JPH0672767A - Wear resistant zirconia-based sintered compact - Google Patents

Wear resistant zirconia-based sintered compact

Info

Publication number
JPH0672767A
JPH0672767A JP5170100A JP17010093A JPH0672767A JP H0672767 A JPH0672767 A JP H0672767A JP 5170100 A JP5170100 A JP 5170100A JP 17010093 A JP17010093 A JP 17010093A JP H0672767 A JPH0672767 A JP H0672767A
Authority
JP
Japan
Prior art keywords
sintered body
zirconia
wear
less
monoclinic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5170100A
Other languages
Japanese (ja)
Other versions
JP2532024B2 (en
Inventor
Toshio Kawanami
利夫 河波
Kenichi Nishioka
憲一 西岡
Hirohisa Tanaka
裕久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP5170100A priority Critical patent/JP2532024B2/en
Publication of JPH0672767A publication Critical patent/JPH0672767A/en
Application granted granted Critical
Publication of JP2532024B2 publication Critical patent/JP2532024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To reduce the rate of wastage and to ensure resistance to wear and crushing due to shock by incorporating Y2O3, Al2O3 and SiO2 and carrying out firing so that a prescribed compsn. is obtd. CONSTITUTION:A Zr compd. soln. is mixed with a Y compd. soln. so that 2.0-4.0mol% Y2O3 is contained in ZrO2 and the resulting mixture is dehydrated, dried and roasted to obtain primary ZrO2 crystal powder. This powder is mixed with <=1.0wt.% Al2O3 and <=1.0wt.% SiO2, pulverized and compacted to form a compact having about >=2.0g/cm<3> density. This compact is then fired at 1,350-1,800 deg.C to produce the objective wear resistant ZrO2-based sintered compact having <=2.5mum average grain diameter, >=5.98g/cm<3> bulk density and <<=0.1% rate of wastage by a ball mill. The crystal structure of the sintered compact has a mirror finished surface and does not contain monoclinic Zr and the Zr in the structure consists of tetragonal Zr of >=30wt.% is converted into monoclinic Zr when the sintered compact is heat-treated, slowly cooled and pulverized and the balance isometric Zr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐摩耗性に優れたジル
コニア質焼結体に関する。本発明によるジルコニア質焼
結体は、適度な硬度、美麗な研磨面などのジルコニア質
焼結体の一般的な性質を具備しているのみならず、耐摩
耗性、耐衝撃圧壊性などにも著るしく優れているので、
粉砕機用部材、産業用耐摩耗構造材等として広い分野で
利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconia-based sintered body having excellent wear resistance. The zirconia-based sintered body according to the present invention has not only the general properties of the zirconia-based sintered body such as an appropriate hardness and a beautiful polished surface, but also wear resistance and impact crush resistance. It ’s so remarkable
It can be used in a wide range of fields, such as crusher members and industrial wear resistant structural materials.

【0002】[0002]

【従来技術とその問題点】現在粉砕機としては、転動ボ
ールミル、サンドミル、アトライター、振動ミル、ハン
マーミル、ジェットミル、ロッドミル、ローラミル、乳
鉢と乳棒との組合わせなどの各種のものが広く使用され
ている。これらの粉砕機は、ボール、ロールなどの粉砕
媒体(メディア)を使用して主として摩擦および衝撃圧
壊力により粉砕を行なう装置、並びに粒子を高速運動さ
せて、その衝撃および圧壊力により粉砕を行なう装置に
大別される。
[Prior art and its problems] Currently, various crushers are widely used such as rolling ball mills, sand mills, attritors, vibration mills, hammer mills, jet mills, rod mills, roller mills, and combinations of mortar and pestle. It is used. These pulverizers are devices that pulverize mainly by friction and impact crushing force using a pulverizing medium (media) such as balls and rolls, and devices that perform high-speed movement of particles and crush by the impact and crushing force. It is roughly divided into.

【0003】従来これらの粉砕機の内張材、メディアな
どの摩耗しやすい部材には、粉砕すべき対象物の種類に
応じて、天然石、磁器、アルミナ、ガラス、ゴム、プラ
スチックス、スチール、めのうなどが使用されている。
しかしながら、これらの材料は、一般に摩耗し易かった
り、或いはそれ自身の硬度が高すぎるために、互いに接
触する相手部材(例えば、内張材に対するメディア、メ
ディアとメディアなど)を損耗させて、被粉砕物中に摩
耗粉が混入することが多い。しかるに、この混入摩耗粉
の分離は、困難であるため、工程の簡略化および製品純
度の点で、大きな障害となっている。従って、例えば、
スチール製部材を使用する場合には、脱鉄工程を付設し
たり、或いはアルミナの粉砕を行なうに際しては同質の
アルミナ製部材を使用したり、若干量の摩耗粉の混入が
許容される材料(ゴム、プラスチックスなど)製の部材
を使用するなどの工夫がなされている。しかしながら、
最新の技術分野、例えばセラミックス、電子材料、コー
ティング材料、粉体材料などの各分野においては、微粉
砕工程で混入する被粉砕物中の微量成分およびその微構
造が、被粉砕物の物性、品質管理、信頼性などに大きな
影響を及ぼすことが明かとなってきた。
Conventionally, in the lining materials and media of these crushers, which are easily worn, natural stone, porcelain, alumina, glass, rubber, plastics, steel and agate are used depending on the kind of the object to be crushed. Are used.
However, these materials are generally easily worn or have too high hardness, so that the mating members (for example, the media for the lining material, the media and the media, etc.) that come into contact with each other are damaged, and the material to be ground is crushed. Abrasion powder is often mixed in things. However, since it is difficult to separate this mixed wear powder, it is a major obstacle in terms of process simplification and product purity. So, for example,
If a steel member is used, a deferring process is added, or an alumina member of the same quality is used when pulverizing alumina, or a material (rubber , Plastics, etc.) are used. However,
In the latest technical fields, such as ceramics, electronic materials, coating materials, powder materials, etc., the trace components and their microstructure in the material to be ground mixed in the fine grinding process are It has become clear that management and reliability will be greatly affected.

【0004】[0004]

【発明が解決しようとする課題】本発明は、耐摩耗性お
よび耐衝撃圧壊性に優れており且つ適度の硬度を有して
いるため、粉砕機用部材として損耗率の低いジルコニア
質焼結体を得ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention is excellent in wear resistance and impact crush resistance and has an appropriate hardness, so that the zirconia-based sintered body has a low wear rate as a member for a crusher. Aim to get.

【0005】本発明は、更に、耐摩耗性、耐衝撃圧壊性
等にも優れた一般的な産業用耐摩耗構造材として有用な
ジルコニア質焼結体を得ることも目的とする。
It is another object of the present invention to obtain a zirconia-based sintered body which is excellent in wear resistance, impact crush resistance and the like and which is useful as a general industrial wear resistant structural material.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記の如き
技術の現状に鑑みて鋭意研究を進めた結果、Y23を含
むジルコニア質焼結体において、特定量のAl23及び
SiO2を含有させ、且つY23の含有量、結晶系の構
成、平均結晶粒径を適切に制御するとともに、従来のジ
ルコニア質焼結体に比して気孔率を低下させる(換言す
れば、従来のジルコニア質焼結体に比して大きなかさ密
度を付与する)場合には、損耗率の極めて低いジルコニ
ア質焼結体が得られることを見出した。
The present inventor has conducted earnest research in view of the current state of the art as a result, and as a result, in a zirconia-based sintered body containing Y 2 O 3 , a specific amount of Al 2 O 3 was used. And SiO 2 are contained, and the content of Y 2 O 3 , the composition of the crystal system, and the average crystal grain size are appropriately controlled, and the porosity is lowered as compared with the conventional zirconia-based sintered body (in other words, Then, it has been found that a zirconia-based sintered body having an extremely low wear rate can be obtained in the case of imparting a bulk density higher than that of a conventional zirconia-based sintered body.

【0007】すなわち、本発明は、下記の耐摩耗性ジル
コニア質焼結体を提供するものである: (a)Y23を2.0 モル%以上4.0 モル%以下、Al2
3を1.0重量%以下及びSiO2を1.0重量%以下
含有し、(b)該焼結体の結晶構造が鏡面仕上した焼結
体表面で単斜晶系ジルコニアを実質的に含まず、且つ焼
結体を熱処理し徐冷した後、粉砕処理で単斜晶系に変化
する正方晶系ジルコニアを30%以上含み、残余が等軸晶
系ジルコニアからなり、(c)該焼結体の平均結晶粒径
が2.5 μm以下であり、(d)該焼結体のかさ密度が5.
98g/cm3以上であり、(e)粉砕用メディアとして
の形態の上記焼結体のボールミルによる損耗率が0.1 %
以下であることを特徴とする耐摩耗性ジルコニア質焼結
体。
That is, the present invention provides the following wear resistant zirconia-based sintered bodies: (a) Y 2 O 3 is 2.0 mol% or more and 4.0 mol% or less, Al 2
O 3 is contained in an amount of 1.0% by weight or less and SiO 2 is included in an amount of 1.0% by weight or less, and (b) the crystal structure of the sintered body is mirror-finished. After being heat-treated and gradually cooled, the sintered body is not included, and contains 30% or more of tetragonal zirconia that changes into a monoclinic system by a pulverization process, and the balance consists of equiaxed zirconia. The average crystal grain size of the sintered body is 2.5 μm or less, and (d) the bulk density of the sintered body is 5.
98 g / cm 3 or more, and (e) the wear rate of the above sintered body in the form of a grinding medium by a ball mill is 0.1%.
A wear-resistant zirconia-based sintered body characterized by being:

【0008】本発明のジルコニア質焼結体は、以下に説
明する各要件を備えていることを必須とする。
It is essential that the zirconia-based sintered body of the present invention has the respective requirements described below.

【0009】(1)Y23を2.0 モル%以上4.0 モル%
以下含有している。Y23の含有量が2.0 モル%未満で
ある場合には、焼結体製造時にすでに単斜晶系ZrO2
を生成しやすい。この単斜晶系ZrO2が生成する場合
には、転移による大きな容積変化を伴うので、焼結体中
に亀裂を生じる。したがって、この様な焼結体を粉砕機
用部材として使用する場合には、摩擦、衝撃、圧壊など
に対する抵抗力が不十分となるため、耐摩耗性が低く、
損耗量が大きくなるので、好ましくない。一方、Y23
の含有量が4.0 モル%を上回ると、等軸晶系ZrO2
過剰となり、靭性の低下に伴って焼結部材自体の摩耗量
が大となり且つ摩砕粉の粉径も粗大となるので、粉砕機
用部材としては不適である。また、この様な靭性の低い
材料は、産業用耐摩耗構造材としても不適である。
(1) Y 2 O 3 is 2.0 mol% or more and 4.0 mol%
Contains the following. When the content of Y 2 O 3 is less than 2.0 mol%, the monoclinic ZrO 2 is already produced at the time of producing the sintered body.
Easy to generate. When this monoclinic ZrO 2 is produced, a large volume change is caused by the transition, so that a crack occurs in the sintered body. Therefore, when such a sintered body is used as a member for a crusher, its resistance to friction, impact, crushing, etc. becomes insufficient, resulting in low wear resistance,
This is not preferable because the amount of wear increases. On the other hand, Y 2 O 3
If the content of Mn exceeds 4.0 mol%, the equiaxed ZrO 2 becomes excessive, the wear amount of the sintered member itself increases with the decrease in toughness, and the powder size of the ground powder also becomes coarse. It is not suitable as a crusher member. Further, such a material having low toughness is also unsuitable as an industrial wear resistant structural material.

【0010】更に、Al23を1.0重量%以下及びS
iO2を1.0重量%以下含有している。1.0重量%
以下のAl23及び1.0重量%以下のSiO2は、焼
結助剤としての効果が大きく、焼結温度の低下を可能に
し、かさ密度を高くすることができる効果がある。
Further, Al 2 O 3 is 1.0 wt% or less and S
It contains 1.0% by weight or less of iO 2 . 1.0% by weight
The following Al 2 O 3 and 1.0% by weight or less of SiO 2 have a large effect as a sintering aid, and have an effect of enabling a decrease in sintering temperature and an increase in bulk density.

【0011】(2)鏡面仕上面に単斜晶系ZrO2を実
質的に含まず、且つ焼結体を熱処理し徐冷した後、粉砕
処理で単斜晶系に変化する正方晶系ZrO2を30%以上
含んでいる。正方晶系ZrO2の含有量は、40%以上で
あることが好ましく、さらに50〜80%の範囲にあること
がより好ましいが、この範囲を超えても実用上は差支え
ない。正方晶系ZrO2の含有量が30%未満である場合
には、等軸晶系ZrO2が過剰となるか或いは焼結体の
物性を損なう程度の単斜晶系ZrO2が生成するので、
上記(1)に示したような難点を生ずる。
(2) Tetragonal ZrO 2 which does not substantially contain monoclinic ZrO 2 on the mirror-finished surface and which is changed to monoclinic by pulverization after heat treatment and slow cooling of the sintered body Contains more than 30%. The content of the tetragonal ZrO 2 is preferably 40% or more, more preferably in the range of 50 to 80%, but even if it exceeds this range, there is no practical problem. When the content of the tetragonal ZrO 2 is less than 30%, the equiaxed ZrO 2 becomes excessive or monoclinic ZrO 2 is produced to such an extent that the physical properties of the sintered body are impaired.
The above-mentioned problems (1) occur.

【0012】なお、一般に正方晶と等軸晶との正確な分
離は困難であるため、本発明における正方晶系ZrO2
の含有量は、以下の方法により測定した。
Since it is generally difficult to accurately separate the tetragonal crystal and the equiaxed crystal, the tetragonal ZrO 2 of the present invention is used.
The content of was measured by the following method.

【0013】(イ)焼結体の表面を600 メッシュのダイ
ヤモンド砥石で研削した後、1 〜5μmのダイヤモンド
砥石により鏡面に仕上げ、その表面のX線回折法による
強度比(面積比)から単斜晶系ZrO2の含有量を測定
する。単斜晶系ZrO2の含有量は、ガーヴィーら(R.
C.Garvie et al)がジャーナル オブ アメリカン セ
ラミックス ソサエティー(J.Am.Ceram.Soc.)、55[6
]1972, 第303 〜305 頁に報じている下式で示される
Xm(%)により定めた。
(A) The surface of the sintered body was ground with a 600-mesh diamond grindstone, and then mirror-finished with a 1-5 μm diamond grindstone. From the intensity ratio (area ratio) of the surface by the X-ray diffraction method, monoclinic The content of crystalline ZrO 2 is measured. The content of monoclinic ZrO 2 is Gurvey et al.
C. Garvie et al) Journal of American Ceramics Society (J.Am.Ceram.Soc.), 55 [6
] 1972, pp. 303-305, Xm (%) shown by the following formula.

【0014】[0014]

【数1】 [Equation 1]

【0015】上記式において、Im(111)は、単結
晶系ジルコニアの(111)面のX線回折線の強度を示
し、
In the above formula, Im (111) represents the intensity of the X-ray diffraction line of the (111) plane of single crystal zirconia,

【0016】[0016]

【数2】 [Equation 2]

【0017】は、単結晶系ジルコニアのIs a single crystal zirconia

【0018】[0018]

【数3】 [Equation 3]

【0019】面のX線回折線の強度を示し、Ict(1
11)は、等軸晶系と正方晶系ジルコニア(111)の
X線回折線の強度を示す。
The intensity of the X-ray diffraction line of the surface is shown as Ict (1
11) shows the X-ray diffraction line intensities of equiaxed and tetragonal zirconia (111).

【0020】(ロ)次いで、上記試料を電気炉中で1500
℃で300 時間保持した後、徐冷し、乳鉢で粉砕して10μ
m以下の粒とし、上記(イ)と同様のX線回折法で単斜
晶系ZrO2の含有量を測定する。
(B) Next, the above sample was placed in an electric furnace at 1500
After holding at ℃ for 300 hours, slowly cool and crush in a mortar to 10μ
The number of particles is m or less, and the content of monoclinic ZrO 2 is measured by the same X-ray diffraction method as in (a) above.

【0021】(ハ)次いで、上記10μm以下の粒を電気
炉中500 ℃で1000時間保持した後、徐冷し、乳鉢で5 μ
m以下に粉砕し、上記(イ)と同様のX線回折法で単斜
晶系ZrO2の含有量を測定する。
(C) Next, the particles having a size of 10 μm or less are held in an electric furnace at 500 ° C. for 1000 hours, then gradually cooled, and then 5 μ in a mortar.
It is pulverized to m or less, and the content of monoclinic ZrO 2 is measured by the X-ray diffraction method similar to the above (a).

【0022】(ニ)次いで、(ロ)および(ハ)で得ら
れた単斜晶系ZrO2含有量のうちの大きい方の値から
(イ)の値を差し引き、得られた値をもって正方晶系Z
rO2の含有量とする。これは、(ロ)および(ハ)の
加熱粉砕処理によって増加した単斜晶系ZrO2は、処
理前の焼結体に含まれていた正方晶系ZrO2の大部分
が転移して生成したものであるとの推定に基くものであ
る。
(D) Next, the value of (a) is subtracted from the larger value of the monoclinic ZrO 2 contents obtained in (b) and (c), and the tetragonal crystal is obtained with the obtained value. System Z
The content is rO 2 . This is because the monoclinic ZrO 2 increased by the heating and pulverization treatments of (b) and (c) was generated by the transfer of most of the tetragonal ZrO 2 contained in the sintered body before the treatment. It is based on the presumption that it is a thing.

【0023】(3)焼結体を構成するZrO2系結晶の
平均粒径は、2.5 μm以下とする。結晶の平均粒径が2.
5 μmを上回ると、焼結後の冷却過程において正方晶か
ら単斜晶に転移する駆動力が大きくなって、単斜晶系Z
rO2の量が多くなり、それに応じて正方晶系ZrO2
量が減少するとともに、正方晶の安定性が低下して、僅
かな衝撃によっても正方晶から単斜晶に転移し、摩擦、
衝撃、圧壊等に対する抵抗力が低下するので、粉砕機用
部材、産業用耐摩耗構造材等としての使用に適さなくな
る。同一組成の材料においては、結晶粒径が小なる程強
度は大となるというセラミックにおける一般原理をさら
に考え合わせると、ZrO2系結晶の平均粒径は、2 μ
m以下であることがより好ましい。
(3) The average grain size of the ZrO 2 type crystals constituting the sintered body is 2.5 μm or less. The average grain size of crystals is 2.
If it exceeds 5 μm, the driving force for the transition from the tetragonal system to the monoclinic system becomes large in the cooling process after sintering, and the monoclinic system Z
The amount of rO 2 increases, the amount of tetragonal ZrO 2 decreases accordingly, and the stability of the tetragonal system decreases, so that even a slight impact causes the transition from tetragonal to monoclinic, friction,
Since the resistance to impact, crushing, etc. is reduced, it becomes unsuitable for use as a crusher member, an industrial wear resistant structural material, and the like. Considering further the general principle of ceramics that the smaller the crystal grain size, the greater the strength in the material of the same composition, the average grain size of the ZrO 2 system crystal is 2 μm.
It is more preferably m or less.

【0024】(4)焼結体のかさ密度は、5.98g/cm
3以上とする。かさ密度が5.98g/cm3未満の場合に
は、摩擦、衝撃などの外部応力に対する焼結体の破壊エ
ネルギーが小さくなり、且つ正方晶系ZrO2の安定性
を低下させる傾向が大きくなる。
(4) The bulk density of the sintered body is 5.98 g / cm.
Set to 3 or more. When the bulk density is less than 5.98 g / cm 3 , the fracture energy of the sintered body against external stress such as friction and impact becomes small, and the stability of the tetragonal ZrO 2 tends to decrease.

【0025】(5)焼結体の損耗率は、0.1 %以下とす
る。損耗率が、0.1 %を上回る場合には、耐摩耗性が劣
り、特に焼結体を粉砕機用部材として使用する場合に
は、被粉砕物中に混入するジルコニア焼結体の摩耗粉の
量が多くなり、好ましくない。焼結体の損耗率は、より
好ましくは、0.03%以下である。なお、本願明細書にお
いて、“ボールミルによる損耗率”とは、粉砕機用メデ
ィアの形態の焼結体520gを容量400ml のアルミナ製ミル
(例えば、日本化学陶業株式会社製、材質=HD,形状
=A−3型)に入れ、水160ml を加え、室温において転
動ボールミルで100rpmで空ずり試験を行ない、48時間運
転後、メディアを取り出し、洗浄および乾燥した後、重
量を測定し、その損耗減量から算出される数値をいう。
メディアとしては、通常粒径15mmのボールを使用して測
定を行なうが、粒径、形状などが異なっても損耗率の結
果にはあまり大きな影響はない。
(5) The wear rate of the sintered body is 0.1% or less. If the wear rate exceeds 0.1%, the wear resistance is poor, and especially when using a sintered body as a crusher member, the amount of wear powder of the zirconia sintered body mixed in the crushed object. Is increased, which is not preferable. The wear rate of the sintered body is more preferably 0.03% or less. In the specification of the present application, "wear rate by ball mill" means an alumina mill with a capacity of 400 ml of a sintered body 520 g in the form of a crusher medium (for example, manufactured by Nippon Kagaku Sangyo Co., Ltd., material = HD, shape = A-3 type), add 160 ml of water, perform a dry test at 100 rpm with a rolling ball mill at room temperature, and after 48 hours of operation, remove the media, wash and dry, measure the weight, and reduce the loss of wear. The numerical value calculated from.
As the medium, a ball having a particle diameter of 15 mm is usually used for the measurement, but even if the particle diameter, the shape, etc. are different, the result of the wear rate is not significantly affected.

【0026】本発明の耐摩耗ジルコニア質焼結体は、通
常次の様にして製造される。
The wear-resistant zirconia-based sintered body of the present invention is usually manufactured as follows.

【0027】ZrO2中にY23として2.0 モル%以上
4.0 モル%以下含まれる様な割合に、Zr化合物溶液と
Y化合物溶液とを均一に混合し、脱水および乾燥した
後、400 〜1200℃で焙焼して平均粒径0.5 μm以下のZ
rO2一次結晶粉体を得る。次いで、該一次結晶粉体に
所定量のAl23及びSiO2を添加して湿式粉砕によ
り分散させた後、ワックスエマルジョン、PVA、CM
Cなどの成形助剤を加え、メカニカルプレス、アイソス
タティックプレス、鋳込み成形、押出し成形、射出成
形、造粒成形などの公知の窯業製品の成形法により、所
定の形状に成形し、必要ならば加工する。尚、Al23
供給源としては、酸化アルミニウムはもちろんのこと水
酸化アルミニウム等のアルミニウム塩が使用できる。ま
た、SiO2供給源としては、けい石やエチルシリケー
ト等が使用でき、場合によってはカオリン等を用いるこ
とによって、Al23とSiO2の化合物の形で添加す
ることもできる。成形体の密度は、2.0 g/cm3程度
以上、より好ましくは、2.5 g/cm3程度以上とす
る。成形体の焼成は、1350〜1800℃程度、より好ましく
は1400〜1750℃程度で常圧または加圧下に行ない、かさ
密度5.98g/cm3の焼結体とする。
2.0 mol% or more of Y 2 O 3 in ZrO 2
The Zr compound solution and the Y compound solution were uniformly mixed in a proportion such that the content of the compound was 4.0 mol% or less, dehydrated and dried, and then roasted at 400 to 1200 ° C. to obtain Z having an average particle size of 0.5 μm or less.
An rO 2 primary crystal powder is obtained. Then, a predetermined amount of Al 2 O 3 and SiO 2 is added to the primary crystal powder and dispersed by wet pulverization, followed by wax emulsion, PVA, CM.
By adding a molding aid such as C, a known ceramic product molding method such as mechanical press, isostatic press, cast molding, extrusion molding, injection molding, granulation molding, etc. is formed into a predetermined shape and, if necessary, processed. To do. Al 2 O 3
As the supply source, not only aluminum oxide but also aluminum salt such as aluminum hydroxide can be used. Further, silica, ethyl silicate, or the like can be used as the SiO 2 supply source, and in some cases, kaolin or the like can be used to add it in the form of a compound of Al 2 O 3 and SiO 2 . The density of the molded product is about 2.0 g / cm 3 or more, more preferably about 2.5 g / cm 3 or more. The compact is fired at about 1350 to 1800 ° C., more preferably about 1400 to 1750 ° C. under normal pressure or under pressure to obtain a sintered body having a bulk density of 5.98 g / cm 3 .

【0028】本発明の耐摩耗性ジルコニア質焼結体は、
前記(1)〜(5)の要件を充足する場合には、通常Z
r含有鉱石中に随伴されており、特に規定しない限りZ
rO2の一部として取り扱われるHfO2を含有していて
も良く、さらに製造工程中に焼結助剤その他の形態で添
加または混入されることがある各種の成分 (Ti
2、Fe23、MgO、CaO、Na2Oなど)をそれ
ぞれ最高1 %程度まで含有していても良い。
The wear resistant zirconia-based sintered body of the present invention is
When the requirements (1) to (5) are satisfied, it is usually Z
Entrained in r-containing ores, unless otherwise specified Z
HfO 2 which is handled as a part of rO 2 may be contained, and various components (Ti) that may be added or mixed in the form of a sintering aid or other components during the manufacturing process (Ti
O 2 , Fe 2 O 3 , MgO, CaO, Na 2 O, etc.) may be contained up to about 1% each.

【0029】また、本発明のジルコニア質焼結体の硬度
は、ロックウェルスケールA(HRA)89以上で92未
満であることが好ましい。この様な硬度を有する場合に
は、特に互いに接する相手部材をあまり傷付けず、損耗
も少なく、効率良く粉砕を行なうことができる。
The hardness of the zirconia-based sintered body of the present invention is preferably Rockwell Scale A (H RA ) of 89 or more and less than 92. In the case of having such hardness, particularly, the mating members that are in contact with each other are not damaged so much, the wear is small, and the pulverization can be efficiently performed.

【0030】[0030]

【発明の効果】本発明の耐摩耗性ジルコニア質焼結体
が、耐摩耗性、耐衝撃圧壊力などに優れている理由は、
詳らかではないが、一応次の様なものと推定される。
The reason why the wear resistant zirconia-based sintered body of the present invention is excellent in wear resistance, impact crush resistance and the like is as follows.
It is not clear, but it is presumed to be something like the following.

【0031】イ 従来公知のジルコニア質焼結体よりも
気孔率の小さい、換言すればかさ密度の高い焼結体を使
用するので、その機械的強度が大きい。
(A) Since a sintered body having a smaller porosity, that is, a bulk density higher than that of a conventionally known zirconia-based sintered body is used, its mechanical strength is large.

【0032】ロ 正方晶系ZrO2が均一に分散されて
いるため、破壊靭性が高い。
Since the tetragonal ZrO 2 is uniformly dispersed, the fracture toughness is high.

【0033】ハ 硬度が比較的低く(HRA89〜91程
度)、弾性率も低いので、互いに接触する相手部材(例
えば、内張材に対するメディア、メディアとメディアな
ど)をあまり傷付けず、摩耗させない。
(C) The hardness is relatively low (H RA 89 to 91) and the elastic modulus is also low, so that the mating members (for example, media for lining material, media and media, etc.) that come into contact with each other are not scratched or worn. .

【0034】ニ 比重が大きいので、メディアとして使
用する場合、高運動エネルギーにより高い粉砕能力を発
揮する。
Since it has a large specific gravity, when it is used as a medium, it exhibits a high crushing ability due to high kinetic energy.

【0035】ホ 化学的安定性に優れているので、粉体
および溶剤と接触した状態で応力が加わっても腐蝕、疲
労は少ない。
Since it is excellent in chemical stability, corrosion and fatigue are small even if stress is applied in the state of being in contact with the powder and the solvent.

【0036】[0036]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

【0037】実施例1 下記第1表に示す割合でY23、Al23及びSiO2
を含む一次結晶の平均粒径0.03μm以下のZrO2粉体
を湿式にて分散粉砕した後、成形助剤としてワックスエ
マルジョン3 重量%を加え、アイソスタティックプレス
法により2ton/cm2の圧力で成形した。成形体を第1
表に示す条件で焼結させて得た直径15mmのメディアの物
性は、第2表および後記第3表に示す通りである。試料
No.1〜4 は、前記(1)〜(5)の条件をすべて満足す
る本発明による焼結体であり、試料No.5〜7 は、これら
条件の少なくとも1つを満たしていない比較品である。
なお、試料No.5のみは、平均粒径0.8 μmの一次結晶粒
子を使用した。
Example 1 Y 2 O 3 , Al 2 O 3 and SiO 2 in the proportions shown in Table 1 below.
ZrO 2 powder having an average particle size of 0.03 μm or less of primary crystals containing is dispersed and pulverized by a wet method, and then 3% by weight of wax emulsion is added as a molding aid, and the mixture is molded at a pressure of 2 ton / cm 2 by an isostatic press method. did. Molded body first
The physical properties of the media having a diameter of 15 mm obtained by sintering under the conditions shown in the table are as shown in Table 2 and Table 3 below. sample
Nos. 1 to 4 are the sintered bodies according to the present invention satisfying all the above conditions (1) to (5), and sample Nos. 5 to 7 are comparative products which do not satisfy at least one of these conditions. Is.
Only sample No. 5 used primary crystal grains having an average grain size of 0.8 μm.

【0038】 第 1 表 試料No. Y23 Al23 SiO2 焼成温度−焼成時間 含有量 含有量 含有量 (モル%) (重量%) (重量%) (℃) (hr) 1 2.5 0.2 0.04 1400 2 2 3.0 0.4 0.20 1420 3 3 4.0 0.8 0.02 1600 2 4 2.8 0.3 0.52 1380 3 5 3.0 1.5 0.15 1650 2 6 2.0 − 0.50 1500 3 7 2.5 0.5 1.20 1500 2 第 2 表 試料 結晶粒径 かさ密度 正方晶 等軸晶 単斜晶 HRA No. (μm) (g/cm 3 (%) (%) (%) 1 0.4 6.05 86 14 0 91.5 2 0.5 6.03 70 30 0 91.5 3 1.5 5.99 54 46 0 90.8 4 0.3 6.02 82 18 0 91.0 5 2.0 5.96 65 30 5 88.0 6 0.6 5.75 65 0 35 85.0 7 0.5 5.90 79 16 5 86.5 上記で得られた各メディア520gを容量400ml のアルミナ
製ボール(日本化学陶業株式会社製、材質=HD,形状=
A-3 型)に入れ、水160ml を加えて、100rpmで空ずり試
験を行なった。48時間運転後、メディアを取り出し、洗
浄および乾燥した後、重量を測定し、その損耗減量から
損耗率を算出した結果は、第3表に示す通りである。
Table 1 Sample No. Y 2 O 3 Al 2 O 3 SiO 2 Firing temperature-Firing time Content Content Content (mol%) (wt%) (wt%) (° C) (hr) 1 2.5 0.2 0.04 1400 2 2 3.0 0.4 0.20 1420 3 3 4.0 0.8 0.02 1600 2 4 2.8 0.3 0.52 1380 3 5 3.0 1.5 1.5 0.15 1650 2 6 2.0 - 0.50 1500 3 7 2.5 0.5 1.20 1500 2 table 2 sample grain size bulk density tetragonal like axed crystal monoclinic H RA No. (Μm) (g / cm 3 ) (%) (%) (%) 1 0.4 6.05 86 14 0 91.5 2 0.5 6.03 70 30 0 91.5 3 1.5 5.99 54 46 0 90.8 4 0.3 6.02 82 18 0 91 .05 5 2.0 5.96 65 30 30 5 88.0 6 0.6 5.75 65 0 35 85.0 7 0.5 0.5 90 90 79 16 5 86.5 520 g of each medium obtained above Alumina balls with a capacity of 400 ml (Nippon Kagaku Sangyo Co., Ltd., material = HD, shape =
A-3 type), 160 ml of water was added, and a blanking test was performed at 100 rpm. After 48 hours of operation, the media was taken out, washed and dried, the weight was measured, and the wear rate was calculated from the loss on wear. The results are shown in Table 3.

【0039】 注 No.6は、焼結体に無数のクラックが発生し破壊
されていたため測定できなかった。
[0039] Note No. No. 6 could not be measured because innumerable cracks were generated in the sintered body and destroyed.

【0040】第3表に示す結果から、本発明によるジル
コニア焼結体からなるメディア(試料No.1〜4 )の優れ
た耐摩耗性が明らかである。
From the results shown in Table 3, it is clear that the media made of the zirconia sintered body according to the present invention (Sample Nos. 1 to 4) have excellent wear resistance.

【0041】又、試料No.3から発生した摩耗粉の粒径
は、0.1 μm以下に過ぎなかった。
The particle size of the abrasion powder generated from sample No. 3 was only 0.1 μm or less.

【0042】比較例1〜2 92%Al23からなるかさ密度3.6 g/cm3 、直径15mm
の市販メディアを実施例1と同様の空ずり試験に供した
ところ、その損耗率は、0.35%であった。
Comparative Examples 1 to 2 Bulk density consisting of 92% Al 2 O 3 3.6 g / cm 3 , diameter 15 mm
When the commercially available media of No. 2 was subjected to the same skiving test as in Example 1, the wear rate was 0.35%.

【0043】また、市販の99.5%Al23からなる
かさ密度3.92g/cm3 、直径15mmのメディアを使用して、
上記と同様のからずり試験を行なったところ、その損耗
率は、1.2 %にも達した。
Further, using a commercially available medium having a bulk density of 3.92 g / cm 3 and a diameter of 15 mm, which is made of 99.5% Al 2 O 3 ,
When a shear test similar to the above was conducted, the wear rate reached 1.2%.

【0044】なお、これらのAl23製メディアから発
生する摩耗粉の粒径は、0.2 〜0.7 μmであった。
The particle size of abrasion powder generated from these Al 2 O 3 media was 0.2 to 0.7 μm.

【0045】実施例2 焼結体の直径を20mmとする以外は実施例1の試料No.3と
同様にしてメディアを得た。
Example 2 A medium was obtained in the same manner as in Sample No. 3 of Example 1 except that the diameter of the sintered body was 20 mm.

【0046】得られたメディア3 kgを容量2 lのアルミ
ナ製ボールミルに入れ、けい石(20〜80メッシュ)1 kg
と水700ml とを加えて、95rpm で24時間湿式粉砕を行な
った。 粉砕されたけい石の粒径3 μmの粒子の重量
は、45%にも達する。
3 kg of the obtained medium was put into an alumina ball mill having a capacity of 2 l, and 1 kg of silica stone (20 to 80 mesh)
And 700 ml of water were added, and wet grinding was carried out at 95 rpm for 24 hours. The weight of 3 μm particles of ground silica reaches as high as 45%.

【0047】比較例3 92%Al23からなるかさ密度3.6 g/cm3 、直径20mm
の市販メディアを使用する以外は実施例2と同様にして
けい石の粉砕を行なった。
Comparative Example 3 Bulk density consisting of 92% Al 2 O 3 3.6 g / cm 3 , diameter 20 mm
Silica stone was pulverized in the same manner as in Example 2 except that the commercially available media of 1.

【0048】粉砕されたけい石の粒径8 μmの粒子の重
量は、27%に過ぎなかった。
The weight of the 8 μm particles of ground silica was only 27%.

【0049】比較例4 Y23の含有量を1.9 モル%とする以外は実施例2と同
様にしてメディアを得た。
Comparative Example 4 A medium was obtained in the same manner as in Example 2 except that the Y 2 O 3 content was 1.9 mol%.

【0050】焼成完了時にすでにメディア表面に多数の
クラックが発生しており、これをけい石の湿式粉砕に使
用したところ、脱落した多数のジルコニア質破片がけい
石中に混入していた。
A large number of cracks had already formed on the surface of the medium at the completion of firing. When this was used for wet grinding of silica, a large number of zirconia debris that had fallen off were mixed in the silica.

【0051】実施例3 実施例1のNo.2と同様の一次結晶粉体を使用して成形原
料を調製し、アイソスタティックプレス法により1.5ton
/cm2 の圧力で成形を行なって、外径120mm、内径91m
mの乳鉢およびこれに見合う乳棒を製造した。乳鉢およ
び乳棒と被砕物とが接する面はGC砥石で研磨しておい
た。成形体の焼成時間および温度、並びに焼成後の結晶
粒径、かさ密度および正方晶含有量は、第1表の試料N
o.2のそれらと同様である。
Example 3 A molding raw material was prepared by using the same primary crystal powder as that of No. 2 of Example 1, and 1.5 ton was prepared by the isostatic pressing method.
Molded at a pressure of / cm 2 , outer diameter 120 mm, inner diameter 91 m
An m mortar and a matching pestle were manufactured. The surface of the mortar and pestle in contact with the crushed object was ground with a GC grindstone. The firing time and temperature of the molded body, and the crystal grain size, bulk density and tetragonal content after firing are shown in Sample N of Table 1.
Similar to those in o.2.

【0052】上記で得られた乳鉢および乳棒を用いて、
100 〜150 メッシュの電融アルミナ(SiO2含有量0.0
2%)10g を手で擂潰させ、指頭に粒子を感じない程度
間で粉砕した。
Using the mortar and pestle obtained above,
100-150 mesh fused alumina (SiO 2 content 0.0
2%) 10 g was crushed by hand and crushed to the extent that no particles were felt on the fingertips.

【0053】化学分析により被砕物中のZrO2含有量
を定量したところ、0.008 %以下であった。
When the ZrO 2 content in the crushed material was quantified by chemical analysis, it was 0.008% or less.

【0054】比較例5 市販のめのう製乳鉢および乳棒(寸法はいずれも実施例
3のものと同じ)を用いて実施例3と同様の粉砕操作を
行なったところ、被砕物中にはめのうの主成分であるS
iO2が0.05%含まれていた。
Comparative Example 5 The same crushing operation as in Example 3 was carried out using a commercially available agate mortar and pestle (the dimensions are the same as those in Example 3). Ingredient S
It contained 0.05% of iO 2 .

【0055】実施例4 実施例1のNo.2と同様の一次結晶粉体を使用して成形原
料を調製し、回転式造粒機により直径6mm の球に成形し
た後、1500℃で2 時間焼成して、メディアを得た。得ら
れたメディアの結晶粒径は0.4 μm、かさ密度は6.04g/
cm3 、正方晶含有量は60%であり、HRAは、91.3であっ
た。
Example 4 A molding raw material was prepared using the same primary crystal powder as that of No. 2 of Example 1, molded into spheres having a diameter of 6 mm by a rotary granulator, and then at 1500 ° C. for 2 hours. Firing gave media. The obtained media has a crystal grain size of 0.4 μm and a bulk density of 6.04 g /
cm 3 , the tetragonal content was 60% and the H RA was 91.3.

【0056】該メディア5kg を容量4.9 lのアトライタ
(三井三池製作所製)にチャージし、さらに水1.3 lお
よびけい砂1.3kg を投入して、アジテータの回転数200r
pmで4時間粉砕を行なった。
5 kg of the medium was charged into an attritor (manufactured by Mitsui Miike Seisakusho) having a capacity of 4.9 l, and then 1.3 l of water and 1.3 kg of silica sand were added to the agitator to rotate at 200 r.
Milled at pm for 4 hours.

【0057】この場合のメディアの損耗率は、0.005%/h
r であり、被砕物の平均粒径は、1.5 μmであった。ま
た、被砕物中にはスチール製タンクからの鉄分混入は認
められなかった。
The wear rate of the media in this case is 0.005% / h
The average particle size of the crushed material was 1.5 μm. In addition, no iron content from the steel tank was found in the crushed material.

【0058】比較例6 直径6mm の市販ムライト製メディアを使用する以外は実
施例4と同様にしてけい石の粉砕を行なった。
Comparative Example 6 Silica stone was crushed in the same manner as in Example 4 except that a commercially available mullite medium having a diameter of 6 mm was used.

【0059】メディアの損耗率は、0.58%/hrであり、被
砕物の平均粒径は、2.3 μmであった。
The wear rate of the medium was 0.58% / hr, and the average particle size of the crushed material was 2.3 μm.

【0060】比較例7 直径6mm の市販アルミナ製メディア(Al23純度92
%)を使用する以外は実施例4と同様にしてけい石の粉
砕を行なった。
Comparative Example 7 A commercially available alumina medium having a diameter of 6 mm (Al 2 O 3 purity 92
%), And the silica stone was crushed in the same manner as in Example 4.

【0061】メディアの損耗率は、0.11%/hrであり、被
砕物の平均粒径は、1.8 μmであった。また、被砕物中
にはスチール製タンクからの鉄分混入が肉眼で認められ
た。 実施例5 実施例1のNo.2と同様の一次結晶粉体を使用して、外径
15.5mm、長さ45mm、円周部肉厚4mm 、先端部厚さ10mmの
一端を封じた管状の内張材を製造した。得られた管状体
を実施例4と同様のアトライタのアジテータアーム部に
はめこみ、エポキシ樹脂で固定し、実施例4と同様にし
てけい砂の粉砕を行なった。
The wear rate of the medium was 0.11% / hr, and the average particle size of the crushed material was 1.8 μm. In addition, iron content from the steel tank was visually observed in the crushed material. Example 5 Using the same primary crystal powder as No. 2 of Example 1, the outer diameter was
A tubular lining material having a length of 15.5 mm, a length of 45 mm, a circumferential wall thickness of 4 mm and a tip thickness of 10 mm was sealed. The obtained tubular body was fitted in an agitator arm portion of an attritor similar to that in Example 4, fixed with an epoxy resin, and silica sand was crushed in the same manner as in Example 4.

【0062】延べ100 時間使用後においても、ジルコニ
ア製アーム内張材の表面は滑らかで光沢を有しており、
ノギスによる外径測定では寸法変化は認められなかっ
た。
The surface of the zirconia arm lining material is smooth and glossy even after a total of 100 hours of use,
No dimensional change was observed in the outer diameter measurement with a caliper.

【0063】比較例8 純度92%のAl23を使用する以外は実施例5と同様
にして管状の内張材を製造し、比較例7と同様にしてけ
い砂の粉砕を行なった。
Comparative Example 8 A tubular lining material was manufactured in the same manner as in Example 5 except that Al 2 O 3 having a purity of 92% was used, and crushed silica sand in the same manner as in Comparative Example 7.

【0064】延べ100 時間使用後には、円周部において
0.6mm の肉厚減少が認められた。
After using for a total of 100 hours, at the circumference
A wall thickness reduction of 0.6 mm was observed.

【0065】実施例6 ブレイド状スイングハンマーを有する中心軸を円筒体内
で高速回転させ、被砕物をその円筒体上方から供給し、
円筒体下方に配置したスクリーンから被砕物を排出する
形式のハンマーミルにおいて、12枚のハンマー先端部
の外面に厚さ8mm、巾45mm、長さ26mmのジルコニア質焼
結体内張材をそれぞれエポキシs樹脂で接合し、8000rp
m でガラス粉を粉砕する。焼結体は、実施例1のNo.1と
同様のジルコニア一次結晶粉体を使用して、メカニカル
プレス法により1ton/cm2 の圧力で成形し、所定の形
状に加工後、1600℃で2時間焼成したものであり、第1
表の試料No.1と同様の各種物性を有している。
Example 6 A central shaft having a blade-shaped swing hammer was rotated at a high speed in a cylindrical body, and an object to be crushed was supplied from above the cylindrical body.
In a hammer mill of the type that discharges crushed materials from a screen placed below the cylinder, zirconia-based sintered upholstery material with a thickness of 8 mm, a width of 45 mm, and a length of 26 mm is applied to the outer surface of each of the 12 hammer tips with epoxy s. Bonded with resin, 8000rp
Grind glass powder with m. The sintered body was formed by using a zirconia primary crystal powder similar to that of No. 1 of Example 1 at a pressure of 1 ton / cm 2 by a mechanical pressing method, processed into a predetermined shape, and then subjected to 2 at 1600 ° C. The one that has been fired for a time
It has the same physical properties as sample No. 1 in the table.

【0066】延べ400 時間の使用後においても、本発明
による内張材の損耗は極めて少なく、さらに長期の使用
が可能であると推定される。
It is estimated that even after a total of 400 hours of use, the lining material according to the present invention has very little wear and can be used for a long period of time.

【0067】比較例9 純度92%のAl23を使用する以外は実施例6と同様
にして内張材を製造し、ハンマーミルのハンマーに接合
した。
Comparative Example 9 A lining material was produced in the same manner as in Example 6 except that Al 2 O 3 having a purity of 92% was used, and was joined to a hammer of a hammer mill.

【0068】延べ300 時間の使用後には、損耗が著るし
く、破損、重力中心のずれによる振動発生の危険が大き
いため、それ以上の使用は不可能と判断された。
After a total of 300 hours of use, the wear was remarkable, and there was a great risk of damage and vibration due to displacement of the center of gravity, so it was judged that further use was impossible.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B02C 17/22 9042−4D ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B02C 17/22 9042-4D

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a)Y23を2.0 モル%以上4.0 モル%
以下、Al23を1.0重量%以下及びSiO2を1.
0重量%以下含有し、(b)該焼結体の結晶構造が鏡面
仕上した焼結体表面で単斜晶系ジルコニアを実質的に含
まず、且つ焼結体を熱処理し徐冷した後、粉砕処理で単
斜晶系に変化する正方晶系ジルコニアを30%以上含み、
残余が等軸晶系ジルコニアからなり、(c)該焼結体の
平均結晶粒径が2.5 μm以下であり、(d)該焼結体の
かさ密度が5.98g/cm3以上であり、(e)粉砕用メ
ディアとしての形態の上記焼結体のボールミルによる損
耗率が0.1 %以下であることを特徴とする耐摩耗性ジル
コニア質焼結体。
1. (a) 2.0 mol% to 4.0 mol% of Y 2 O 3
Hereinafter, Al 2 O 3 is 1.0 wt% or less and SiO 2 is 1.
0% by weight or less, (b) the crystal structure of the sintered body is mirror-finished, the surface of the sintered body is substantially free of monoclinic zirconia, and the sintered body is heat-treated and gradually cooled, Includes 30% or more of tetragonal zirconia that changes to monoclinic by crushing,
The balance consists of equiaxed zirconia, (c) the average crystal grain size of the sintered body is 2.5 μm or less, (d) the bulk density of the sintered body is 5.98 g / cm 3 or more, and e) A wear-resistant zirconia-based sintered body, characterized in that the wear rate of the above-mentioned sintered body in the form of a grinding medium by a ball mill is 0.1% or less.
JP5170100A 1993-07-09 1993-07-09 Abrasion resistant zirconia sintered body Expired - Lifetime JP2532024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5170100A JP2532024B2 (en) 1993-07-09 1993-07-09 Abrasion resistant zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5170100A JP2532024B2 (en) 1993-07-09 1993-07-09 Abrasion resistant zirconia sintered body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3142293A Division JP2557291B2 (en) 1991-03-29 1991-03-29 Crusher member made of zirconia sintered body

Publications (2)

Publication Number Publication Date
JPH0672767A true JPH0672767A (en) 1994-03-15
JP2532024B2 JP2532024B2 (en) 1996-09-11

Family

ID=15898640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5170100A Expired - Lifetime JP2532024B2 (en) 1993-07-09 1993-07-09 Abrasion resistant zirconia sintered body

Country Status (1)

Country Link
JP (1) JP2532024B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033433A1 (en) * 2001-10-18 2003-04-24 Nikkato Corporation Zirconia based sintered product excellent in durability and abrasion-resistant member using the same
JP2006137652A (en) * 2004-11-15 2006-06-01 Nitsukatoo:Kk Member for pulverizer
JP2007222811A (en) * 2006-02-24 2007-09-06 Higashi Nippon Gakuen Hokkaido Iryo Daigaku Evulsed tooth crushing article and evulsed tooth-originating delimed powder applicable to high-tech medical treatment, and method and crusher for preparing complex of delimed powder and apatite
JP2010100442A (en) * 2008-10-21 2010-05-06 Nozawa Corp Method for producing cordierite
CN104307605A (en) * 2014-05-26 2015-01-28 宁国市鑫煌矿冶配件制造有限公司 Wear-resistant ball mill liner with high toughness and high hardness
CN107774400A (en) * 2017-10-23 2018-03-09 宁国市正兴耐磨材料有限公司 A kind of wear-resistant ball of high-hardness high temperature resistant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246862A (en) * 1987-03-23 1987-10-28 日本碍子株式会社 Zirconia ceramic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246862A (en) * 1987-03-23 1987-10-28 日本碍子株式会社 Zirconia ceramic

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033433A1 (en) * 2001-10-18 2003-04-24 Nikkato Corporation Zirconia based sintered product excellent in durability and abrasion-resistant member using the same
US6905993B2 (en) * 2001-10-18 2005-06-14 Nikkato Corporation Zirconia based sintered body excellent in durability and wear resistant parts using the same
JP2006137652A (en) * 2004-11-15 2006-06-01 Nitsukatoo:Kk Member for pulverizer
JP2007222811A (en) * 2006-02-24 2007-09-06 Higashi Nippon Gakuen Hokkaido Iryo Daigaku Evulsed tooth crushing article and evulsed tooth-originating delimed powder applicable to high-tech medical treatment, and method and crusher for preparing complex of delimed powder and apatite
WO2007099861A1 (en) * 2006-02-24 2007-09-07 Health Sciences University Of Hokkaido Milled product of extracted tooth usable in highly advanced medical treatment, decalcified powder originating in extracted tooth, method of preparing composite of decalcified powder with apatite and milling machine
EP1994910A1 (en) * 2006-02-24 2008-11-26 Health Sciences Univ. of Hokkaido Milled product of extracted tooth usable in highly advanced medical treatment, decalcified powder originating in extracted tooth, method of preparing composite of decalcified powder with apatite and milling machine
US8752777B2 (en) 2006-02-24 2014-06-17 Health Sciences University Of Hokkaido Method and pulverizing apparatus for preparing pulverized product of extracted tooth, demineralized powder originated from extracted tooth, and composite of demineralized powder and apatite, suitable for use in highly advanced medical treatments
EP1994910A4 (en) * 2006-02-24 2014-07-09 Health Sciences University Of Hokkaido Milled product of extracted tooth usable in highly advanced medical treatment, decalcified powder originating in extracted tooth, method of preparing composite of decalcified powder with apatite and milling machine
JP2010100442A (en) * 2008-10-21 2010-05-06 Nozawa Corp Method for producing cordierite
CN104307605A (en) * 2014-05-26 2015-01-28 宁国市鑫煌矿冶配件制造有限公司 Wear-resistant ball mill liner with high toughness and high hardness
CN107774400A (en) * 2017-10-23 2018-03-09 宁国市正兴耐磨材料有限公司 A kind of wear-resistant ball of high-hardness high temperature resistant

Also Published As

Publication number Publication date
JP2532024B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP3080873B2 (en) Abrasion resistant alumina ceramics and method for producing the same
JPH0220587B2 (en)
JP2532024B2 (en) Abrasion resistant zirconia sintered body
WO2021049530A1 (en) Wear-resistant alumina sintered body
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JPH0813704B2 (en) Material for crusher
JP2557290B2 (en) Abrasion resistant zirconia sintered body
JPH0825798B2 (en) Abrasion resistant zirconia sintered body
JP2557291B2 (en) Crusher member made of zirconia sintered body
JP2587767B2 (en) Crusher components
EP0567136B1 (en) Mill parts
JP2900118B2 (en) Abrasion resistant alumina ceramics
JP2003321270A (en) Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding
JPH05301775A (en) Member for pulverizer composed of silicon nitride-based sintered compact
JP3566323B2 (en) Crusher components
JP2631924B2 (en) Manufacturing method of alumina pulverizer member
JPH04135655A (en) Member for grinder
JP2684625B2 (en) Powder processing member made of zirconia sintered body
JP4576007B2 (en) Crushing / dispersing media and manufacturing method thereof
JP4773709B2 (en) Crusher parts
JPH0639303A (en) Material of part for crushing using sintered body of zirconia
JPH05319923A (en) Abrasion-resistant zirconia sintered products and their production
JPS62187157A (en) Alumina member for crusher
JP2002355568A (en) Disintegrating media
JP2000279833A (en) Crusher