JP2000277444A - Liquid-phase epitaxial growth method - Google Patents

Liquid-phase epitaxial growth method

Info

Publication number
JP2000277444A
JP2000277444A JP11082796A JP8279699A JP2000277444A JP 2000277444 A JP2000277444 A JP 2000277444A JP 11082796 A JP11082796 A JP 11082796A JP 8279699 A JP8279699 A JP 8279699A JP 2000277444 A JP2000277444 A JP 2000277444A
Authority
JP
Japan
Prior art keywords
substrate
epitaxial growth
growth
phase epitaxial
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11082796A
Other languages
Japanese (ja)
Inventor
Seiichiro Omoto
誠一郎 大元
Hiroshi Okada
広 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11082796A priority Critical patent/JP2000277444A/en
Publication of JP2000277444A publication Critical patent/JP2000277444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize epitaxial growth without decreasing its speed even with a low dislocation substrate, at epitaxial growth of a III-V compound semiconductor. SOLUTION: To allow liquid-phase epitaxial growth by a temperature- difference method or an annealing method on a substrate S of a III-V compound semiconductor such as GaP or InP. Such a substrate S as having dislocation density 104 cm-2 or less is used. Related to the substrate S, an angle θ formed between the substrate surfaced and a crystallographic main surface is 1-8 deg.. The step part of the main surface on the substrate surface is a starting point for crystal growth, improving the growth speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、低転位基板を用い
た、GaP,InPなどのIII-V族系化合物半導体の液
相エピタキシャル成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase epitaxial growth method of a III-V group compound semiconductor such as GaP or InP using a low dislocation substrate.

【0002】[0002]

【従来の技術】GaP, InPなどのIII-V族系化合物
半導体は、発光ダイード、フォトダイオード、レーザダ
イオードなどのオプティカルデバイスを主用途とする材
料である。これらのデバイスは、GaP,InPなどの
III-V族系化合物半導体の基板上にSやZn等の適宜の
不純物が微量添加されたn型半導体、p型半導体、さら
には半絶縁半導体などをエピタキシャル成長させた積層
構造を有している。
2. Description of the Related Art Group III-V compound semiconductors such as GaP and InP are materials mainly used for optical devices such as light emitting diodes, photodiodes and laser diodes. These devices include GaP, InP, etc.
It has a laminated structure in which an n-type semiconductor, a p-type semiconductor, a semi-insulating semiconductor, or the like, to which a small amount of an appropriate impurity such as S or Zn is added, is epitaxially grown on a III-V compound semiconductor substrate.

【0003】従来、III-V族系化合物半導体は、Ga
P,InPなどの化合物単結晶の基板を用いてエピタキ
シャル成長させることによって製造され、前記基板はそ
の表面が結晶学的な主面すなわち原子の稠密配列面、例
えば(111)面や(100)面となるように製作され
ている。
Conventionally, III-V group compound semiconductors have been
The substrate is manufactured by epitaxial growth using a substrate of a single crystal of a compound such as P or InP. The substrate has a crystallographic main surface, that is, a dense array of atoms, for example, a (111) plane or a (100) plane. It is made to become.

【0004】これらオプティカルデバイスの性能向上に
は、転位などの欠陥を抑制することが有効とされてお
り、転位密度が104 cm-2以下の低転位基板を用いてエ
ピタキシャル成長させることが試みられている。
In order to improve the performance of these optical devices, it is effective to suppress defects such as dislocations. Attempts have been made to epitaxially grow a low dislocation substrate having a dislocation density of 10 4 cm −2 or less. I have.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、転位密
度が104 cm-2超である従来の基板を用いた場合、成長
速度は、除冷法あるいは温度差法などの成長方法により
異なるものの、温度差法では代表的な成長速度が1μm
/min 程度であるのに対し、転位密度が104 cm -2以下
の低転位の基板を用いた場合は0.6μm /min 程度と
なる。低転位基板を使用した場合に成長速度が遅くなる
理由は、結晶の成長起点となる核発生部の一つである転
位欠陥が極めて少ないためと推測される。成長速度の低
下はエピタキシャル成長プロセスの長時間化を招き、製
造コストが増大する。
SUMMARY OF THE INVENTION However, dislocation density
Degree 10Fourcm-2Growth using conventional substrates that are super
The speed is controlled by a growth method such as a cooling method or a temperature difference method.
Although different, the typical growth rate is 1 μm in the temperature difference method.
/ Min, while the dislocation density is 10Fourcm -2Less than
When a low dislocation substrate is used, it is about 0.6 μm / min.
Become. Slow growth rate when using low dislocation substrates
The reason is that one of the nucleation sites,
This is presumed to be due to extremely few position defects. Low growth rate
Below, the lengthening of the epitaxial growth process causes
The manufacturing cost increases.

【0006】本発明はかかる問題に鑑みなされたもの
で、III-V族系化合物半導体のエピタキシャル成長に際
し、低転位基板を用いた場合においても良好なエピタキ
シャル成長速度を実現することができるエピタキシャル
成長方法を提供するものである。
The present invention has been made in view of the above problems, and provides an epitaxial growth method capable of realizing a good epitaxial growth rate even when a low dislocation substrate is used in epitaxial growth of a group III-V compound semiconductor. Things.

【0007】[0007]

【課題を解決するための手段】本発明のエピタキシャル
成長方法は、GaPあるいはInPなどのIII-V族系化
合物半導体からなる基板上にエピタキシャル成長させる
液相エピタキシャル成長方法において、前記基板は転位
密度が104 cm-2以下であり、基板表面と結晶学的な主
面とのなす角が1〜8度とされたものである。
According to the present invention, there is provided a liquid phase epitaxial growth method for epitaxially growing a substrate made of a III-V group compound semiconductor such as GaP or InP, wherein the substrate has a dislocation density of 10 4 cm. −2 or less, and the angle between the substrate surface and the crystallographic main surface is 1 to 8 degrees.

【0008】本発明の液相エピタキシャル成長方法によ
ると、図1に示すように、基板Sの表面が原子の稠密な
配列面を構成する主面に対してθ度傾いているため、基
板表面において各主面の原子配列に段差が生じるように
なり、この段差部が結晶成長の起点になる。このため、
基板の転位密度が104 cm-2以下と低い場合であって
も、エピタキシャル成長が速やかに生じる。この際、基
板表面と主面とのなす角θが1度未満では段差部が過少
となり、成長速度の向上効果も小さくなり、一方θが8
度を越えると異常成長が起こり、成長膜の表面に凹凸が
生じるようになる。このため、θの下限を1度、好まし
くは2度とし、一方θの上限を8度、好ましくは6度と
する。なお、通常、主面には(111)面あるいは(1
00)面が選択される。
According to the liquid phase epitaxial growth method of the present invention, as shown in FIG. 1, the surface of the substrate S is inclined by θ degrees with respect to the main surface constituting the dense array of atoms. A step occurs in the atomic arrangement on the main surface, and this step serves as a starting point for crystal growth. For this reason,
Even when the dislocation density of the substrate is as low as 10 4 cm −2 or less, epitaxial growth occurs quickly. At this time, if the angle θ between the substrate surface and the main surface is less than 1 degree, the step portion becomes too small, and the effect of improving the growth rate is also reduced.
If the temperature exceeds the limit, abnormal growth occurs, and the surface of the grown film becomes uneven. For this reason, the lower limit of θ is set to 1 degree, preferably 2 degrees, while the upper limit of θ is set to 8 degrees, preferably 6 degrees. Usually, the (111) plane or the (1) plane is
00) The plane is selected.

【0009】[0009]

【実施例】以下、実施例によって本発明を説明するが、
本発明はかかる実施例に限定されるものでないことは勿
論であり、液相エピタキシャル成長法として、実施例に
記載した温度差法に限らず、徐冷法であってもよいこと
は勿論である。
Hereinafter, the present invention will be described with reference to Examples.
The present invention is, of course, not limited to such examples, and the liquid phase epitaxial growth method is not limited to the temperature difference method described in the examples, but may be a slow cooling method.

【0010】図2は、実施例において温度差法により液
相エピタキシャル成長を行った基板成長容器1の断面説
明図であり、基板Sが設置される底板部2と、その上に
付設された筒状部3と、該筒状部3の上部開口に付設さ
れた蓋板部4とで構成され、これらは炭素により形成さ
れている。前記基板成長容器1は、上下方向に温度分布
が形成される多段ヒータを備えた加熱炉に装入され、上
下方向に所定の温度分布が付与されるように加熱され
る。実施例では、前記基板成長容器1にはGaを主成分
とする融液(メルト)5が収容され、その上にGaP
(50%Ga−50%P)の多結晶片(ソース原料)6
が供給され、基板Sの上に故意に不純物を添加しないノ
ンドープ層を形成することとした。
FIG. 2 is a cross-sectional explanatory view of a substrate growth vessel 1 in which liquid phase epitaxial growth is performed by a temperature difference method in the embodiment, wherein a bottom plate portion 2 on which a substrate S is installed and a cylindrical shape provided thereon are provided. It is composed of a portion 3 and a cover plate portion 4 attached to an upper opening of the tubular portion 3, and these are formed of carbon. The substrate growth vessel 1 is placed in a heating furnace having a multi-stage heater in which a temperature distribution is formed in a vertical direction, and is heated so as to give a predetermined temperature distribution in a vertical direction. In this embodiment, the substrate growth vessel 1 contains a melt (melt) 5 containing Ga as a main component, on which GaP is placed.
(50% Ga-50% P) polycrystalline pieces (source material) 6
Is supplied, and a non-doped layer on which no impurity is intentionally added is formed on the substrate S.

【0011】まず、転位密度が4×104 cm-2である従
来一般的に用いられているGaP基板(従来基板)、お
よび転位密度が2×103 cm-2である低転位のGaP基
板(低転位基板)を用いて温度差法によりGaPノンド
ープ層を液相エピタキシャル成長させた。この場合、基
板表面は(111)面とほぼ平行((111)±0.2
度)になるように形成した。GaP基板の場合、(11
1)面とはP原子が表面にある面を意味し、この面を基
板表面側とした。成長条件は、多段ヒータを温度制御し
て、前記融液の表面が874℃に、一方、基板温度が8
50℃になるようにした。この成長条件は温度差法にお
ける代表的な条件である。なお、基板サイズは20mm角
であり、試料数は各5点とした。
[0011] First, GaP substrate (conventional substrate) dislocation density conventionally used in general is a 4 × 10 4 cm -2, and a low dislocation GaP substrate dislocation density is 2 × 10 3 cm -2 Using a (low dislocation substrate), a GaP non-doped layer was subjected to liquid phase epitaxial growth by a temperature difference method. In this case, the substrate surface is substantially parallel to the (111) plane ((111) ± 0.2
Degree). In the case of a GaP substrate, (11
1) The plane means a plane having P atoms on the surface, and this plane is defined as the substrate surface side. The growth conditions are as follows: the temperature of the melt is controlled to 874 ° C. by controlling the temperature of the multi-stage heater;
The temperature was adjusted to 50 ° C. This growth condition is a typical condition in the temperature difference method. The substrate size was 20 mm square, and the number of samples was 5 for each.

【0012】液相エピタキシャル成長を開始してから所
定時間経過後に成長を停止し、成長膜厚を測定し、成長
速度を求めた。その結果、代表的な成長条件における成
長速度は、従来基板が1μm /min であったのに対し
て、低転位基板では0.5〜0.7μm /min (平均
0.6μm /min )であった。
The growth was stopped after a lapse of a predetermined time from the start of the liquid phase epitaxial growth, the thickness of the grown film was measured, and the growth rate was obtained. As a result, the growth rate under typical growth conditions was 1 μm / min for the conventional substrate, but 0.5 to 0.7 μm / min (0.6 μm / min on average) for the low dislocation substrate. Was.

【0013】次に、基板表面と主面(111)面とのな
す角度(オフ角)を1〜10度の範囲内で(110)方
向にオフさせた種々の低転位基板(転位密度2×103
cm-2)を各5点作成し、この低転位基板を用いて前記成
長条件と同条件の下でエピタキシャル成長を行った。そ
の結果を図3に示す。図3中のデータは、各試料による
平均値とそのばらつき範囲を示す。
Next, various low dislocation substrates (dislocation density 2 ×) in which the angle (off angle) between the substrate surface and the main surface (111) plane is turned off in the (110) direction within the range of 1 to 10 degrees. 10 3
cm −2 ) were prepared at five points each, and epitaxial growth was performed using this low dislocation substrate under the same growth conditions as described above. The result is shown in FIG. The data in FIG. 3 shows the average value of each sample and its variation range.

【0014】図3から、(111)面からのオフ角を1
度以上に設定することにより、従来の成長速度に対して
80%以上の良好な成長速度を実現することができ、オ
フ角を2度以上とすることで、従来の成長速度並の成長
速度が実現できることがわかる。しかし、オフ角が8度
を超えると各部で異常成長が起こり始め、成長膜表面に
凹凸が現れ、オフ角を10度としたものでは、膜厚均一
性および表面モルフォロジーがさらに悪くなり、平均膜
厚を100μm 成長させた時に、深さが40〜60μm
の溝が表面に現れるようになった。このような溝の発生
は、デバイス製造における歩留まりを著しく低下させる
ものである。これより、表面モルフォロジーが健全な状
態であり、かつ成長速度が量産レベルにある低転位基板
のオフ角は1〜8度であることが確認された。
FIG. 3 shows that the off angle from the (111) plane is 1
By setting the growth rate to not less than 80 ° C., a good growth rate of 80% or more with respect to the conventional growth rate can be realized. It can be seen that it can be realized. However, when the off angle exceeds 8 degrees, abnormal growth starts to occur in each part, irregularities appear on the surface of the grown film, and when the off angle is 10 degrees, the film thickness uniformity and surface morphology are further deteriorated, and the average film When the thickness is grown to 100 μm, the depth is 40 to 60 μm
Grooves appeared on the surface. The occurrence of such grooves significantly lowers the yield in device manufacturing. From this, it was confirmed that the off-angle of the low dislocation substrate whose surface morphology was healthy and whose growth rate was at the mass production level was 1 to 8 degrees.

【0015】[0015]

【発明の効果】本発明の液相エピタキシャル成長方法に
よれば、GaPあるいはInPなどのIII-V族系化合物
半導体からなる基板の表面を結晶学的な主面に対して1
〜8度の角度をなすようにしたので、基板として転位密
度が104 cm-2以下の低転位基板を用いても、良好な結
晶成長速度を実現することができ、しかも表面状態が健
全なエピタキシャル成長を実現することができ、生産性
に優れる。
According to the liquid phase epitaxial growth method of the present invention, the surface of a substrate made of a III-V group compound semiconductor such as GaP or InP is shifted by 1 to the crystallographic main surface.
Since an angle of about 8 degrees is formed, a good crystal growth rate can be realized even when a low dislocation substrate having a dislocation density of 10 4 cm −2 or less is used as the substrate, and the surface state is sound. Epitaxial growth can be realized and the productivity is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基板の表面を結晶学的な主面からθ傾斜させた
場合の結晶表面部の断面説明図である。
FIG. 1 is an explanatory sectional view of a crystal surface portion when a surface of a substrate is inclined by θ from a crystallographic main surface.

【図2】実施例において用いた基板成長容器の概略断面
図である。
FIG. 2 is a schematic cross-sectional view of a substrate growth container used in an example.

【図3】実施例における低転位基板のオフ角と、従来基
板を用いた場合の成長速度に対する成長速度比との関係
を示すグラフである。
FIG. 3 is a graph showing a relationship between an off-angle of a low dislocation substrate and a growth rate ratio to a growth rate when a conventional substrate is used in an example.

【符号の説明】[Explanation of symbols]

1 基板成長容器 S 基板 1 Substrate growth vessel S Substrate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA03 AB07 BE43 BE44 CG02 CG07 ED04 ED05 QA04 QA38 5F053 AA25 AA33 AA44 BB14 BB38 DD07 DD11 FF01 GG01 HH01 HH04 JJ01 JJ03 KK04 KK06 LL01 LL02 LL03 LL04 LL06 RR03 RR05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA03 AB07 BE43 BE44 CG02 CG07 ED04 ED05 QA04 QA38 5F053 AA25 AA33 AA44 BB14 BB38 DD07 DD11 FF01 GG01 HH01 HH04 JJ01 JJ03 KK04 KK03 LL03 LL03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 GaPあるいはInPなどのIII-V族系
化合物半導体からなる基板上にエピタキシャル成長させ
る液相エピタキシャル成長方法において、 前記基板は転位密度が104 cm-2以下であり、基板表面
と結晶学的な主面とのなす角が1〜8度とされた液相エ
ピタキシャル成長方法。
1. A liquid phase epitaxial growth method for epitaxial growth on a substrate made of a III-V group compound semiconductor such as GaP or InP, wherein the substrate has a dislocation density of 10 4 cm −2 or less, Liquid phase epitaxial growth method wherein the angle between the main surface and the main surface is 1 to 8 degrees.
JP11082796A 1999-03-26 1999-03-26 Liquid-phase epitaxial growth method Pending JP2000277444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11082796A JP2000277444A (en) 1999-03-26 1999-03-26 Liquid-phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11082796A JP2000277444A (en) 1999-03-26 1999-03-26 Liquid-phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JP2000277444A true JP2000277444A (en) 2000-10-06

Family

ID=13784379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11082796A Pending JP2000277444A (en) 1999-03-26 1999-03-26 Liquid-phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JP2000277444A (en)

Similar Documents

Publication Publication Date Title
US4561916A (en) Method of growth of compound semiconductor
KR920008121B1 (en) Heteroepitaxial growth method
JP2003321298A (en) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
JP4664464B2 (en) Silicon carbide single crystal wafer with small mosaic
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
US20150044467A1 (en) Method of growing ingot and ingot
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
JP2000277444A (en) Liquid-phase epitaxial growth method
EP1791171B1 (en) Epitaxial crystal growing method
JP2000315656A (en) Manufacture of epitaxial silicon substrate
JP5152293B2 (en) Manufacturing method of silicon carbide single crystal wafer with small mosaic property
JP2687445B2 (en) Heteroepitaxial growth method
KR20190092417A (en) Silicon single crystal manufacturing method and silicon single crystal wafer
JPH07273025A (en) Semiconductor substrate
JPH0536602A (en) Crystal growth method of hexagonal crystal semiconductor
US20240183065A1 (en) METHOD OF PRODUCING LARGE GaAs AND GaP INFRARED WINDOWS
JP3127616B2 (en) Epitaxial wafer and manufacturing method thereof
JP2804959B2 (en) Method for epitaxial growth of Ш-V compound semiconductor
JP2727564B2 (en) Heteroepitaxial growth method
JP3531205B2 (en) Substrate for epitaxial growth and epitaxial wafer
JPS63281420A (en) Manufacture of compound semiconductor substrate
JP2013193917A (en) Method of manufacturing semi-insulating gallium arsenide wafer and semi-insulating gallium arsenide wafer
JP2023145595A (en) Indium phosphide substrate and semiconductor epitaxial wafer
CN114761627A (en) Method for growing high-quality heteroepitaxial monoclinic gallium oxide crystal
KR20150035413A (en) Epitaxial growth of compound semiconductors using lattice-tuned domain-matching epitaxy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120611

LAPS Cancellation because of no payment of annual fees