JP2000277152A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2000277152A
JP2000277152A JP11079162A JP7916299A JP2000277152A JP 2000277152 A JP2000277152 A JP 2000277152A JP 11079162 A JP11079162 A JP 11079162A JP 7916299 A JP7916299 A JP 7916299A JP 2000277152 A JP2000277152 A JP 2000277152A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
lithium
oxygen
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11079162A
Other languages
Japanese (ja)
Inventor
Soubun Okumura
壮文 奥村
Michiko Honbo
享子 本棒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11079162A priority Critical patent/JP2000277152A/en
Publication of JP2000277152A publication Critical patent/JP2000277152A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having battery characteristics that do not decrease and being excellent in safety such that explosion and firing are prevented even in the event of breakdown due to an internal short circuit or overcharging. SOLUTION: This lithium secondary battery, including positive and negative electrodes which reversibly store and release lithium and an electrolyte containing lithium ions, contains an oxygen absorber. The oxygen absorber is preferably heat polymerizable and is preferably a polysiloxane compound or phenylene oxide compound which absorbs and polymerizes oxygen desorbed from the electrodes. The lithium ion secondary battery having enhanced safety for battery breaking tests can thus be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話やノート
型パソコン等のポータブル機器,電気自動車の駆動電
源,電力貯蔵用電源に用いるに好適な安全性に優れたリ
チウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly safe lithium secondary battery suitable for use in portable equipment such as portable telephones and notebook personal computers, as a drive power supply for electric vehicles and a power storage power supply.

【0002】[0002]

【従来の技術】近年、二次電池はパソコンや携帯電話な
どの電源として、あるいは電気自動車や電力貯蔵用の電
源として、なくてはならない重要な構成要素の一つとな
っている。
2. Description of the Related Art In recent years, secondary batteries have become one of the essential components that are indispensable as power sources for personal computers and mobile phones, or as power sources for electric vehicles and power storage.

【0003】携帯型コンピュータ(ペンコンピュータと
呼ばれるものも含む)や携帯情報端末(Personal Digita
l Assistant、あるいはPersonal Intelligent Communic
ator、あるいはハンドヘルド・コミュニケータ)といっ
た移動体通信(モービル・コンピューティング)が必要
とされる要求事項として、小型化,軽量化が挙げられ
る。しかし、液晶表示パネルのバックライトや描画制御
によって消費される電力が高いことや、二次電池の容量
が現状ではまだ不十分であることなどの点から、システ
ムのコンパクト化,軽量化が難しい状況にある。
A portable computer (including a pen computer) and a personal digital assistant (Personal Digita)
l Assistant or Personal Intelligent Communic
Requirements for mobile communication (mobile computing) such as ator or handheld communicator include miniaturization and weight reduction. However, it is difficult to make the system compact and lightweight because of the high power consumed by the backlight and drawing control of the liquid crystal display panel, and the fact that the capacity of the secondary battery is still insufficient at present. It is in.

【0004】さらに、地球環境問題の高まりとともに排
ガスや騒音を出さない電気自動車が関心を集めている。
しかし、現状の電池ではエネルギ密度,出力密度が低い
ことから走行距離が短い,加速性が悪い,車内のスペー
スが狭い,車体の安定性が悪いなどの問題点が生じてい
る。二次電池の中でも特に高エネルギ密度が実現できる
リチウム二次電池は、従来の鉛蓄電池あるいはニッケル
カドミニウム電池の代替電池として、最近盛んに研究開
発が進められている。
[0004] Further, with the increase of global environmental problems, electric vehicles that do not emit exhaust gas and noise have attracted attention.
However, current batteries have problems such as short running distance, poor acceleration, small space in the vehicle, and poor stability of the vehicle body due to low energy density and low output density. Among secondary batteries, lithium secondary batteries capable of realizing a particularly high energy density have been actively researched and developed recently as alternative batteries to conventional lead-acid batteries or nickel-cadmium batteries.

【0005】しかしながら、このようなリチウム二次電
池では、過充電,加熱,短絡などの安全性に関しては問
題が多い。リチウム二次電池は、可燃性の有機溶媒を主
とする非水電解液を用いているため、電池への釘さしや
圧壊といった内部短絡破壊時あるいは過充電時には、正
極活物質が発熱分解し非水電解液に着火すると発熱暴走
反応となり、電池が破裂発火に至る。
However, such a lithium secondary battery has many problems with respect to safety such as overcharging, heating, and short circuit. Lithium secondary batteries use a non-aqueous electrolyte mainly composed of flammable organic solvents, so the cathode active material decomposes exothermically during internal short-circuit breakdown such as nailing or crushing of the battery or during overcharge. When the non-aqueous electrolyte is ignited, an exothermic runaway reaction occurs, causing the battery to burst and ignite.

【0006】そのため、従来このような危険性を回避す
る方法として、さまざまな対策が提案されている。例え
ば、電解液に添加剤を含有させ電解液の安全性を改善す
る技術としては、自己消化性のあるリン酸エステル類を
含有させる技術(特開平4−184870号公報),電解液に
自己消化性のあるハロゲン原子置換リン酸エステル化合
物を含有させる技術(特開平8−88023号公報),難燃剤
または電解液硬化反応を起こす化学物質を含有したマイ
クロカプセルを含有させる技術(特開平6−283206号公
報)、あるいはラジカル捕捉剤を含有させる技術(特開
平10−154531)が開示されている。また、電解液そのも
のにおいて、フッ素置換化合物(特開平7−312227号公
報)や塩素置換化合物(特開平8−45544号公報)を用い
ることで、引火点を高くして安全性を確保する技術が提
案されている。
For this reason, various measures have conventionally been proposed as a method of avoiding such a risk. For example, as a technique for improving the safety of an electrolyte by adding an additive to the electrolyte, a technique for containing a self-digestible phosphate ester (Japanese Patent Laid-Open No. 4-184870), (Japanese Unexamined Patent Publication No. Hei 8-88023), a technique for containing microcapsules containing a flame retardant or a chemical substance that causes an electrolytic solution curing reaction (Japanese Unexamined Patent Publication No. Hei 6-283206) Japanese Patent Application Laid-Open No. 10-155453), or a technique of containing a radical scavenger (Japanese Patent Application Laid-Open No. H10-155451). In addition, a technique for increasing the flash point and securing safety by using a fluorine-substituted compound (Japanese Patent Laid-Open No. 7-312227) or a chlorine-substituted compound (Japanese Patent Laid-Open No. 8-45544) in the electrolytic solution itself has been developed. Proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
自己消化性のある物質や、引火点の高い物質を電解液に
含有させると、電解液のイオン伝導度が低下するため、
電池の高率放電特性や低温特性が低下してしまう。ま
た、難燃剤または電解液硬化反応を起こす化学物質を含
有したマイクロカプセルを含有させる技術を用いても、
内部短絡破壊時あるいは過充電時に電極より放出される
酸素により電解液の燃焼が加速され、破裂発火に至るた
め安全性の面で充分な特性とは言い難い。またラジカル
捕捉剤を含有させる技術を用いても、電池製造時に電池
内に取り込まれる酸素によりラジカル捕捉剤が消費され
るほか、ラジカル捕捉剤自身が電極と反応するため電池
特性が低下するといった問題点がある。
However, if the above-mentioned substance having self-extinguishing properties or a substance having a high flash point is contained in the electrolyte, the ionic conductivity of the electrolyte is reduced.
The high-rate discharge characteristics and low-temperature characteristics of the battery deteriorate. In addition, even if using technology to contain microcapsules containing flame retardants or chemicals that cause electrolyte curing reaction,
Oxygen released from the electrode at the time of internal short-circuit destruction or overcharge accelerates the combustion of the electrolytic solution, leading to rupture and ignition, which is not a sufficient characteristic in terms of safety. In addition, even when the technology for containing a radical scavenger is used, oxygen taken into the battery during battery production consumes the radical scavenger, and the radical scavenger itself reacts with the electrode, thereby deteriorating battery characteristics. There is.

【0008】本発明が解決しようとする課題は、電池特
性を低下させず、かつ、内部短絡破壊時や過充電時にお
いても破裂発火の起こらない、安全性に優れた二次電池
を提供することにある。
An object of the present invention is to provide a highly safe secondary battery which does not lower battery characteristics and does not cause bursting and ignition even when an internal short circuit is broken or overcharged. It is in.

【0009】[0009]

【課題を解決するための手段】本発明の電池は、内部短
絡破壊時や過充電時に発生する酸素を吸収し、発生した
ジュール熱にともない重合もしくは架橋反応が加速され
る酸素吸収剤を含有することを特徴とする。本発明者ら
は、電池内に温度が上昇した時に酸素を吸収しながら重
合反応あるいは架橋反応などの硬化反応を起こす酸素吸
収剤を含有させることによって、異常温度に上昇したと
きに、電極からの脱離酸素かつ電解液を固化させ電池の
内部抵抗を高めて、発火や破裂が起きるのを防止できる
ことを見いだした。
The battery of the present invention contains an oxygen absorbent that absorbs oxygen generated at the time of internal short circuit breakdown or overcharge and accelerates the polymerization or crosslinking reaction with the generated Joule heat. It is characterized by the following. The present inventors include an oxygen absorbent that causes a curing reaction such as a polymerization reaction or a cross-linking reaction while absorbing oxygen when the temperature rises in the battery. It has been found that the desorbed oxygen and the solidification of the electrolyte can increase the internal resistance of the battery, thereby preventing ignition and rupture.

【0010】本発明における酸素吸収剤としては酸素を
吸収し重合もしくは架橋を行う化合物であれば、特に限
定されることなく用いられ、例えば、ポリシロキサン類
(好ましくは重合度3から9),フェニレンオキシド類
等が用いられる。
The oxygen absorbent used in the present invention is not particularly limited as long as it is a compound which absorbs oxygen and polymerizes or crosslinks. Examples thereof include polysiloxanes (preferably having a degree of polymerization of 3 to 9) and phenylene. Oxides and the like are used.

【0011】その例を図1,図2に示す。図1におい
て、R1,R2は、水素もしくは炭素数1から50の有
機官能基を示す。
An example is shown in FIGS. In FIG. 1, R1 and R2 represent hydrogen or an organic functional group having 1 to 50 carbon atoms.

【0012】上記のポリシロキサン類の中でもR1およ
びR2が、電解液への溶解度の点から極性の高い官能基
が好ましく用いられる。また、正極あるいは負極に添加
する際には、電極作製時のバインダーや溶媒に合わせて
溶けやすくしたりあるいは分散しやすくなるように、R
1を選択することが好ましい。
Among the above polysiloxanes, R1 and R2 are preferably functional groups having high polarity in terms of solubility in an electrolytic solution. When added to the positive electrode or the negative electrode, R is added so as to be easily dissolved or dispersed in accordance with a binder or a solvent at the time of preparing the electrode.
It is preferable to select 1.

【0013】図2においてR1,R2は、水素もしくは
炭素数1から50の有機官能基を示す。
In FIG. 2, R1 and R2 represent hydrogen or an organic functional group having 1 to 50 carbon atoms.

【0014】上記のフェニレンオキシド類の中でもR1
およびR2が、電解液への溶解度の点から極性の高い官
能基が好ましく用いられる。また、正極あるいは負極に
添加する際には、電極作製時のバインダーや溶媒に合わ
せて溶けやすくしたりあるいは分散しやすくなるよう
に、R1を選択することが好ましい。
Among the above phenylene oxides, R1
And R2 is preferably a highly polar functional group from the viewpoint of solubility in an electrolytic solution. When added to the positive electrode or the negative electrode, it is preferable to select R1 so as to be easily dissolved or dispersed in accordance with a binder or a solvent at the time of manufacturing the electrode.

【0015】本発明の酸素吸収剤の添加量としては、添
加する電池内部の部位によっても異なるが、電極,電解
液、あるいはセパレータに対し重量比で0.1 から20
%が好適である。
The amount of the oxygen absorbent added according to the present invention varies depending on the site inside the battery to be added. However, the weight ratio of the oxygen absorber to the electrode, electrolyte or separator is from 0.1 to 20%.
% Is preferred.

【0016】本発明のリチウム二次電池に使用可能な正
極活物質は、コバルト酸リチウム(LiCoO2),ニ
ッケル酸リチウム(LiNiO2)などの層状化合物、
あるいは一種以上の遷移金属を置換したもの、あるいは
マンガン酸リチウム(Li1+xMn2-x4(ただしx=0
〜0.33),LiMnO3,LiMn23,LiMnO
2),銅−リチウム酸化物(Li2CuO2)、あるいは
LiV38,LiFe34,V25,Cu227 など
のバナジウム酸化物、あるいは化学式LiNi1-xx
2(ただし、M=Co,Mn,Al,Cu,Fe,M
g,B,Gaであり、x=0.01〜0.3)で表わされ
るNiサイト置換型ニッケル酸リチウム、あるいは化学
式LiMn2-xx2(ただし、M=Co,Ni,F
e,Cr,Zn,Taであり、x=0.01〜0.1)ま
たは化学式Li2Mn3MO8(ただし、M=Fe,Co,
Ni,Cu,Zn)で表わされるマンガン複合酸リチウ
ムまたは化学式Liの一部をアルカリ土類金属イオンで
置換したLiMn24,ジスルフィド化合物、あるいは
Fe2(MoO4)3などが挙げられる。
The positive electrode active material that can be used in the lithium secondary battery of the present invention is a layered compound such as lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ).
Alternatively, one obtained by substituting one or more transition metals or lithium manganate (Li 1 + x Mn 2-x O 4 (where x = 0)
0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO
2), copper - lithium oxide (Li 2 CuO 2), or LiV 3 O 8, LiFe 3 O 4, V 2 O 5, vanadium oxides such as Cu 2 V 2 O 7, or Formula LiNi 1-x M x O
2 (where M = Co, Mn, Al, Cu, Fe, M
g, B, Ga, where x = 0.01 to 0.3) Ni-substituted lithium nickelate or chemical formula LiMn 2-x M x O 2 (where M = Co, Ni, F
e, Cr, Zn, Ta, x = 0.01 to 0.1) or the chemical formula Li 2 Mn 3 MO 8 (where M = Fe, Co,
Examples thereof include lithium manganese complex oxide represented by Ni, Cu, Zn) or LiMn 2 O 4 in which a part of the chemical formula Li is substituted with an alkaline earth metal ion, a disulfide compound, or Fe 2 (MoO 4 ) 3 .

【0017】他方、負極活物質にはリチウムと合金化可
能な金属、例えばAl,Sn,Si,In,Ga,M
g、あるいはこれらの合金などがある。これらの金属ま
たは合金はリチウムと合金化した材料を利用することも
可能である。さらに、天然黒鉛,人造黒鉛,炭素繊維,
気相成長法炭素繊維,ピッチ系炭素質材料,ニードルコ
ークス,ポリアクリロニトリル系炭素繊維,カーボンブ
ラックなどの炭素質材料、あるいは5員環または6員環
の環式炭化水素または環式含酸素有機化合物を熱分解に
よって合成した非晶質炭素材料、あるいはポリアセン,
ポリパラフェニレン,ポリアニリン,ポリアセチレンか
らなる導電性高分子材料、あるいはSnO,GeO2,S
nSiO3,SnSi0.51.5,SnSi0.7Al0.10.3
0.23.5,SnSi0.5Al0.30.30.54.15など
を含む14族または15族元素の酸化物、あるいはイン
ジウム酸化物、あるいは亜鉛酸化物、あるいはLi3
eN2、あるいはFe2Si3,FeSi,FeSi2,M
2Siなどのケイ化物なども負極活物質に使用でき
る。また、本発明は上記の電池活物質以外にも適用可能
であり、負極にリチウム金属シ−トを用いてもよい。
On the other hand, a metal which can be alloyed with lithium, for example, Al, Sn, Si, In, Ga, M
g or an alloy thereof. As these metals or alloys, materials alloyed with lithium can be used. In addition, natural graphite, artificial graphite, carbon fiber,
Carbonaceous materials such as vapor grown carbon fiber, pitch-based carbonaceous material, needle coke, polyacrylonitrile-based carbon fiber, carbon black, or 5- or 6-membered cyclic hydrocarbon or cyclic oxygen-containing organic compound Amorphous carbon material synthesized by pyrolysis or polyacene,
Conductive polymer material composed of polyparaphenylene, polyaniline, polyacetylene, or SnO, GeO 2 , S
nSiO 3 , SnSi 0.5 O 1.5 , SnSi 0.7 Al 0.1 B 0.3
An oxide of a Group 14 element or a Group 15 element including P 0.2 O 3.5 , SnSi 0.5 Al 0.3 B 0.3 P 0.5 O 4.15 , or the like, indium oxide, zinc oxide, or Li 3 F
eN 2 , or Fe 2 Si 3 , FeSi, FeSi 2 , M
Silicides such as g 2 Si can also be used as the negative electrode active material. Further, the present invention is applicable to other than the above-mentioned battery active material, and a lithium metal sheet may be used for the negative electrode.

【0018】リチウム二次電池の使用可能な電解質は、
その化学式がLiPF6,LiBF4,LiClO4,L
iCF3SO3,LiCF3CO2,LiAsF6,LiS
bF6,低級脂肪族カルボン酸リチウムで表記される電
解質またはそれらの混合物を用いることができる。
The usable electrolyte of the lithium secondary battery is as follows:
Its chemical formula is LiPF 6 , LiBF 4 , LiClO 4 , L
iCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiS
An electrolyte represented by bF 6 , lithium lower aliphatic carboxylate, or a mixture thereof can be used.

【0019】リチウム二次電池の非水電解液は、上記の
リチウム塩を非水電解液用溶媒へ溶解させた溶液が使用
される。非水電解液用溶媒の例として、プロピレンカー
ボネート,エチレンカーボネート,ブチレンカーボネー
ト,ビニレンカーボネート,γ−ブチロラクトン,ジメ
チルカーボネート,ジエチルカーボネート,メチルエチ
ルカーボネート、1,2−ジメトキシエタン,2−メチ
ルテトラヒドロフラン,ジメチルスルフォキシド、1,
3−ジオキソラン,ホルムアミド,ジメチルホルムアミ
ド,プロピオン酸メチル,プロピオン酸エチル,リン酸
トリエステル,トリメトキシメタン,ジオキソラン,ジ
エチルエーテル,スルホラン,3−メチル−2−オキサ
ゾリジノン,テトラヒドロフラン、1,2−ジエトキシ
エタンのうち1種類以上の溶媒からなる有機溶媒、また
は有機溶媒分子内の水素の一部をハロゲンへ置換した誘
導体、または有機溶媒分子内の水素の一部をアルキル
基,アルケン基,アルキン基,芳香族基へ置換した誘導
体が挙げられる。また、これらの混合物も使用すること
ができる。
As the non-aqueous electrolyte for the lithium secondary battery, a solution in which the above-mentioned lithium salt is dissolved in a solvent for the non-aqueous electrolyte is used. Examples of the solvent for the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran and dimethyl sulfonate. Foxide, 1,
3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane Or a derivative obtained by substituting a part of hydrogen in an organic solvent molecule with a halogen, or an alkyl group, an alkene group, an alkyne group or an aromatic compound And derivatives substituted with a group. Also, mixtures thereof can be used.

【0020】固体電解質を用いる場合は、上で述べたリ
チウム塩をエチレンオキシド,アクリロニトリル,フッ
化ビニリデン,メタクリル酸メチル,ヘキサフルオロプ
ロピレンの高分子に保持させて使用する。
When a solid electrolyte is used, the above-mentioned lithium salt is used by being held in a polymer of ethylene oxide, acrylonitrile, vinylidene fluoride, methyl methacrylate, and hexafluoropropylene.

【0021】ゲル状電解液を用いる場合は、エチレンオ
キシド,アクリロニトリル,フッ化ビニリデン,メタク
リル酸メチル,ヘキサフルオロプロピレンの高分子内
に、上で列記した非水電解液を保持させて使用する。
When a gel electrolyte is used, the non-aqueous electrolyte listed above is held in a polymer of ethylene oxide, acrylonitrile, vinylidene fluoride, methyl methacrylate, and hexafluoropropylene.

【0022】本発明の安全性の高い二次電池の用途は、
特に限定されないが、例えばパーソナルコンピュータ,
大型電子計算機,ノート型パソコン,ペン入力パソコ
ン,ノート型ワープロ,携帯電話,携帯カード,腕時
計,カメラ,電気シェーバ,コードレス電話,ファック
ス,ビデオ,ビデオカメラ,電子手帳,電卓,通信機能
付き電子手帳,携帯コピー機,液晶テレビ,電動工具,
掃除機,バーチャルリアリティ等の機能を有するゲーム
機器,玩具,電動式自転車,医療介護用歩行補助機,医
療介護用車椅子,医療介護用移動式ベッド,エスカレー
タ,エレベータ,フォークリフト,ゴルフカート,非常
用電源,ロードコンディショナ,電力貯蔵システムなど
の電源として使用することが出来る。また、民生用のほ
か、軍需用,宇宙用としても用いることが出来る。
The use of the highly safe secondary battery of the present invention is as follows.
Although not particularly limited, for example, a personal computer,
Large electronic computer, notebook computer, pen input personal computer, notebook word processor, mobile phone, mobile card, wristwatch, camera, electric shaver, cordless phone, fax, video, video camera, electronic notebook, calculator, electronic notebook with communication function, Portable copiers, LCD TVs, power tools,
Vacuum cleaners, game machines with virtual reality functions, toys, electric bicycles, walking aids for medical care, wheelchairs for medical care, mobile beds for medical care, escalators, elevators, forklifts, golf carts, emergency power supplies , Load conditioners, power storage systems, etc. In addition to civilian use, it can also be used for military use and space use.

【0023】本発明の非水電解液を用いることにより、
電池の内部短絡および過充電に対して安全性の向上した
リチウム二次電池が得られる。
By using the non-aqueous electrolyte of the present invention,
A lithium secondary battery with improved safety against internal short circuit and overcharge of the battery can be obtained.

【0024】[0024]

【発明の実施の形態】以下では、本発明の内容を実施例
に基づいて詳細に説明する。ただし、本発明は下記の実
施例によって何ら限定されることはなく、本発明の主旨
を変更しない範囲で適宜変更可能であることを付記す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the contents of the present invention will be described in detail based on embodiments. However, it should be noted that the present invention is not limited at all by the following examples, and can be appropriately changed without changing the gist of the present invention.

【0025】実施例1 正極活物質としてLiCoO2 ,導電助剤として黒鉛粉
末,結着剤としてポリフッ化ビニリデン(PVDF)を
用い、それぞれ重量比88%,7%,5%の割合で配合
して、溶剤としてN−メチル−2−ピロリドン(NM
P)を加え、十分に混合して正極合剤を調製した。この
正極合剤を厚みが20μmのAl箔の片面に塗布して、
NMPを乾燥後、ロールプレスで成形して正極シートを
作製した。正極作製と同様に、負極活物質として、導電
助剤として黒鉛粉末、結着剤としてポリフッ化ビニリデ
ン(PVDF)を用い、それぞれ重量比80%,15
%,5%の割合で配合して、溶剤としてN−メチル−2
−ピロリドン(NMP)を加え、十分に混合して負極合
剤を調製した。この負極合剤を厚みが20μmのCu箔
の片面に塗布して、NMPを乾燥後、ロールプレスで成
形して負極シートを作製した。
Example 1 LiCoO 2 was used as a positive electrode active material, graphite powder was used as a conductive additive, and polyvinylidene fluoride (PVDF) was used as a binder. The weight ratio was 88%, 7%, and 5%, respectively. , N-methyl-2-pyrrolidone (NM
P) was added and mixed well to prepare a positive electrode mixture. This positive electrode mixture is applied to one side of a 20 μm thick Al foil,
After drying the NMP, it was molded by a roll press to produce a positive electrode sheet. As in the preparation of the positive electrode, graphite powder was used as the negative electrode active material, and polyvinylidene fluoride (PVDF) was used as the binder.
%, 5%, and N-methyl-2 as a solvent.
-Pyrrolidone (NMP) was added and mixed well to prepare a negative electrode mixture. This negative electrode mixture was applied to one surface of a Cu foil having a thickness of 20 μm, NMP was dried, and then formed by a roll press to prepare a negative electrode sheet.

【0026】セパレータは厚みが25μm,直径が18
mmのポリエチレン製の微孔膜を用いた。
The separator has a thickness of 25 μm and a diameter of 18
A microporous membrane made of mm mm polyethylene was used.

【0027】電解液は、体積比が1:1のエチレンカー
ボネートとジエチルカーボネートの混合溶媒に、1mol
/lLiPF6の電解質を溶解して調整し、これに酸素
吸収剤として重合度3のポリジメチルシロキサンを重量
比5%の割合で配合することで調製した。
The electrolyte was mixed with 1 mol of a 1: 1 mixture of ethylene carbonate and diethyl carbonate by volume.
/ LLiPF 6 was dissolved and adjusted, and polydimethylsiloxane having a degree of polymerization of 3 was added as an oxygen absorbent at a ratio of 5% by weight.

【0028】正極,セパレータ,負極の順で積層して円
筒状に巻き込み、端子を取り付けた。電池缶に収納後、
電解液を含浸させて電池蓋をかしめ合わせて直径18m
m,高さ65mmの18650円筒型電池を作製した。
A positive electrode, a separator, and a negative electrode were stacked in this order, wound in a cylindrical shape, and a terminal was attached. After storing in a battery can,
Impregnated with electrolyte and caulked the battery lid to a diameter of 18m
An 18650 cylindrical battery with a height of 65 mm and a height of 65 mm was produced.

【0029】このリチウム二次電池を用いて、充放電電
流3mA、充電終止電圧を4.2V、放電終止電圧を1.
5V に設定して充放電を5回行った。電池は1400
mAで4.2Vまで定電流で充電後、4.2Vで3時間定
電圧充電し、1400mAhで2.7Vまで放電する充
放電を5回繰り返した。
Using this lithium secondary battery, the charge / discharge current was 3 mA, the charge end voltage was 4.2 V, and the discharge end voltage was 1.
The charge and discharge were performed 5 times at 5 V. Battery is 1400
The battery was charged at a constant current of 4.2 V at mA and then charged at 4.2 V at a constant voltage for 3 hours, and then discharged and discharged to 2.7 V at 1400 mAh five times.

【0030】釘刺し試験では1400mAで4.2Vま
で定電流で充電後、4.2Vで3時間定電圧充電した充
電容量1400mAhの電池を速さ5mm/sec で釘を電
池に貫通させた。また、過充電試験では、2800mA
の定電流で充電しつづけた。両者とも破裂発火は確認で
きなかった。
In the nail penetration test, the battery was charged at a constant current of 4.2 V at 1400 mA and then charged at a constant voltage of 4.2 V for 3 hours. The battery with a charge capacity of 1400 mAh was passed through the battery at a speed of 5 mm / sec. In the overcharge test, 2800 mA
The battery was charged at a constant current of. No rupture or ignition could be confirmed in either case.

【0031】比較例1 非水電解液中に酸素吸収剤を添加しないこと以外は、実
施例1と同様にして二次電池を作成し、評価した。釘刺
し試験および過充電試験では、破裂発火した。 実施例2 重合度3のポリジメチルシロキサンを電解液に添加せ
ず、正極に重量比5%の割合で添加した以外は実施例1
と同様に電池を作製して、釘刺し試験および過充電試験
を行った。
Comparative Example 1 A secondary battery was prepared and evaluated in the same manner as in Example 1 except that no oxygen absorbent was added to the non-aqueous electrolyte. In the nail penetration test and the overcharge test, a burst explosion occurred. Example 2 Example 1 was repeated except that polydimethylsiloxane having a degree of polymerization of 3 was not added to the electrolytic solution but was added to the positive electrode at a weight ratio of 5%.
A battery was prepared in the same manner as described above, and a nail penetration test and an overcharge test were performed.

【0032】釘刺し試験では1400mAで4.2Vま
で定電流で充電後、4.2Vで3時間定電圧充電した充
電容量1400mAhの電池を速さ5mm/sec で釘を電
池に貫通させた。また、過充電試験では、2800mA
の定電流で充電しつづけた。両者とも破裂発火は確認で
きなかった。
In the nail penetration test, the battery was charged at a constant current up to 4.2 V at 1400 mA and then charged at a constant voltage of 4.2 V for 3 hours. A battery having a charge capacity of 1400 mAh was passed through the battery at a speed of 5 mm / sec. In the overcharge test, 2800 mA
The battery was charged at a constant current of. No rupture or ignition could be confirmed in either case.

【0033】実施例3 重合度3のポリジメチルシロキサンを電解液に添加せ
ず、負極に重量比5%の割合で添加した以外は実施例1
と同様に電池を作製して、釘刺し試験および過充電試験
を行った。
Example 3 Example 1 was repeated except that polydimethylsiloxane having a degree of polymerization of 3 was not added to the electrolyte but was added to the negative electrode at a weight ratio of 5%.
A battery was prepared in the same manner as described above, and a nail penetration test and an overcharge test were performed.

【0034】釘刺し試験では1400mAで4.2Vま
で定電流で充電後、4.2Vで3時間定電圧充電した充
電容量1400mAhの電池を速さ5mm/sec で釘を電
池に貫通させた。また、過充電試験では、2800mA
の定電流で充電しつづけた。両者とも破裂発火は確認で
きなかった。
In the nail penetration test, the battery was charged at a constant current of 4.2 V at 1400 mA and then charged at a constant voltage of 4.2 V for 3 hours. The battery with a charge capacity of 1400 mAh was passed through the battery at a speed of 5 mm / sec. In the overcharge test, 2800 mA
The battery was charged at a constant current of. No rupture or ignition could be confirmed in either case.

【0035】実施例4 ポリジメチルシロキサンの替わりにポリフェニレンオキ
シドを、正極に重量比5%の割合で添加した以外は実施
例1と同様に電池を作製して、釘刺し試験および過充電
試験を行った。
Example 4 A battery was prepared in the same manner as in Example 1 except that polyphenylene oxide was added to the positive electrode at a weight ratio of 5% instead of polydimethylsiloxane, and a nail penetration test and an overcharge test were performed. Was.

【0036】釘刺し試験では1400mAで4.2Vま
で定電流で充電後、4.2Vで3時間定電圧充電した充
電容量1400mAhの電池を速さ5mm/sec で釘を電
池に貫通させた。また、過充電試験では、2800mA
の定電流で充電しつづけた。両者とも破裂発火は確認で
きなかった。
In the nail penetration test, the battery was charged at a constant current of 4.2 V at 1400 mA and then charged at a constant voltage of 4.2 V for 3 hours. The battery with a charge capacity of 1400 mAh was passed through the battery at a speed of 5 mm / sec. In the overcharge test, 2800 mA
The battery was charged at a constant current of. No rupture or ignition could be confirmed in either case.

【0037】実施例5 ポリジメチルシロキサンの替わりにポリフェニレンオキ
シドを、電解液に重量比5%の割合で添加した以外は実
施例1と同様に電池を作製して、釘刺し試験および過充
電試験を行った。
Example 5 A battery was prepared in the same manner as in Example 1 except that polyphenylene oxide was added to the electrolyte at a weight ratio of 5% instead of polydimethylsiloxane, and a nail penetration test and an overcharge test were performed. went.

【0038】釘刺し試験では1400mAで4.2Vま
で定電流で充電後、4.2Vで3時間定電圧充電した充
電容量1400mAhの電池を速さ5mm/sec で釘を電
池に貫通させた。また、過充電試験では、2800mA
の定電流で充電しつづけた。両者とも破裂発火は確認で
きなかった。
In the nail penetration test, the battery was charged at a constant current of 4.2 V at 1400 mA and then charged at a constant voltage of 4.2 V for 3 hours. The battery with a charge capacity of 1400 mAh was passed through the battery at a speed of 5 mm / sec. In the overcharge test, 2800 mA
The battery was charged at a constant current of. No rupture or ignition could be confirmed in either case.

【0039】実施例6 ポリジメチルシロキサンの替わりにポリフェニレンオキ
シドを、負極に重量比5%の割合で添加した以外は実施
例1と同様に電池を作製して、釘刺し試験および過充電
試験を行った。
Example 6 A battery was prepared in the same manner as in Example 1 except that polyphenylene oxide was added to the negative electrode at a weight ratio of 5% instead of polydimethylsiloxane, and a nail penetration test and an overcharge test were performed. Was.

【0040】釘刺し試験では1400mAで4.2Vま
で定電流で充電後、4.2Vで3時間定電圧充電した充
電容量1400mAhの電池を速さ5mm/sec で釘を電
池に貫通させた。また、過充電試験では、2800mA
の定電流で充電しつづけた。両者とも破裂発火は確認で
きなかった。
In the nail penetration test, the battery was charged at a constant current of 4.2 V at 1400 mA and then charged at a constant voltage of 4.2 V for 3 hours. The battery with a charge capacity of 1400 mAh was passed through the battery at a speed of 5 mm / sec. In the overcharge test, 2800 mA
The battery was charged at a constant current of. No rupture or ignition could be confirmed in either case.

【0041】[0041]

【発明の効果】本発明により、電池の破壊試験に対して
の安全性の向上したリチウムイオン二次電池が得られ
る。
According to the present invention, it is possible to obtain a lithium ion secondary battery having improved safety against a battery destruction test.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池に含まれる酸素吸収剤の一例である
ポリシロキサンの構造式を示す図である。
FIG. 1 is a view showing a structural formula of polysiloxane which is an example of an oxygen absorbent contained in a battery of the present invention.

【図2】本発明電池に含まれる酸素吸収剤の他の一例で
あるフェニレンオキシドの構造式を示す図である。
FIG. 2 is a view showing a structural formula of phenylene oxide which is another example of the oxygen absorbent contained in the battery of the present invention.

【符号の説明】[Explanation of symbols]

R1,R2…水素もしくは炭素数1から50の有機官能
基。
R1, R2: hydrogen or an organic functional group having 1 to 50 carbon atoms.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA10 BB02 BB04 BB05 BB12 BB13 BB32 BB33 BB35 5H014 AA06 EE01 EE02 EE03 EE05 EE08 EE10 5H029 AJ12 AK03 AL07 AL08 AL11 AM03 AM04 AM05 AM07 AM16 BJ02 BJ14 EJ11 EJ12  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】リチウムを可逆的に吸蔵放出する正極と負
極及びリチウムイオンを含む電解液を具備するリチウム
二次電池において、酸素吸収剤を含有する事を特徴とす
る二次電池。
1. A lithium secondary battery comprising a positive electrode which reversibly stores and releases lithium, a negative electrode, and an electrolyte containing lithium ions, wherein the secondary battery comprises an oxygen absorbent.
【請求項2】前記酸素吸収剤が熱重合する請求項1記載
のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein said oxygen absorbent is thermally polymerized.
【請求項3】前記酸素吸収剤が電極より脱離した酸素を
重合開始剤とする請求項1記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein said oxygen absorbing agent uses oxygen released from said electrode as a polymerization initiator.
【請求項4】前記酸素吸収剤が酸素を吸収し高分子化す
ることを特徴とする請求項1記載のリチウム二次電池。
4. The lithium secondary battery according to claim 1, wherein said oxygen absorbent absorbs oxygen and polymerizes it.
【請求項5】前記酸素吸収剤が図1に示す構造式を有す
るポリシロキサン系化合物であり、好ましくは重合度3
から9であることを特徴とする請求項1記載のリチウム
二次電池。ただし図1においてR1,R2は、水素もし
くは炭素数1から50の有機官能基を示す。
5. The method according to claim 1, wherein the oxygen absorbent is a polysiloxane compound having the structural formula shown in FIG.
The lithium secondary battery according to claim 1, wherein However, in FIG. 1, R1 and R2 represent hydrogen or an organic functional group having 1 to 50 carbon atoms.
【請求項6】前記酸素吸収剤が図2に示す構造式を有す
るフェニレンオキシド系化合物であることを特徴とする
請求項1記載のリチウム二次電池。ただし図2において
R1,R2は、水素もしくは炭素数1から50の有機官
能基を示す。
6. The lithium secondary battery according to claim 1, wherein said oxygen absorbent is a phenylene oxide compound having a structural formula shown in FIG. However, in FIG. 2, R1 and R2 represent hydrogen or an organic functional group having 1 to 50 carbon atoms.
JP11079162A 1999-03-24 1999-03-24 Lithium secondary battery Pending JP2000277152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11079162A JP2000277152A (en) 1999-03-24 1999-03-24 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11079162A JP2000277152A (en) 1999-03-24 1999-03-24 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000277152A true JP2000277152A (en) 2000-10-06

Family

ID=13682271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11079162A Pending JP2000277152A (en) 1999-03-24 1999-03-24 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000277152A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547839B2 (en) * 2001-01-23 2003-04-15 Skc Co., Ltd. Method of making an electrochemical cell by the application of polysiloxane onto at least one of the cell components
WO2004066420A1 (en) * 2003-01-23 2004-08-05 Sony Corporation Electrode and battery
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
JP2010277790A (en) * 2009-05-27 2010-12-09 Toyota Motor Corp Lithium ion secondary battery
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
CN114464908A (en) * 2022-04-13 2022-05-10 四川新能源汽车创新中心有限公司 Three-dimensional porous coating for lithium ion battery and preparation and application thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547839B2 (en) * 2001-01-23 2003-04-15 Skc Co., Ltd. Method of making an electrochemical cell by the application of polysiloxane onto at least one of the cell components
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
JP4501344B2 (en) * 2003-01-23 2010-07-14 ソニー株式会社 Secondary battery
WO2004066420A1 (en) * 2003-01-23 2004-08-05 Sony Corporation Electrode and battery
JP2004265609A (en) * 2003-01-23 2004-09-24 Sony Corp Electrode and battery
CN100367544C (en) * 2003-01-23 2008-02-06 索尼株式会社 Electrode and battery
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
JP2010277790A (en) * 2009-05-27 2010-12-09 Toyota Motor Corp Lithium ion secondary battery
CN114464908A (en) * 2022-04-13 2022-05-10 四川新能源汽车创新中心有限公司 Three-dimensional porous coating for lithium ion battery and preparation and application thereof
CN114464908B (en) * 2022-04-13 2022-08-12 四川新能源汽车创新中心有限公司 Three-dimensional porous coating for lithium ion battery and preparation and application thereof

Similar Documents

Publication Publication Date Title
JP4695748B2 (en) Nonaqueous battery electrolyte and nonaqueous secondary battery
JP4352622B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4543085B2 (en) Additive for lithium secondary battery
JP5203990B2 (en) Lithium secondary battery
CN105720302B (en) Nonaqueous electrolyte battery
US20080286648A1 (en) Electrolytic solution and battery
JPWO2002054524A1 (en) Non-aqueous electrolyte secondary battery
JP4016453B2 (en) Electrode and battery using the same
JP2000277152A (en) Lithium secondary battery
JPWO2006088002A1 (en) Electrolyte and battery
JPH11195429A (en) Nonaqueous electrolytic solution secondary battery
JP7062171B2 (en) Electrolyte and lithium secondary battery containing it
US9509015B2 (en) Battery
JPH10208744A (en) Battery
JPH11102730A (en) Lithium secondary battery
JP2009070605A (en) Lithium polymer battery
JP2009026542A (en) Lithium secondary battery
CN110931861A (en) Nonaqueous electrolyte for lithium ion secondary battery
JP4739780B2 (en) Non-aqueous electrolyte battery
CN115917827A (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
JP5401349B2 (en) Lithium secondary battery
JP4476530B2 (en) Electrolyte, lithium secondary battery, and method for manufacturing lithium secondary battery
JP2001307774A (en) Nonaqueous electrolyte secondary battery
JPH1140200A (en) Lithium secondary battery
JPH1116571A (en) Battery, and electric apparatus using it