to claim 1, wherein the high-pressure container type compressor is a horizontal type compressor, and the compressor is arranged in a direction intersecting a rotation axis of the compressor. Characterized by forming a conduit connected to the high-pressure container of (1).
【請求項6】 請求項1、2、3、4又は5に記載の冷
蔵庫において、 冷媒にイソブタンなどの炭化水素系冷媒を封入すること
を特徴とする冷蔵庫。
6. The refrigerator according to claim 1, wherein a hydrocarbon-based refrigerant such as isobutane is sealed in the refrigerant.
JP11090135A 1999-03-30 1999-03-30 Refrigerator Pending JP2000283621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11090135A JP2000283621A (en) 1999-03-30 1999-03-30 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11090135A JP2000283621A (en) 1999-03-30 1999-03-30 Refrigerator

Publications (1)

Publication Number Publication Date
JP2000283621A true JP2000283621A (en) 2000-10-13

Family

ID=13990076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11090135A Pending JP2000283621A (en) 1999-03-30 1999-03-30 Refrigerator

Country Status (1)

Country Link
JP (1) JP2000283621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282952A (en) * 2004-03-30 2005-10-13 Gac Corp Cooling system
CN105202667A (en) * 2015-10-23 2015-12-30 无锡溥汇机械科技有限公司 Cold-hot circulating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282952A (en) * 2004-03-30 2005-10-13 Gac Corp Cooling system
CN105202667A (en) * 2015-10-23 2015-12-30 无锡溥汇机械科技有限公司 Cold-hot circulating device

Similar Documents

Publication Publication Date Title
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
WO2003083388A1 (en) Refrigerator
KR100586575B1 (en) Refrigerator
CN108474605A (en) Ice machine with the Double-loop evaporator for hydrocarbon refrigerant
JP4363997B2 (en) Refrigeration equipment
JP2004156858A (en) Refrigerating cycle device and control method thereof
TW574493B (en) Refrigerator
JP2004354017A (en) Cooling device
JP2004037065A (en) Operation control method of refrigeration system provided with two evaporators
JP4311983B2 (en) Cooling system
KR20080103857A (en) Control method of refrigerating system
JP4178646B2 (en) refrigerator
KR20060113366A (en) Refrigerator
JP3576040B2 (en) Cooling systems and refrigerators
JP2005214575A (en) Refrigerator
JP2001241825A (en) Freezing refrigerator
JP2000283621A (en) Refrigerator
JP2003214748A (en) Refrigerator
JP2000266444A (en) Refrigerator
JP4286064B2 (en) Cooling system
JP2003287333A (en) Refrigerator
JP2003065619A (en) Refrigerator
JP4284789B2 (en) refrigerator
JP2004053168A (en) Cooling device
JP2001133111A (en) Refrigerator