JP2000279833A - Crusher - Google Patents

Crusher

Info

Publication number
JP2000279833A
JP2000279833A JP11086446A JP8644699A JP2000279833A JP 2000279833 A JP2000279833 A JP 2000279833A JP 11086446 A JP11086446 A JP 11086446A JP 8644699 A JP8644699 A JP 8644699A JP 2000279833 A JP2000279833 A JP 2000279833A
Authority
JP
Japan
Prior art keywords
container
oxide
terms
sintered body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11086446A
Other languages
Japanese (ja)
Other versions
JP3740318B2 (en
Inventor
Usou Ou
雨叢 王
Hisayoshi Matsuyama
久好 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP08644699A priority Critical patent/JP3740318B2/en
Publication of JP2000279833A publication Critical patent/JP2000279833A/en
Application granted granted Critical
Publication of JP3740318B2 publication Critical patent/JP3740318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crusher equipped with a lightweight and inexpensive container excellent in abrasion resistance and high in heat conductivity. SOLUTION: At least the inner wall of a container 2 is based on Al2O3 and contains 0.2-2 wt.% of Ti in terms of TiO2, 0-2 wt.% of Mg in terms of MgO, 0-2 wt.% of at least one element selected from the group consisting of rare earth elements, Zr, hf and Si in total in terms of oxide and inevitable impurities the total amt. of which is 1.5 wt.% or less in terms of oxide. This inner wall is produced from an oxide sintered body with fracture toughness of 4.0 MPam1/2 or more and heat conductivity of 25 W/mK or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性に優れ、
高熱伝導率を有する容器を具備する高耐久性の粉砕機に
関するものである。
[0001] The present invention relates to an abrasion-resistant material,
The present invention relates to a highly durable pulverizer provided with a container having high thermal conductivity.

【0002】[0002]

【従来技術】一般に、粉末の粉砕方法としては、乳鉢と
乳棒を用いた手粉砕法の他、ボールミル、サンドミル、
アトライターミル、ディスクミル、振動ミル、ハンマー
ミル、ジェットミル、ローラミル等の容器内に被粉砕物
を収納し、メディアや粉砕部材を用いたり、粉末の容器
内壁への衝撃によって粉砕を行う各種の方法が広く使用
されている。
2. Description of the Related Art In general, powder milling methods include ball milling, sand milling, as well as hand milling using a mortar and pestle.
Various types of pulverization are carried out using containers such as attritor mills, disk mills, vibratory mills, hammer mills, jet mills, and roller mills. The method is widely used.

【0003】従来、上記粉砕機の容器としては、天然
石、Al2 3 質セラミックスからなる磁器、ガラス、
プラスチック、スチール、メノウ等が使用されている
が、これらの材料は磨耗しやすく寿命が短い上に被粉砕
物中に磨耗粉が混入することが大きな問題となってい
る。
Conventionally, containers of the above-mentioned pulverizers include natural stone, porcelain made of Al 2 O 3 ceramics, glass,
Plastics, steels, agates and the like are used, but these materials are liable to be worn away, have a short life, and have a serious problem that abrasion powder is mixed into the material to be ground.

【0004】そこで、耐磨耗性の高い高硬度、高靭性の
磁器材料として、Al2 3 質結晶を微細化したり、A
2 3 に対してSiCやZrO2 等を添加して複合化
する技術(特開昭61−122164号公報、特開昭6
3−139044号公報)、あるいは耐磨耗性の高い部
分安定化ZrO2 質セラミックス等が開発され、使用さ
れている。
Therefore, as a high-hardness and high-toughness porcelain material having high abrasion resistance, Al 2 O 3 -based crystals can be refined,
A technique of adding SiC or ZrO 2 to l 2 O 3 to form a composite (Japanese Patent Application Laid-Open Nos. 61-122164 and
No. 3,139,044), or partially stabilized ZrO 2 ceramics having high abrasion resistance have been developed and used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
磁器材料のうち、Al2 3 の結晶粒子微細化だけでは
硬度は向上するものの靭性および耐磨耗性の改善効果が
小さく、また、Al2 3 に対してZrO2 を添加、複
合化したものは硬度が低下するために耐摩耗性の改善が
小さく、さらに、Al2 3 に対してSiCを添加する
と、製造コストを大幅に増加する問題があった。
[SUMMARY OF THE INVENTION However, among the ceramic materials described above, only the crystal grain-refining of Al 2 O 3 is hardness low toughness and abrasion resistance of the improvement to what is improved, also, Al 2 When ZrO 2 is added to O 3 and combined, the hardness is reduced, so that the improvement in wear resistance is small. Further, when SiC is added to Al 2 O 3 , the production cost is greatly increased. There was a problem.

【0006】また、部分安定化ZrO2 質セラミックス
については、熱伝導率が低いため、粉砕中に被粉砕物の
容器への衝撃、摩擦により、容器の摩耗面の温度が極端
に上昇して強度や靭性等が劣化し、耐磨耗性が低下した
り、場合によっては容器の内面にクラック等が発生し、
異常磨耗が発生する恐れがあった。
[0006] Further, the partially stabilized ZrO 2 ceramics have low thermal conductivity, so that the temperature of the wear surface of the container rises extremely due to the impact or friction of the material to be ground on the container during the grinding. And toughness etc. deteriorate, abrasion resistance decreases, and in some cases cracks etc. occur on the inner surface of the container,
Abnormal wear could occur.

【0007】なお、特に有機溶剤を含むスラリーについ
て粉砕を行う場合、スラリーの温度が上昇して容器内が
高圧になることを避けるために、容器の外周に冷却用の
水冷管を配設するが、容器の熱伝導率が低い場合には、
スラリーの温度上昇を抑制することができないという問
題があり、さらに、容器の内面と外面での温度差が大き
くなり、熱膨張差による応力が発生し、容器の破損に至
る恐れがあった。
[0007] When grinding a slurry containing an organic solvent in particular, a water cooling pipe for cooling is arranged on the outer periphery of the container in order to avoid a rise in the temperature of the slurry and an increase in the pressure inside the container. If the thermal conductivity of the container is low,
There is a problem that the temperature rise of the slurry cannot be suppressed, and further, a temperature difference between the inner surface and the outer surface of the container becomes large, and a stress due to a difference in thermal expansion occurs, which may lead to damage of the container.

【0008】従って、本発明の目的は、粉砕機の容器を
高硬度、高靭性を有して耐摩耗性が高く、かつ熱伝導率
の高い材料により低コストに形成することによって、高
信頼性で低コストの粉砕機を提供することにある。
Accordingly, an object of the present invention is to form a container of a pulverizer at a low cost by using a material having high hardness, high toughness, high abrasion resistance and high thermal conductivity at a low cost. And a low-cost pulverizer.

【0009】[0009]

【課題を解決するための手段】本発明者等は、容器を構
成する材料について研究を重ねた結果、高硬度、高靭性
で、かつ熱伝導率が特定値以上の酸化物焼結体を用いる
ことによって、上記課題が解決できることを知見し、本
発明に至った。
Means for Solving the Problems As a result of repeated studies on the material constituting the container, the present inventors have found that an oxide sintered body having a high hardness, a high toughness and a thermal conductivity of a specific value or more is used. This led to the discovery that the above-mentioned problems could be solved, leading to the present invention.

【0010】すなわち、本発明の粉砕機は、被粉砕物を
容器内に収納して粉砕するものであって、前記容器の少
なくとも内壁が、Al2 3 を主成分とし、TiをTi
2換算で0.2〜2重量%と、MgをMgO換算で0
〜2重量%と、希土類元素、Zr、Hf、Siの群から
選ばれる少なくとも1種の酸化物換算による合計量を0
〜2重量%と、不可避不純物の総量を酸化物換算で1.
5重量%以下とを含有し、破壊靭性4.0MPam1/2
以上、かつ熱伝導率25W/mK以上の酸化物焼結体か
らなることを特徴とするものである。
That is, the pulverizer of the present invention stores and grinds an object to be pulverized in a container, wherein at least the inner wall of the container has Al 2 O 3 as a main component and Ti has a Ti content.
0.2 to 2% by weight in terms of O 2 , and 0% of Mg in terms of MgO.
And 2% by weight and a total amount of at least one oxide selected from the group consisting of rare earth elements, Zr, Hf and Si in terms of oxide.
To 2% by weight, and the total amount of unavoidable impurities is 1.
5% by weight or less, and fracture toughness of 4.0 MPam 1/2
As described above, it is characterized by comprising an oxide sintered body having a thermal conductivity of 25 W / mK or more.

【0011】ここで、耐磨耗性を向上させるためには、
前記酸化物焼結体がAl2 3 質結晶と、該Al2 3
質結晶粒内に分散するTiおよび/またはMgを含有す
る酸化物微粒子とを含有することが望ましく、前記酸化
物焼結体のビッカース硬度は18.5GPa以上である
ことが望ましい。
Here, in order to improve the wear resistance,
The oxide sintered body is composed of Al 2 O 3 quality crystal and the Al 2 O 3
And oxide fine particles containing Ti and / or Mg dispersed in the porous crystal grains, and the Vickers hardness of the oxide sintered body is preferably 18.5 GPa or more.

【0012】また、前記Al2 3 質結晶の30体積%
以上がアスペクト比4以上の異方性を有することによ
り、クラックの進展抵抗が著しく大きくなり、破壊靭性
が改善され、耐摩耗性と信頼性が向上する。
Further, 30% by volume of the Al 2 O 3 crystalline
When the above has anisotropy with an aspect ratio of 4 or more, crack propagation resistance is significantly increased, fracture toughness is improved, and wear resistance and reliability are improved.

【0013】[0013]

【発明の実施の形態】本発明の粉砕機について、その一
例の概略断面図である図1に基づいて説明する。図1
は、連続回転ディスクミル型の粉砕機であり、粉砕機1
は、容器(円筒スリーブ)2とディスク部材3とから構
成され、また、容器2中には、ボール等のメディア4と
粉末状あるいはスラリー状の被粉砕物とが投入され、デ
ィスク部材3が回転することによって、メディア4およ
び被粉砕物が回転し、メディア4と被粉砕物とが衝突す
ることにより粉砕することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A crusher of the present invention will be described with reference to FIG. 1 which is a schematic sectional view of one example. FIG.
Is a continuous rotating disk mill type pulverizer, and pulverizer 1
Is composed of a container (cylindrical sleeve) 2 and a disk member 3. In the container 2, a medium 4 such as a ball and a powdery or slurry-like material to be crushed are introduced, and the disk member 3 rotates. By doing so, the medium 4 and the object to be crushed rotate, and the medium 4 and the object to be crushed can be crushed by collision.

【0014】また、容器2には、被粉砕物を容器内へ導
入、あるいは排出するための被粉砕物注入5および被粉
砕物排出口6が設けられ、さらに、容器2の外周部には
容器2内を冷却するための水冷管7が配設されている。
Further, the container 2 is provided with a crushed material injection 5 and a crushed material discharge port 6 for introducing or discharging the crushed material into or from the container. A water cooling pipe 7 for cooling the inside of the tube 2 is provided.

【0015】ここで、容器2の少なくとも内壁は、Al
2 3 を主成分とし、TiをTiO2 換算で0.2〜2
重量%と、MgをMgO換算で0〜2重量%と、希土類
元素、Zr、Hf、Siの群から選ばれる少なくとも1
種を酸化物換算による合計量で0〜2重量%と、不可避
不純物の総量を酸化物換算で1.5重量%以下とを含有
する酸化物焼結体からなるものである。
Here, at least the inner wall of the container 2 is made of Al
The main component is 2 O 3 , and Ti is 0.2 to 2 in terms of TiO 2.
% Of Mg, 0 to 2% by weight of Mg in terms of MgO, and at least one selected from the group consisting of rare earth elements, Zr, Hf, and Si.
It is made of an oxide sintered body containing 0 to 2% by weight in total as oxides and 1.5% by weight or less in total of inevitable impurities as oxides.

【0016】かかる焼結体によれば、アルミナ以外の少
ない副成分で強度と靭性を著しく高めることができると
ともに、高い熱伝導率を有することから、粉砕中の発熱
により容器内の温度が高くなったり、容器の内面と外面
の温度が不均一となり応力が発生することを防止でき、
特に容器の内面に発生するクラック等を防止することが
できる。
According to such a sintered body, the strength and toughness can be remarkably increased with a small number of sub-components other than alumina, and since the sintered body has a high thermal conductivity, the temperature in the container increases due to heat generation during pulverization. Or the temperature of the inner and outer surfaces of the container becomes uneven and stress can be prevented from occurring,
In particular, cracks and the like generated on the inner surface of the container can be prevented.

【0017】上記成分のうち、Tiはアルミナ質結晶粒
子内に固溶または析出する成分であり、これにより、ア
ルミナ質結晶粒子内のひずみ等を誘発させ、粒子の硬度
および強度を高めることができる。すなわち、TiのT
iO2 換算量が0.2重量%より少ないと、粒子の高硬
度化、高強度化が不充分であり、TiO2 換算量が2重
量%より多いと、焼結体の粒界にAl2 TiO5 等が析
出し焼結体の熱伝導率が低下するとともに、耐磨耗性が
低下する恐れがある。Tiの望ましい範囲はTiO2
算量で0.5〜2重量%である。
Of the above components, Ti is a component that forms a solid solution or precipitates in the alumina crystal grains, and thereby induces strain and the like in the alumina crystal grains, thereby increasing the hardness and strength of the grains. . That is, T of Ti
When iO 2 equivalent amount is less than 0.2 wt%, high hardness of the particles, a high strength is insufficient, the terms of TiO 2 amount is larger than 2 wt%, Al 2 in the grain boundary of the sintered body TiO 5 and the like may precipitate and the thermal conductivity of the sintered body may decrease, and the abrasion resistance may decrease. Desired range of Ti is 0.5 to 2% by weight in terms of TiO 2 weight.

【0018】また、本発明によれば、添加成分としてT
i以外にMg、希土類元素、Zr、Hf、Si等を添加
し、焼結体の高硬度化、高強度化を図ることができる。
これらのうち、Mgは主としてアルミナ質結晶粒子内に
固溶または析出して焼結体の高硬度化、高強度化を図る
ことができるが、MgOの添加量が2重量%を越えると
Al2 MgO4 等が粒界に析出し、熱伝導率が低下す
る。Mgの望ましい範囲は0.5〜1.5重量%であ
る。
Further, according to the present invention, as an additional component, T
By adding Mg, a rare earth element, Zr, Hf, Si or the like in addition to i, it is possible to increase the hardness and strength of the sintered body.
Of these, Mg can form a solid solution or precipitate in the alumina-based crystal particles to increase the hardness and strength of the sintered body. However, when the added amount of MgO exceeds 2% by weight, Al 2 MgO 4 and the like precipitate at the grain boundaries, and the thermal conductivity decreases. The desirable range of Mg is 0.5-1.5% by weight.

【0019】また、希土類元素、Zr、Hf、Siは主
に粒界に存在し、その熱膨張係数差により焼結体の硬度
を高めることができるとともに、クラックを粒界に誘導
することからクラックの進展を阻害でき、靭性を改善す
ることができる。
The rare earth elements, Zr, Hf, and Si are mainly present at the grain boundaries, and the difference in thermal expansion coefficient can increase the hardness of the sintered body, and induces cracks at the grain boundaries. Can be inhibited, and the toughness can be improved.

【0020】これらの成分は、添加量が多すぎると、強
度が低下したり、熱伝導率の低下する恐れがあることか
ら、希土類元素、Zr、Hf、Siの群から選ばれる少
なくとも1種は合計量が0〜2重量%、特に0.5〜
1.5重量%であることが重要である。
If these components are added in too large an amount, the strength or the thermal conductivity may be reduced. Therefore, at least one selected from the group consisting of rare earth elements, Zr, Hf, and Si is preferred. The total amount is 0-2% by weight, especially 0.5-
It is important that it be 1.5% by weight.

【0021】また、上記添加物の含有量が所定の範囲よ
りも少ない場合はアルミナに対する靭性改善効果が小さ
く、逆に多いと、熱伝導率を低下したり、場合によって
はアルミナの粗大結晶粒子が生成することにより耐摩耗
性を低下する恐れがある。
When the content of the additive is less than the predetermined range, the effect of improving the toughness with respect to alumina is small. On the other hand, when the content is large, the thermal conductivity is reduced, and in some cases, coarse crystal grains of alumina are reduced. The formation may cause a decrease in wear resistance.

【0022】なお、上記希土類元素とは、周期律表第3
a属の元素を指すが、中でも、靭性改善の効果から、
Y、La、Ce、Pr、Nd、Smが好適に使用され、
さらに、Y、La、Ce、Prが好ましい。
The rare earth element is defined as the third element in the periodic table.
It refers to the element of the a group, but among them, from the effect of improving toughness,
Y, La, Ce, Pr, Nd, Sm are preferably used,
Further, Y, La, Ce, and Pr are preferable.

【0023】また、不可避不純物とは、原料中あるいは
製造時に混入する成分であり、具体的には、K、Na、
Ca、Fe等が挙げられるが、これらの不可避不純物は
焼結体の耐摩耗性および熱伝導率を低下させるために、
不可避不純物の総量が酸化物換算で1.5重量%以下、
特に1.0重量%以下とする必要がある。
The unavoidable impurities are components that are mixed in the raw material or at the time of production. Specifically, K, Na,
Ca, Fe, and the like, but these unavoidable impurities reduce the wear resistance and thermal conductivity of the sintered body.
The total amount of unavoidable impurities is 1.5% by weight or less in terms of oxide,
In particular, it must be 1.0% by weight or less.

【0024】さらに、本発明によれば、上記焼結体のA
2 3 の結晶粒内にTiおよび/またはMgが含まれ
る酸化物微粒子が析出、分散し、焼結体の硬度を向上さ
せることができる。
Further, according to the present invention, A
Oxide fine particles containing Ti and / or Mg are precipitated and dispersed in the l 2 O 3 crystal grains, and the hardness of the sintered body can be improved.

【0025】すなわち、アルミナ結晶内に異質結晶粒子
が析出、存在することにより結晶内に残留応力を生ぜし
め硬度を高めることができるとともに、前記微粒子がピ
ニングとして機能することによって、クラックの粒内で
の進展を妨げ、磁器の強度および靭性を高めることがで
きる。
That is, the extraneous crystal particles are precipitated and present in the alumina crystal, thereby generating a residual stress in the crystal and increasing the hardness. In addition, the fine particles function as pinning, so that the fine particles function as cracks in the crack particles. And the strength and toughness of the porcelain can be increased.

【0026】上記微粒子としては、具体的にはTi
2 、Al2 MgO4 、Al2 TiO5からなり、その
サイズは、硬度および耐摩耗性を高める見地から、0.
3μm以下、特に0.2μm以下でであることが好まし
い。
Specific examples of the fine particles include Ti
It is composed of O 2 , Al 2 MgO 4 , and Al 2 TiO 5 , and its size is set to 0.1 from the viewpoint of increasing hardness and wear resistance.
It is preferably 3 μm or less, particularly preferably 0.2 μm or less.

【0027】さらに、上記微粒子は磁器の耐磨耗性を高
め、熱応力によるクラックの発生を防止するとともに、
高熱伝導率を維持する上では、磁器の表面近傍に多く存
在することが望ましい。
Further, the fine particles enhance the wear resistance of the porcelain, prevent the occurrence of cracks due to thermal stress, and
In order to maintain high thermal conductivity, it is desirable that a large amount be present near the surface of the porcelain.

【0028】また、本発明によれば、Al2 3 質結晶
粒子の30体積%以上、特に50体積%以上がアスペク
ト比4以上の異方性を有する板状結晶であることが望ま
しく、これにより、クラックの偏向、架橋効果が強化さ
れ、高靭性化することができる。
According to the present invention, it is desirable that 30% by volume or more, particularly 50% by volume or more of the Al 2 O 3 crystalline particles are plate-like crystals having an anisotropy of an aspect ratio of 4 or more. Thereby, crack deflection and cross-linking effects are enhanced, and high toughness can be achieved.

【0029】上記条件により得られる焼結体は、破壊靭
性が4.0MPam1/2 以上、特に5.0MPam1/2
以上、硬度が18.5GPa以上、特に19GPa以
上、熱伝導率25W/mK以上、特に28W/mK以上
の優れた特性を有するものとなる。
The sintered body obtained under the above conditions has a fracture toughness of 4.0 MPam 1/2 or more, particularly 5.0 MPam 1/2.
As described above, excellent properties such as a hardness of 18.5 GPa or more, particularly 19 GPa or more, and a thermal conductivity of 25 W / mK or more, particularly 28 W / mK or more are obtained.

【0030】また、ディスク部材3は、Al2 3 やS
3 4 等の高硬度および高靭性を有するセラミックス
によって形成されるが、上述した組成のセラミックスを
用いることもできる。
The disk member 3 is made of Al 2 O 3 or S
It is formed of a ceramic having high hardness and high toughness such as i 3 N 4 , but a ceramic having the above-described composition can also be used.

【0031】さらに、本発明の粉砕機は、上記の他に
も、ボールミル、サンドミル、アトライター、振動ミ
ル、ハンマーミル、ジェットミル、ローラミル等の容器
内に被粉砕物を収納して粉砕するものの容器やメディ
ア、粉砕部材等の耐磨耗性が要求される部材に採用でき
る。
Further, in addition to the above, the pulverizer of the present invention stores and grinds a material to be pulverized in a container such as a ball mill, a sand mill, an attritor, a vibration mill, a hammer mill, a jet mill, and a roller mill. It can be used for members requiring abrasion resistance, such as containers, media, and crushed members.

【0032】また、本発明の粉砕機によれば、従来のZ
rO2 質焼結体等に比べて軽量化ができることから、取
り扱い等が容易となるとともに、安価に作製することも
できる。
According to the pulverizer of the present invention, the conventional Z
Since the weight can be reduced as compared with the rO 2 -based sintered body or the like, handling and the like are easy, and it can be manufactured at low cost.

【0033】次に、本発明の粉砕機を作製する方法につ
いて説明する。まず、容器を作製するには、純度98%
以上、平均粒径0.2〜1.5μmのAl2 3 に対し
て、TiO2 、MgO、希土類酸化物、ZrO2 、Hf
2 、SiO2 原料を所定量添加し、混合する。上記原
料は酸化物粉末、金属粉末、有機塩類、無機塩類および
その溶液のいずれでもよい。
Next, a method for producing the pulverizer of the present invention will be described. First, to make the container, 98% purity
As described above, TiO 2 , MgO, rare earth oxide, ZrO 2 , and Hf were used for Al 2 O 3 having an average particle size of 0.2 to 1.5 μm.
A predetermined amount of O 2 and SiO 2 raw materials is added and mixed. The raw material may be any of oxide powder, metal powder, organic salts, inorganic salts and a solution thereof.

【0034】上記の混合物を、公知の成形手段、例え
ば、金型プレス、冷間静水圧プレス、射出成形、押出し
成形、鋳込み成形等により任意の形状に成形した後、1
200〜1700℃にて焼成し、緻密化させることによ
り作製できる。
The above mixture is formed into an arbitrary shape by known molding means, for example, a mold press, a cold isostatic press, injection molding, extrusion molding, casting molding, etc.
It can be manufactured by firing at 200 to 1700 ° C. and densifying.

【0035】なお、上記焼成において、MgO無添加の
場合は、非酸化性雰囲気下にて保持し、TiのAl2
3 への溶解量を大きくして固溶体を形成した後、酸化性
雰囲気下にて保持することにより、TiのAl2 3
の溶解量が減ずるために固溶したTi元素をTiO2
してAl2 3 結晶粒内に析出させることができる。
In the above calcination, when MgO is not added, it is kept in a non-oxidizing atmosphere and Ti 2 Al 2 O
After forming a solid solution dissolved amount increased to to 3, by holding in an oxidizing atmosphere, a solid solution of Ti element for dissolution of the Al 2 O 3 of Ti is reduced as TiO 2 Al It can be precipitated in 2 O 3 crystal grains.

【0036】すなわち、Tiは還元性雰囲気で加熱する
と、Tiのイオン価数が3+となりアルミナ結晶に対す
る溶解度が高くなり、固溶体を形成する。そして、この
固溶体を酸化性雰囲気で処理することによりTiのイオ
ン価数が4+に戻り、アルミナ結晶への溶解度が低下す
る結果、TiをTiO2 微結晶としてAl2 3 結晶内
に析出させることができる。
That is, when Ti is heated in a reducing atmosphere, the ionic valence of Ti becomes 3+, the solubility in alumina crystals increases, and a solid solution is formed. Then, return to the ionic valence of the Ti by treating the solid solution in an oxidizing atmosphere 4+, results solubility in alumina crystal is lowered, be deposited on Al 2 O 3 crystal Ti as TiO 2 crystallites Can be.

【0037】また、TiおよびMgOを添加する場合
は、Ti4+とMg2+が等モルでAl3+と置換、固溶する
ことができることから、酸化性雰囲気下にて保持するこ
とによってTiおよびMgのAl2 3 への溶解量を大
きくして固溶体を形成した後、還元性雰囲気下にて保持
することにより、Ti4+がTi3+へと価数変化する結
果、Mg2+は単独でAl2 3 結晶内に溶解できないた
め、Al2 MgO4 の微結晶の形でAl2 3 結晶内に
析出させることができる。
When Ti and MgO are added, Ti 4+ and Mg 2+ can be substituted with Al 3+ in an equimolar manner to form a solid solution. By increasing the amount of Mg and Mg dissolved in Al 2 O 3 to form a solid solution and then maintaining the same in a reducing atmosphere, Ti 4+ changes its valence to Ti 3+ , resulting in Mg 2+ can is to alone can not dissolve the Al 2 O 3 crystal, in the form of microcrystals of Al 2 MgO 4 is deposited on Al 2 O 3 crystal.

【0038】なお、TiとMgとのモル比が異なる場
合、少量の過剰成分が主に粒界に存在しても材料特性に
影響を与えない。
When the molar ratio between Ti and Mg is different, the material properties are not affected even if a small amount of excess component is present mainly at the grain boundaries.

【0039】また、上記焼成条件について、かかる固溶
あるいは析出処理時の温度が低い場合には所望の組織が
形成されず、逆に温度が高いとアルミナ結晶粒子および
析出粒子を粗大化させる。さらに、焼結体を緻密化する
ために上記熱処理後にHIP等の加圧加熱処理を行って
もよい。
Regarding the above calcination conditions, if the temperature during the solid solution or precipitation treatment is low, the desired structure is not formed, and if the temperature is high, the alumina crystal particles and precipitated particles are coarsened. Further, in order to densify the sintered body, a pressure and heat treatment such as HIP may be performed after the heat treatment.

【0040】得られた容器内に公知の成形、焼成法によ
り作製したAl2 3 やSi3 4質焼結体、あるいは
上述と同様な手法により作製した焼結体からなる粉砕部
材を組み込むことによって本発明の粉砕機を作製するこ
とができる。
A pulverized member made of an Al 2 O 3 or Si 3 N 4 sintered body produced by a known molding and firing method or a sintered body produced by the same method as described above is incorporated into the obtained container. Thereby, the pulverizer of the present invention can be manufactured.

【0041】[0041]

【実施例】(実施例)純度99.9%または98.0
%、平均粒径0.7μmのAl2 3 粉末に対し、純度
99.9%以上のTiO2 粉末、Mg(OH)2 粉末、
希土類酸化物粉末、ZrO2 粉末、HfO2 粉末及びS
iO2 粉末を、焼結体の組成が表1となるように調合
し、回転ミルで混合して混合粉末を得た。そして、この
混合粉末を1t/cm2 の圧力でφ60mm×6mmの
形状に成形し、さらにこれに3t/cm2 の圧力で冷間
静水圧プレス処理を行って成形体を作製した後、表1に
示す条件で焼成し、相対密度98.5%以上の焼結体を
得た。
EXAMPLES (Example) Purity 99.9% or 98.0
%, An Al 2 O 3 powder having an average particle size of 0.7 μm, a TiO 2 powder having a purity of 99.9% or more, a Mg (OH) 2 powder,
Rare earth oxide powder, ZrO 2 powder, HfO 2 powder and S
The iO 2 powder was prepared so that the composition of the sintered body was as shown in Table 1, and mixed with a rotary mill to obtain a mixed powder. Then, the mixed powder was formed into a shape of φ60 mm × 6 mm at a pressure of 1 t / cm 2 , and further subjected to cold isostatic pressing at a pressure of 3 t / cm 2 to form a formed body. Then, a sintered body having a relative density of 98.5% or more was obtained.

【0042】得られた各焼結体に対して、表面XRD測
定により粒内析出粒子の同定を行った。また、SEM観
察およびコンピュータ画像処理によりアスペクト比が4
以上の板状結晶の分率を測定した。さらに、機械的特性
として焼結体鏡面でビッカース硬度を測定し、ビッカー
ス圧痕法により破壊靭性を計算し、ピンーオンーディス
ク法(荷重1kg、速度5m/秒、5分間)により磨耗
速度を測った。また、レーザーフラッシュ法により厚み
1mmの試料について熱伝導率を測定した。これらの結
果を表2に示した。
With respect to each of the obtained sintered bodies, intragranular precipitated particles were identified by surface XRD measurement. The aspect ratio was 4 by SEM observation and computer image processing.
The fraction of the above plate crystals was measured. Further, the Vickers hardness was measured on the mirror surface of the sintered body as a mechanical property, the fracture toughness was calculated by the Vickers indentation method, and the wear rate was measured by the pin-on-disk method (load 1 kg, speed 5 m / sec, 5 minutes). . Further, the thermal conductivity of a sample having a thickness of 1 mm was measured by a laser flash method. Table 2 shows the results.

【0043】また、上記試料と同様の組成および条件に
よって、外径100mm×内径85mm×高さ200m
mの容器(円筒スリーブ)と外径80mmのディスクを
作製し、これらを組み込んで図1の連続回転デイスクミ
ル型の粉砕機を作製した。
Further, according to the same composition and conditions as those of the above sample, the outer diameter is 100 mm, the inner diameter is 85 mm, and the height is 200 m.
m (cylindrical sleeve) and a disk having an outer diameter of 80 mm were prepared, and these were assembled to prepare a continuous rotation disk mill type pulverizer shown in FIG.

【0044】得られた粉砕機に平均粒径710μmのA
2 3 粉末を含有するスラリーを連続投入し、ディス
クの回転速度160rpmで20時間作動した。この
時、排出された直後のスラリーの温度を測定した。ま
た、試験後、容器(円筒スリーブ)を外し、試験前後の
重量変化量を摩耗体積に換算した。さらに、容器(円筒
スリーブ)の内面の一部についてSEM観察を行い、内
壁の状態を確認した。結果を表2に示した。
The pulverizer thus obtained was mixed with A having an average particle size of 710 μm.
The slurry containing l 2 O 3 powder was continuously charged and operated at a disk rotation speed of 160 rpm for 20 hours. At this time, the temperature of the slurry immediately after being discharged was measured. After the test, the container (cylindrical sleeve) was removed, and the weight change before and after the test was converted into a wear volume. Further, a part of the inner surface of the container (cylindrical sleeve) was subjected to SEM observation to confirm the state of the inner wall. The results are shown in Table 2.

【0045】(比較例1)実施例のAl2 3 粉末を用
いて実施例と同様に成形し、表1の条件にて焼成して焼
結体および粉砕機を作製し、同様の評価を行った。結果
は表1、2に示した(試料No.24)。
(Comparative Example 1) Using the Al 2 O 3 powder of the example, molding was performed in the same manner as in the example, and sintering was performed under the conditions shown in Table 1 to produce a sintered body and a pulverizer. went. The results are shown in Tables 1 and 2 (Sample No. 24).

【0046】(比較例2)実施例のZrO2 粉末にY2
3 粉末を表1に示す割合で添加し、実施例と同様に混
合、成形して後、表1の条件にて焼成し焼結体および粉
砕機を作製し、評価した。結果は、表1、2に示した
(試料No.25)。
[0046] (Comparative Example 2) ZrO 2 powder of Example Y 2
O 3 powder was added at the ratio shown in Table 1, mixed and molded in the same manner as in the examples, and then fired under the conditions shown in Table 1 to produce a sintered body and a crusher, which were evaluated. The results are shown in Tables 1 and 2 (Sample No. 25).

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】表1、2より、TiO2 の含有量が0.2
重量%より少ない試料No.3では、耐摩耗性が悪く、
容器の内壁に脱粒が見られた。また、TiO2 の含有量
が2重量%を超える試料No.7、MgOの含有量が2
重量%を超える試料No.12,13では、耐摩耗性が
悪く、かつ熱伝導率が低いためにスラリーの温度が40
℃以上となった。
According to Tables 1 and 2 , the content of TiO 2 was 0.2
Sample No. less than% by weight. In 3, the wear resistance is poor,
Shattering was observed on the inner wall of the container. In addition, the sample No. having a TiO 2 content of more than 2% by weight. 7. The content of MgO is 2
% Of the sample no. In Nos. 12 and 13, the temperature of the slurry was 40 because of poor abrasion resistance and low thermal conductivity.
° C or higher.

【0050】また、希土類元素、Zr、Hf、Siの酸
化物換算による合計量が2重量%を超える試料No.1
4および不可避不純物の総量が酸化物換算で1.5重量
%を超える試料No.15では、耐摩耗性が悪く、かつ
熱伝導率が低いためにスラリーの温度が40℃を超え
た。
Sample No. 2 in which the total amount of rare earth elements, Zr, Hf, and Si in terms of oxide exceeds 2% by weight. 1
Sample No. 4 and the total amount of unavoidable impurities exceeded 1.5% by weight in terms of oxide. In No. 15, the temperature of the slurry exceeded 40 ° C. due to poor abrasion resistance and low thermal conductivity.

【0051】さらに、TiO2 およびMgOを添加して
いない試料No.24では、耐摩耗性が悪く、摩耗体積
が13.2cm3 と多量のコンタミネーションがスラリ
ー内に混入した。また、ZrO2 を主成分とする材料か
らなる試料No.25では、熱伝導率が低く、容器の温
度が上昇して耐摩耗性が低下し容器の内壁にクラック、
欠けが見られ、また、スラリーの温度も88℃と高くな
った。
Further, in Sample No. to which TiO 2 and MgO were not added. In No. 24, the abrasion resistance was poor, and the abrasion volume was 13.2 cm 3, and a large amount of contamination was mixed in the slurry. In addition, Sample No. made of a material containing ZrO 2 as a main component was used. In the case of No. 25, the thermal conductivity is low, the temperature of the container increases, the abrasion resistance decreases, and the inner wall of the container cracks,
Chipping was observed, and the temperature of the slurry increased to 88 ° C.

【0052】これに対し、本発明に基づいて得られた焼
結体は、硬度は17.5GPa以上、破壊靭性4.2M
Pam1/2 以上、熱伝導率が25W/mK以上の優れた
特性を示し、また、粉砕機についても摩耗速度100×
106 mm3 /kg・m以下で、かつ容器の内面状態に
異常もなく、より長い使用寿命を示唆した。さらに、ス
ラリーの温度上昇も抑制することができた。
On the other hand, the sintered body obtained according to the present invention has a hardness of 17.5 GPa or more and a fracture toughness of 4.2 M
Pam 1/2 or more, excellent thermal conductivity of 25 W / mK or more.
It was 10 6 mm 3 / kg · m or less, and there was no abnormality in the inner surface state of the container, suggesting a longer service life. Furthermore, the rise in temperature of the slurry could be suppressed.

【0053】[0053]

【発明の効果】以上詳述した通り、本発明の粉砕機によ
れば、その容器がAl2 3 を主成分とする耐磨耗性に
優れ、高熱伝導率を有するものであることから、信頼性
の高い粉砕機を軽量、低コストで提供することができ
る。
As described above in detail, according to the pulverizer of the present invention, since the container is excellent in abrasion resistance containing Al 2 O 3 as a main component and has high thermal conductivity, A highly reliable pulverizer can be provided at a low cost and at a low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粉砕機の一例を示す図である。FIG. 1 is a diagram showing an example of a crusher of the present invention.

【符号の説明】[Explanation of symbols]

1 粉砕機 2 容器 3 ディスク部材 4 メディア 5 被粉砕物注入口 6 被粉砕物排出口 7 水冷管 DESCRIPTION OF SYMBOLS 1 Crusher 2 Container 3 Disk member 4 Media 5 Injection port of crushed object 6 Outlet of crushed object 7 Water cooling tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被粉砕物を容器内に収納して粉砕する粉砕
機であって、前記容器の少なくとも内壁が、Al2 3
を主成分とし、TiをTiO2 換算で0.2〜2重量%
と、MgをMgO換算で0〜2重量%と、希土類元素、
Zr、Hf、Siの群から選ばれる少なくとも1種の酸
化物換算による合計量を0〜2重量%と、不可避不純物
の総量を酸化物換算で1.5重量%以下とを含有し、破
壊靭性4.0MPam1/2 以上、かつ熱伝導率25W/
mK以上の酸化物焼結体からなることを特徴とする粉砕
機。
1. A crusher for storing and crushing an object to be crushed in a container, wherein at least an inner wall of the container is made of Al 2 O 3.
As a main component, and 0.2 to 2% by weight of Ti in terms of TiO 2
And 0 to 2% by weight of Mg in terms of MgO, a rare earth element,
The total content of at least one oxide selected from the group consisting of Zr, Hf, and Si in terms of oxide is 0 to 2% by weight, and the total amount of inevitable impurities is 1.5% by weight or less in terms of oxide. 4.0MPam 1/2 or more and thermal conductivity 25W /
A pulverizer comprising an oxide sintered body having a mK or more.
【請求項2】前記酸化物焼結体が、Al2 3 質結晶
と、該Al2 3 質結晶粒内に分散するTiおよび/ま
たはMgを含有する酸化物微粒子とを含有することを特
徴とする請求項1記載の粉砕機。
Wherein said oxide sintered body, and Al 2 O 3 quality crystals, by containing the oxide fine particles containing Ti and / or Mg dispersed in the Al 2 O 3 quality crystal grains The crusher according to claim 1, characterized in that:
【請求項3】前記酸化物焼結体のビッカース硬度が1
8.5GPa以上であることを特徴とする請求項1また
は2記載の粉砕機。
3. The oxide sintered body has a Vickers hardness of 1
The crusher according to claim 1 or 2, wherein the crusher is 8.5 GPa or more.
【請求項4】前記Al2 3 質結晶の30体積%以上が
アスペクト比4以上の異方性を有することを特徴とする
請求項1乃至3のいずれか記載の粉砕機。
4. The pulverizer according to claim 1, wherein 30% by volume or more of said Al 2 O 3 crystalline has an anisotropy of an aspect ratio of 4 or more.
JP08644699A 1999-03-29 1999-03-29 Crusher Expired - Fee Related JP3740318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08644699A JP3740318B2 (en) 1999-03-29 1999-03-29 Crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08644699A JP3740318B2 (en) 1999-03-29 1999-03-29 Crusher

Publications (2)

Publication Number Publication Date
JP2000279833A true JP2000279833A (en) 2000-10-10
JP3740318B2 JP3740318B2 (en) 2006-02-01

Family

ID=13887162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08644699A Expired - Fee Related JP3740318B2 (en) 1999-03-29 1999-03-29 Crusher

Country Status (1)

Country Link
JP (1) JP3740318B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122742A (en) * 2004-10-26 2006-05-18 Kyocera Corp Cage-type crusher
US20130072373A1 (en) * 2010-04-01 2013-03-21 Rolex S.A. Alumina-based opaque ceramic
CN103894261A (en) * 2012-12-27 2014-07-02 日本阿尔斯泰克 Pulverizer
CN112791638A (en) * 2019-11-14 2021-05-14 首都医科大学附属北京口腔医院 Miniature ball mill

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122742A (en) * 2004-10-26 2006-05-18 Kyocera Corp Cage-type crusher
US20130072373A1 (en) * 2010-04-01 2013-03-21 Rolex S.A. Alumina-based opaque ceramic
JP2013523573A (en) * 2010-04-01 2013-06-17 ロレックス・ソシエテ・アノニム Alumina-based opaque ceramics
US8993466B2 (en) * 2010-04-01 2015-03-31 Rolex S.A. Alumina-based opaque ceramic
EP2552855B1 (en) * 2010-04-01 2018-03-07 Rolex S.A. Alumina based opaque ceramic
CN103894261A (en) * 2012-12-27 2014-07-02 日本阿尔斯泰克 Pulverizer
CN112791638A (en) * 2019-11-14 2021-05-14 首都医科大学附属北京口腔医院 Miniature ball mill

Also Published As

Publication number Publication date
JP3740318B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
EP3169645B1 (en) Metal-ceramic composite wear component
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
JP5819992B2 (en) Method for producing polycrystalline aluminum oxynitride with improved transparency
JP2008133160A (en) Boron carbide sintered compact and method of manufacturing the same
JPH09221354A (en) Wear resistant aluminous ceramics and its production
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
JP2010264574A (en) Cutting tool
WO2021049530A1 (en) Wear-resistant alumina sintered body
KR101575561B1 (en) Manufacturing Method of Polycrystalline Aluminum Oxynitride with Improved Transparency
JP2000279833A (en) Crusher
JP2004292230A (en) Wear resistant alumina sintered compact and method of manufacturing the same
JP2004059346A (en) Silicon nitride-based ceramic sintered compact, and its production process
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JP5673946B2 (en) Method for producing silicon nitride ceramics
JP2000070745A (en) Member for pulverizer
JP2587767B2 (en) Crusher components
JPH0813704B2 (en) Material for crusher
JP3566323B2 (en) Crusher components
JPH07206514A (en) Abrasion-resistant alumina ceramic
JPH0672767A (en) Wear resistant zirconia-based sintered compact
JP2676008B2 (en) Abrasion resistant zirconia sintered body and method for producing the same
JPH03146454A (en) Production of fine powder of ceramics and refractories
JPH05301775A (en) Member for pulverizer composed of silicon nitride-based sintered compact
JP4773709B2 (en) Crusher parts
KR101907038B1 (en) Alumina-based ceramics and method for the preparation thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees