JP2000277096A - Paste type hydrogen storage alloy electrode for alkaline storage battery - Google Patents
Paste type hydrogen storage alloy electrode for alkaline storage batteryInfo
- Publication number
- JP2000277096A JP2000277096A JP11080907A JP8090799A JP2000277096A JP 2000277096 A JP2000277096 A JP 2000277096A JP 11080907 A JP11080907 A JP 11080907A JP 8090799 A JP8090799 A JP 8090799A JP 2000277096 A JP2000277096 A JP 2000277096A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- powder
- storage alloy
- battery
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、アルカリ蓄電池用
のペースト式水素吸蔵合金電極に関する。The present invention relates to a paste-type hydrogen storage alloy electrode for an alkaline storage battery.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
正極に水酸化ニッケルを使用し、負極に新素材の水素吸
蔵合金を使用したニッケル−金属水素化物アルカリ蓄電
池が、エネルギー密度が高く、高容量であることから、
ニッケル・カドミウム蓄電池に代わる次世代のアルカリ
蓄電池として注目されている。2. Description of the Related Art In recent years,
The nickel-metal hydride alkaline storage battery using nickel hydroxide for the positive electrode and the new material hydrogen storage alloy for the negative electrode has a high energy density and high capacity,
It is attracting attention as a next-generation alkaline storage battery that replaces nickel-cadmium storage batteries.
【0003】しかし、ニッケル−金属水素化物アルカリ
蓄電池は、水素吸蔵合金が腐食(酸化劣化)し易いこと
に起因して、総じて充放電サイクル寿命が短い。[0003] However, nickel-metal hydride alkaline storage batteries generally have a short charge-discharge cycle life due to corrosion (oxidative deterioration) of the hydrogen storage alloy.
【0004】そこで、その長寿命化を図るために、水素
吸蔵合金粉末に平均粒径1〜15μm程度のコバルト粉
末、ニッケル粉末等の金属粉末を添加することが提案さ
れている(特開平4−167360号公報参照)。長寿
命化がもたらされるのは、金属粉末の添加により導電性
が向上して合金の利用率が向上するからであり、特にコ
バルト粉末を添加した場合は、合金の利用率の向上に加
えて、放電時の水素のイオン化反応がコバルト特有の触
媒作用により促進されるからである。In order to prolong the service life, it has been proposed to add a metal powder such as a cobalt powder or a nickel powder having an average particle size of about 1 to 15 μm to the hydrogen storage alloy powder (Japanese Patent Laid-Open No. 4-54). 167360). The reason for the longer life is that the addition of the metal powder improves the conductivity and improves the utilization of the alloy.In particular, when the cobalt powder is added, in addition to the improvement of the utilization of the alloy, This is because the hydrogen ionization reaction at the time of discharge is promoted by a catalytic action unique to cobalt.
【0005】ところで、負極での水素の吸蔵放出反応
は、合金粒子の表面のみならず、添加せる金属粒子の表
面でも起こる。すなわち、金属粉末を添加することによ
り、反応面積が増大する。したがって、金属粉末を添加
することにより、高率放電時の過電圧が小さくなって作
動電圧が高くなり、高出力化ももたらされる。[0005] Incidentally, the hydrogen storage / release reaction at the negative electrode occurs not only on the surface of the alloy particles but also on the surface of the metal particles to be added. That is, the addition of the metal powder increases the reaction area. Therefore, by adding the metal powder, the overvoltage at the time of high-rate discharge is reduced, the operating voltage is increased, and the output is increased.
【0006】しかしながら、本発明者らが鋭意研究した
結果、上記の公報開示の金属粉末では、高出力化を充分
に達成することはできないことが分かった。However, as a result of earnest studies by the present inventors, it has been found that the metal powder disclosed in the above publication cannot sufficiently achieve high output.
【0007】したがって、本発明は、高率放電時の作動
電圧が高い、すなわち高出力のアルカリ蓄電池を与える
ペースト式水素吸蔵合金電極を提供することを目的とす
る。Accordingly, an object of the present invention is to provide a paste-type hydrogen storage alloy electrode which has a high operating voltage during high-rate discharge, that is, provides a high-output alkaline storage battery.
【0008】[0008]
【課題を解決するための手段】本発明に係るアルカリ蓄
電池用のペースト式水素吸蔵合金電極(以下、「本発明
電極」と称する。)は、水素吸蔵合金粉末に、Co、N
i、Ru、Sn、Re、Ge、Rh、Ir、Os、A
g、Pd、Pt及びAuよりなる群から選ばれた少なく
とも一種の金属の粒子からなる平均粒径1〜100nm
の金属粉末が、添加混合されている。The paste-type hydrogen storage alloy electrode for an alkaline storage battery according to the present invention (hereinafter referred to as the "electrode of the present invention") is obtained by adding Co and N to a hydrogen storage alloy powder.
i, Ru, Sn, Re, Ge, Rh, Ir, Os, A
g, average particle diameter of 1 to 100 nm composed of particles of at least one metal selected from the group consisting of Pd, Pt and Au
Are added and mixed.
【0009】本発明電極は、水素吸蔵合金粉末に、平均
粒径が従来の金属粉末に比べて極めて小さい金属粉末
(超微粒子粉末)が添加混合されているので、従来電極
に比べて、反応面積が大きく、高率放電時の過電圧が小
さい。In the electrode of the present invention, a metal powder (ultra-fine particle powder) having an average particle size extremely smaller than that of the conventional metal powder is added to the hydrogen storage alloy powder and mixed. And the overvoltage during high rate discharge is small.
【0010】水素吸蔵合金としては、アルカリ蓄電池用
として従来公知のものを使用することができる。代表的
な具体例としては、組成式:MmNia Cob Alc M
nd(式中、Mmは希土類元素の混合物たるミッシュメ
タル;a>0、b>0、c>0、d≧0、4.4≦a+
b+c+d≦5.4)で表される希土類−ニッケル系水
素吸蔵合金が挙げられる。容量の点で、2.8≦a≦
5.2、0<b≦1.4、0<c≦1.2、且つ0≦d
≦1.2の合金が好ましく、2.8≦a≦5.2、0<
b≦1.4、0<c≦1.0、且つ0≦d≦1.0の合
金がより好ましい。Mmとしては、La、Ce、Pr、
Nd及びSmを主成分とする混合物が好ましい。この
外、ZrNi等のZr−Ni系合金、TiFe等のTi
−Fe系合金、ZrMn2 等のZr−Mn系合金、Ti
2 Mn3 等のTi−Mn系合金、Mg 2 Ni等のMg−
Ni系合金などを使用してもよい。[0010] As the hydrogen storage alloy, for hydrogen storage batteries
Can be used. Typical
A specific example is a composition formula: MmNiaCobAlcM
nd(In the formula, Mm is a mixture of rare earth elements,
Tal; a> 0, b> 0, c> 0, d ≧ 0, 4.4 ≦ a +
b + c + d ≦ 5.4) Rare earth-nickel water
Element storage alloys. In terms of capacity, 2.8 ≦ a ≦
5.2, 0 <b ≦ 1.4, 0 <c ≦ 1.2, and 0 ≦ d
≤1.2 is preferred, and 2.8≤a≤5.2, 0 <
b ≦ 1.4, 0 <c ≦ 1.0 and 0 ≦ d ≦ 1.0
Gold is more preferred. As Mm, La, Ce, Pr,
A mixture containing Nd and Sm as main components is preferable. this
Zr-Ni alloys such as ZrNi, Ti such as TiFe
-Fe-based alloy, ZrMnTwoSuch as Zr-Mn alloys, Ti
TwoMnThreeSuch as Ti-Mn alloy, Mg TwoMg- such as Ni
A Ni-based alloy or the like may be used.
【0011】水素吸蔵合金粉末としては、平均粒径が1
0〜70μmのものが好ましい。平均粒径が10μm未
満の場合は、合金の比表面積が過大なために酸化され易
くなって、合金粒子間の電気的接触が悪くなり、その結
果、導電性が低下し、高率放電時の過電圧が大きくなっ
て、作動電圧が低下する。一方、平均粒径が70μmを
越える場合は、合金粉末の比表面積が過小なために電極
の反応面積が小さくなり、その結果、高率放電時の過電
圧が大きくなって、作動電圧が低下する。The hydrogen storage alloy powder has an average particle size of 1
It is preferably from 0 to 70 μm. When the average particle size is less than 10 μm, the alloy is apt to be oxidized due to an excessively large specific surface area, and the electrical contact between the alloy particles is deteriorated. The overvoltage increases and the operating voltage decreases. On the other hand, when the average particle size exceeds 70 μm, the specific surface area of the alloy powder is too small, so that the reaction area of the electrode becomes small. As a result, the overvoltage at the time of high-rate discharge becomes large, and the operating voltage decreases.
【0012】水素吸蔵合金粉末に添加混合する金属粉末
の平均粒径が1〜100nmに限定されるのは、平均粒
径が100nmを越える場合は、反応面積を充分に増大
させることができず、過電圧を充分に減少させることが
できなくなるからであり、一方、平均粒径が1nm未満
の場合は、ペースト調製時に凝集が起こって粒径(二次
粒子径)が大きくなり、反応面積を充分に増大させるこ
とができなくなるからである。The average particle size of the metal powder to be added to and mixed with the hydrogen storage alloy powder is limited to 1 to 100 nm. When the average particle size exceeds 100 nm, the reaction area cannot be sufficiently increased, On the other hand, if the average particle size is less than 1 nm, agglomeration occurs during the preparation of the paste, the particle size (secondary particle size) increases, and the reaction area can be sufficiently increased. This is because it cannot be increased.
【0013】上記の金属粉末は、金属の化合物(塩化物
など)を水又はメタノール等の有機溶媒に添加した液
に、還元剤及び要すれば凝集防止剤を添加し、油浴にて
加熱還流することにより、作製することができる。金属
の化合物の添加量及び凝集防止剤を使用する場合はその
添加量を調整することにより、種々の平均粒径の金属粉
末を得ることができる。凝集防止剤としては、ポリビニ
ルピロリドン、ポリアクリロニトリル、ポリアクリロア
ミンハイドライド、これらの共重合体、及び、シアノ
基、チオール基又はカルボキシル基を有する高分子が例
示される。The above-mentioned metal powder is prepared by adding a reducing agent and, if necessary, an anti-agglomeration agent to a solution obtained by adding a metal compound (such as chloride) to water or an organic solvent such as methanol, and heating and refluxing the mixture in an oil bath. By doing so, it can be manufactured. By adjusting the addition amount of the metal compound and the addition amount of the anti-agglomeration agent, metal powders having various average particle diameters can be obtained. Examples of the aggregation preventing agent include polyvinylpyrrolidone, polyacrylonitrile, polyacrylamine hydride, a copolymer thereof, and a polymer having a cyano group, a thiol group, or a carboxyl group.
【0014】本発明電極は、水素吸蔵合金粉末と金属粉
末との混合粉末を、結着剤溶液と混合してペーストと
し、このペーストを導電性の芯体に塗布又は充填し、乾
燥することにより作製される。The electrode of the present invention is obtained by mixing a mixed powder of a hydrogen storage alloy powder and a metal powder with a binder solution to form a paste, applying or filling the paste on a conductive core, and drying the paste. It is made.
【0015】[0015]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.
【0016】(実験1)本発明電極及び比較電極を作製
し、それぞれを使用してアルカリ蓄電池を作製し、各電
池の高率放電時の電圧を調べた。(Experiment 1) An electrode of the present invention and a comparative electrode were produced, an alkaline storage battery was produced using each of them, and the voltage of each battery during high-rate discharge was examined.
【0017】〔水素吸蔵合金粉末の作製〕合金成分金属
(いずれも純度99.9%以上)を秤取して混合し、真
空下で高周波溶解炉にて溶解して合金溶湯とした後、こ
の合金溶湯を自然冷却して合金塊を得、粉砕し、篩にか
けて、最大粒径が100メッシュ以下で、平均粒径が約
60μmの組成式:MmNi3.4 Co0.8 Al0.3 Mn
0.5 で表される水素吸蔵合金粉末を作製した。[Preparation of hydrogen storage alloy powder] Alloy component metals (all having a purity of 99.9% or more) are weighed and mixed, and melted in a high-frequency melting furnace under vacuum to obtain a molten alloy. obtain an alloy ingot of the molten alloy was spontaneously cooled, ground and sieved, with a maximum particle size of 100 mesh or less, the average particle size is about 60μm formula: MmNi 3.4 Co 0.8 Al 0.3 Mn
A hydrogen storage alloy powder represented by 0.5 was produced.
【0018】〔水素吸蔵合金粉末の作製〕上記の水素吸
蔵合金粉末に、平均粒径0.5nm、1nm、10n
m、50nm、100nm又は200nmのコバルト粉
末を1重量%添加混合して混合粉末とし、この混合粉末
を、PEO(ポリエチレンオキシド)の5重量%水溶液
と混合してペーストを調製した。各コバルト粉末は、メ
タノール1000mlに塩化コバルト(CoCl2 )を
所定量添加した液に、凝集防止剤としてポリビニルピロ
リドンを、塩化コバルトとビニルピロリドンモノマー
(VPモノマー)との換算モル比1:5で添加し、さら
に還元剤として水素化ホウ素カリウム(KBH4)を1
モル/リットル添加した後、100°Cの油浴にて3時
間加熱還流して、作製した。各コバルト粉末作製時の塩
化コバルトの添加量(μmol)及びVPモノマーの添
加量(μmol)並びに各コバルト粉末の平均粒径を表
1に示す。各コバルト粉末の平均粒径は、試料台にコバ
ルト粉末のメタノール分散液を数滴滴下し、メタノール
を自然乾燥により蒸散させた後、TEM(透過型電子顕
微鏡;倍率5万倍)により、任意に選んだ200個のコ
バルト粒子の最短直径を測定し、その平均値として求め
た。PEO水溶液は、混合粉末中の水素吸蔵合金粉末1
0重量部に対して1重量部使用した。[Preparation of hydrogen-absorbing alloy powder] The hydrogen-absorbing alloy powder was prepared by adding an average particle size of 0.5 nm, 1 nm, 10 n
1 wt% of cobalt powder of m, 50 nm, 100 nm or 200 nm was added and mixed to form a mixed powder, and this mixed powder was mixed with a 5 wt% aqueous solution of PEO (polyethylene oxide) to prepare a paste. Each cobalt powder was prepared by adding a predetermined amount of cobalt chloride (CoCl 2 ) to 1000 ml of methanol, and adding polyvinylpyrrolidone as an agglomeration inhibitor in a molar ratio of 1: 5 between cobalt chloride and vinylpyrrolidone monomer (VP monomer). And potassium borohydride (KBH 4 ) as a reducing agent.
After adding mol / liter, the mixture was heated and refluxed for 3 hours in an oil bath at 100 ° C. to prepare a mixture. Table 1 shows the addition amount (μmol) of cobalt chloride and the addition amount (μmol) of VP monomer and the average particle size of each cobalt powder at the time of producing each cobalt powder. The average particle size of each cobalt powder can be determined by TEM (transmission electron microscope; magnification of 50,000 times) after dropping a few drops of a methanol dispersion of the cobalt powder on a sample stage and allowing the methanol to evaporate by natural drying. The shortest diameters of the selected 200 cobalt particles were measured and determined as an average value. The PEO aqueous solution is used as the hydrogen storage alloy powder 1 in the mixed powder.
One part by weight was used for 0 part by weight.
【0019】次いで、各ペーストを鉄にニッケルめっき
してなるパンチングメタルに塗布し、乾燥し、圧延し
て、水素吸蔵合金電極E1〜E6を作製した。水素吸蔵
合金電極E2〜E5は本発明電極であり、水素吸蔵合金
電極E1及びE6は比較電極である。Next, each paste was applied to a punching metal obtained by plating nickel on iron, dried, and rolled to produce hydrogen storage alloy electrodes E1 to E6. The hydrogen storage alloy electrodes E2 to E5 are electrodes of the present invention, and the hydrogen storage alloy electrodes E1 and E6 are comparison electrodes.
【0020】〔アルカリ蓄電池の作製〕上記の水素吸蔵
合金電極E1〜E6を負極として、順にAAサイズの正
極容量規制のアルカリ蓄電池(電池容量:1200mA
h)A1〜A6を作製した。電池A1及び電池A6は比
較電池であり、電池A2〜A5は本発明電池である。正
極としては従来公知の焼結式ニッケル極を、セパレータ
としてはポリアミド製の不織布を、アルカリ電解液とし
ては30重量%水酸化カリウム水溶液を、それぞれ使用
した。[Preparation of Alkaline Storage Battery] Using the hydrogen storage alloy electrodes E1 to E6 as negative electrodes, an AA-size alkaline storage battery of positive electrode capacity regulation (battery capacity: 1200 mA)
h) A1 to A6 were prepared. Battery A1 and battery A6 are comparative batteries, and batteries A2 to A5 are inventive batteries. A conventionally known sintered nickel electrode was used as a positive electrode, a nonwoven fabric made of polyamide was used as a separator, and a 30% by weight aqueous solution of potassium hydroxide was used as an alkaline electrolyte.
【0021】〈高率放電時の電圧〉各電池を、120m
Aで16時間充電し、60°Cで24時間経過放置した
後、120mAで1.0Vまで放電して、活性化処理を
行った。<Voltage at the time of high rate discharge>
A for 16 hours, left at 60 ° C. for 24 hours, and then discharged to 120 V at 120 mA to perform an activation process.
【0022】次いで、活性化処理した各電池を、120
mA(1/10C)で12時間充電し、400mA(1
/3C)で放電深度80%まで放電した後、3600m
A(3C)で30秒間放電し、その時点での電池電圧を
測定した。各電池4個について試験を行い、4個の電池
の平均電圧を、各電池の高率放電時の電圧とした。表1
に、各電池の高率放電時の電圧(V)を示す。Next, each of the activated batteries was replaced with 120
Charge for 12 hours at mA (1 / 10C), 400mA (1
/ 3C) to discharge depth of 80%, then 3600m
The battery was discharged at A (3C) for 30 seconds, and the battery voltage at that time was measured. The test was performed on four batteries, and the average voltage of the four batteries was used as the voltage at the time of high-rate discharge of each battery. Table 1
The voltage (V) at the time of high rate discharge of each battery is shown in FIG.
【0023】[0023]
【表1】 [Table 1]
【0024】表1より、平均粒径1〜100nmのコバ
ルト粉末を使用した場合に高率放電時の電圧が高い、高
出力のアルカリ蓄電池が得られることが分かる。From Table 1, it can be seen that when cobalt powder having an average particle size of 1 to 100 nm is used, a high-output alkaline storage battery having a high voltage during high-rate discharge can be obtained.
【0025】(実験2)塩化コバルトに代えて表2に示
す金属塩化物を使用して金属粉末を作製し、コバルト粉
末に代えてそれらの金属粉末を使用したこと以外は実験
1と同様にして、水素吸蔵合金電極を作製し、それぞれ
の電極を使用してアルカリ蓄電池A7〜A18を作製
し、実験1で行ったものと同じ条件の試験を行い、各電
池の高率放電時の電圧を調べた。電池A7〜A18はい
ずれも本発明電池である。いずれも、金属粉末として
は、平均粒径10nmのものを使用した。また、水素吸
蔵合金粉末に対する金属粉末の添加量は、実験1と同
様、全て1重量%とした。表2に、各電池に使用した金
属粉末、金属粉末作製時に使用した金属塩化物及び各電
池の高率放電時の電圧(V)を示す。(Experiment 2) Metal powders were prepared using the metal chlorides shown in Table 2 in place of cobalt chloride, and the same procedure as in Experiment 1 was carried out except that these metal powders were used in place of cobalt powder. , A hydrogen storage alloy electrode was prepared, alkaline storage batteries A7 to A18 were prepared using the respective electrodes, and tests were performed under the same conditions as those performed in Experiment 1, and the voltage of each battery during high-rate discharge was examined. Was. The batteries A7 to A18 are all batteries of the present invention. In each case, a metal powder having an average particle diameter of 10 nm was used. The amount of the metal powder added to the hydrogen storage alloy powder was 1% by weight, as in Experiment 1. Table 2 shows the metal powder used for each battery, the metal chloride used when preparing the metal powder, and the voltage (V) at the time of high-rate discharge of each battery.
【0026】[0026]
【表2】 [Table 2]
【0027】表2より、Ni、Ru、Sn、Re、G
e、Rh、Ir、Os、Ag、Pd、Pt又はAuの各
金属粉末を使用した場合も、コバルト粉末を使用した実
験1の場合と同様に、高出力化が達成されることが分か
る。According to Table 2, Ni, Ru, Sn, Re, G
It can be seen that, even when each metal powder of e, Rh, Ir, Os, Ag, Pd, Pt or Au is used, as in Experiment 1 using cobalt powder, high output is achieved.
【0028】(実験3)水素吸蔵合金粉末に対するコバ
ルト粉末の添加量を表3に示す如く変えたこと以外は実
験1と同様にして、水素吸蔵合金電極を作製し、それぞ
れの電極を負極として使用してアルカリ蓄電池A19〜
A24を作製し、実験1で行ったものと同じ条件の試験
を行い、各電池の高率放電時の電圧を調べた。電池A1
9は比較電池であり、電池A20〜A24は本発明電池
である。いずれも、コバルト粉末としては、平均粒径1
0nmのものを使用した。表3に、各電池の高率放電時
の電圧(V)を示す。表3には、実験1で作製した電池
A3の高率放電時の電圧も表1より転記して示してあ
る。(Experiment 3) A hydrogen storage alloy electrode was prepared in the same manner as in Experiment 1, except that the amount of cobalt powder added to the hydrogen storage alloy powder was changed as shown in Table 3, and each electrode was used as a negative electrode. And alkaline storage battery A19 ~
A24 was manufactured, and a test was performed under the same conditions as those performed in Experiment 1, and the voltage of each battery during high-rate discharge was examined. Battery A1
Reference numeral 9 denotes a comparative battery, and batteries A20 to A24 are batteries of the present invention. In each case, the average particle diameter is 1 as the cobalt powder.
The thing of 0 nm was used. Table 3 shows the voltage (V) at the time of high rate discharge of each battery. In Table 3, the voltage at the time of high-rate discharge of the battery A3 produced in Experiment 1 is also transcribed from Table 1.
【0029】[0029]
【表3】 [Table 3]
【0030】表3に示すように、本発明電池A3及びA
20〜A24は、比較電池A19に比べて、高率放電時
の電圧が高い。この結果より、コバルト粉末を添加する
ことにより高率放電時の作動電圧が高くなることが分か
る。また、本発明電池の中でも、電池A3及びA21〜
A23の高率放電時の電圧が高いことから、水素吸蔵合
金粉末に対するコバルト粉末の添加量としては、0.0
1〜10重量%が好ましいことが分かる。本発明で規定
する他の金属粉末を使用する場合も、水素吸蔵合金粉末
に対するそれらの金属粉末の添加量を、0.01〜10
重量%とすることが好ましいことを確認した。なお、電
池A20の高率放電時の電圧が電池A3及びA21〜A
23のそれらに比べて低いのは、コバルト粉末の添加量
が少ないために、反応面積がさほど増大せず、このため
過電圧もさほど小さくならなかったからである。また、
電池A24の高率放電時の電圧が電池A3及びA21〜
A23のそれらに比べて低いのは、電極の水素吸蔵量が
減少したためである。As shown in Table 3, the batteries A3 and A of the present invention
20 to A24 have higher voltages during high-rate discharge than the comparative battery A19. From these results, it can be seen that the addition of cobalt powder increases the operating voltage during high-rate discharge. Also, among the batteries of the present invention, batteries A3 and A21 to A21
Since the voltage at the time of high-rate discharge of A23 was high, the amount of cobalt powder added to the hydrogen storage alloy powder was 0.0
It is understood that 1 to 10% by weight is preferable. When other metal powders specified in the present invention are used, the addition amount of those metal powders to the hydrogen storage alloy powder is 0.01 to 10
It has been confirmed that it is preferable to set the weight%. Note that the voltage of the battery A20 at the time of high-rate discharge is lower than that of the batteries A3 and A21 to A21.
23 is lower than those of No. 23 because the addition amount of cobalt powder was small, so that the reaction area did not increase so much, and the overvoltage did not become so small. Also,
The voltage at the time of high-rate discharge of the battery A24 is the same as that of the batteries A3 and A21 to A21.
The reason why it is lower than those of A23 is that the hydrogen storage amount of the electrode is reduced.
【0031】上記の実施例では、合金溶湯を自然冷却し
て得た水素吸蔵合金を使用したが、液体急冷法、アトマ
イズ法などにより急冷凝固させて得た水素吸蔵合金を使
用してもよい。In the above embodiment, a hydrogen storage alloy obtained by naturally cooling a molten alloy is used, but a hydrogen storage alloy obtained by rapid solidification by a liquid quenching method, an atomizing method, or the like may be used.
【0032】[0032]
【発明の効果】高率放電時の作動電圧が高い、高出力の
アルカリ蓄電池を与える水素吸蔵合金電極が提供され
る。According to the present invention, there is provided a hydrogen storage alloy electrode which provides a high output alkaline storage battery having a high operating voltage during high rate discharge.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 新山 克彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 田中 忠佳 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H016 AA02 BB06 EE01 HH00 HH01 5H028 BB06 EE01 EE08 HH01 HH05 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Katsuhiko Niiyama 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Tadayoshi Tanaka 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 Sanyo Electric Co., Ltd. (72) Inventor Toshiyuki Noma 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Ikuo Yonezu Keihanmoto, Moriguchi City, Osaka 2-5-5, Sanyo Electric Co., Ltd. F-term (reference) 5H016 AA02 BB06 EE01 HH00 HH01 5H028 BB06 EE01 EE08 HH01 HH05
Claims (3)
Sn、Re、Ge、Rh、Ir、Os、Ag、Pd、P
t及びAuよりなる群から選ばれた少なくとも一種の金
属の粒子からなる平均粒径1〜100nmの金属粉末
が、添加混合されているアルカリ蓄電池用のペースト式
水素吸蔵合金電極。1. A hydrogen storage alloy powder containing Co, Ni, Ru,
Sn, Re, Ge, Rh, Ir, Os, Ag, Pd, P
A paste-type hydrogen storage alloy electrode for an alkaline storage battery, wherein a metal powder having an average particle diameter of 1 to 100 nm comprising at least one metal particle selected from the group consisting of t and Au is added and mixed.
粉末が0.01〜10重量%添加混合されている請求項
1記載のアルカリ蓄電池用のペースト式水素吸蔵合金電
極。2. The paste-type hydrogen storage alloy electrode for an alkaline storage battery according to claim 1, wherein 0.01 to 10% by weight of said metal powder is added to and mixed with said hydrogen storage alloy powder.
合金電極を負極として有し、ニッケル極を正極として有
するニッケル−金属水素化物アルカリ蓄電池。3. A nickel-metal hydride alkaline storage battery comprising the paste-type hydrogen storage alloy electrode according to claim 1 as a negative electrode and a nickel electrode as a positive electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11080907A JP2000277096A (en) | 1999-03-25 | 1999-03-25 | Paste type hydrogen storage alloy electrode for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11080907A JP2000277096A (en) | 1999-03-25 | 1999-03-25 | Paste type hydrogen storage alloy electrode for alkaline storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000277096A true JP2000277096A (en) | 2000-10-06 |
Family
ID=13731460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11080907A Pending JP2000277096A (en) | 1999-03-25 | 1999-03-25 | Paste type hydrogen storage alloy electrode for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000277096A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016143519A1 (en) * | 2015-03-11 | 2016-09-15 | Fdk株式会社 | Hydrogen storage alloy powder and nickel hydrogen secondary battery using this hydrogen storage alloy powder |
-
1999
- 1999-03-25 JP JP11080907A patent/JP2000277096A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016143519A1 (en) * | 2015-03-11 | 2016-09-15 | Fdk株式会社 | Hydrogen storage alloy powder and nickel hydrogen secondary battery using this hydrogen storage alloy powder |
JP2016170890A (en) * | 2015-03-11 | 2016-09-23 | Fdk株式会社 | Hydrogen-absorbable alloy powder and nickel-hydrogen secondary battery arranged by use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5681729B2 (en) | Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery | |
JP2024023286A (en) | Manufacturing method of hydrogen storage material | |
JP3603013B2 (en) | Hydrogen storage alloy and nickel hydrogen secondary battery | |
JP2000277096A (en) | Paste type hydrogen storage alloy electrode for alkaline storage battery | |
JP2001240927A (en) | Hydrogen storage alloy for negative electrode of battery capable of increasing service capacity and improving low temperature high ratio service capacity by small number of charging and discharging times by high ratio initial activating treatment | |
JP2828680B2 (en) | Hydrogen storage alloy electrode | |
JP2000239769A (en) | Rare earth hydrogen storage alloy and electrode using it | |
JP3552177B2 (en) | Method for producing hydrogen storage alloy negative electrode particles | |
JP3370071B2 (en) | Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode | |
JP2983564B2 (en) | Hydrogen storage alloy electrode | |
JP2000345253A (en) | Production of hydrogen storage alloy and hydrogen storage alloy electrode | |
JP3573934B2 (en) | Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same | |
JP3653412B2 (en) | Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode | |
JP3789704B2 (en) | Method for producing hydrogen storage alloy electrode | |
JPH10265888A (en) | Hydrogen storage alloy, its production and nickel-hydrogen secondary battery | |
JP3816138B6 (en) | Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery | |
JP3851041B2 (en) | Hydrogen storage alloy electrode | |
JP3981421B2 (en) | Hydrogen storage alloy for batteries and nickel metal hydride secondary battery | |
JP3816138B2 (en) | Metal oxide-metal hydride alkaline battery and method for producing hydrogen storage alloy negative electrode for the battery | |
JP2001200324A (en) | Hydrogen storage alloy and nickel hydrogen secondary battery | |
JP2000129379A (en) | Hydrogen storage alloy | |
JP2000345263A (en) | Hydrogen storage alloy enabling high rate discharge of battery | |
JPH1092423A (en) | Hydrogen storage alloy electrode and its manufacture | |
JPH0794176A (en) | Hydrogen storage electrode | |
JP2000345265A (en) | Hydrogen storage alloy enabling high rate discharge of battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041027 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050531 |