JP2001200324A - Hydrogen storage alloy and nickel hydrogen secondary battery - Google Patents

Hydrogen storage alloy and nickel hydrogen secondary battery

Info

Publication number
JP2001200324A
JP2001200324A JP2000012370A JP2000012370A JP2001200324A JP 2001200324 A JP2001200324 A JP 2001200324A JP 2000012370 A JP2000012370 A JP 2000012370A JP 2000012370 A JP2000012370 A JP 2000012370A JP 2001200324 A JP2001200324 A JP 2001200324A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
weight
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000012370A
Other languages
Japanese (ja)
Inventor
Hisafumi Shintani
尚史 新谷
Satoshi Shima
聡 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2000012370A priority Critical patent/JP2001200324A/en
Publication of JP2001200324A publication Critical patent/JP2001200324A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy with a high capacity improved in high rate discharging characteristics while suppressing pulverization and furthermore exhibiting cycle life characteristics equal to the conventional ones or more while maintaining its corrosion resistance even in the case the content of cobalt is reduced. SOLUTION: In a hydrogen storage alloy having an LnNi5 series (wherein Ln denotes La-rich misch metal) as a CaCu5 type crystal structure as the main phase, the content of La in Ln is 70 to 100 wt.%, also, the substitution ratio of Fe to Ni in the alloy is controlled to the atomic ratio of 0.015 to 0.40, and also, Mg or/Ca is contained in the alloy by 0.1 to 1 wt.%. Moreover, in the above alloy, the substitution ratio of Co to Ni in the alloy is controlled to the atomic ratio of 0.50 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金に関
し、特に、ニッケル水素二次電池に用いられる負極用の
水素吸蔵合金に関するものである。
The present invention relates to a hydrogen storage alloy, and more particularly to a hydrogen storage alloy for a negative electrode used in a nickel-metal hydride secondary battery.

【0002】[0002]

【従来の技術】ニッケル水素二次電池において、負極に
用いられる水素吸蔵合金として、従来からミッシュメタ
ル(以下、「Mm」という。)とニッケルの一部を種々
の元素で置換したニッケル基合金が広く用いられてい
る。ここでMmは、Laに加えて、Ce、Pr、Nd、
Sm、その他希土類元素から選ばれる一以上を含むもの
である。その中でコバルトを含有した合金は、水素吸蔵
量が比較的多く、水素を吸蔵したときの微粉化がしにく
く、アルカリ中での耐食性に優れ、ニッケル水素二次電
池の負極に使用した場合に電池の寿命を長くする効果が
あることがわかっている。一方、高率放電特性改善のた
めには、コバルト含有量が少ないほうがよいことがわか
っている。この理由は、コバルト含有量が少なくなるこ
とによって、微粉化が促進し、重量あたりの表面積が増
大しているためである。しかし、単にコバルト含有量を
減少させると、高率放電特性は改善するものの電池のサ
イクル寿命が低下してしまう問題があった。この原因と
しては、先に述べたように微粉化が促進するに加えて、
合金表面の耐食性が低下するために、合金表面の腐食が
進行し負極が電池内の電解液を取り込んで、ドライアウ
トが起こり電池容量が低下してしまうためである。
2. Description of the Related Art In a nickel-metal hydride secondary battery, as a hydrogen storage alloy used for a negative electrode, a misch metal (hereinafter, referred to as "Mm") and a nickel-based alloy in which a part of nickel is replaced by various elements have been used. Widely used. Here, Mm is Ce, Pr, Nd, in addition to La.
It contains one or more selected from Sm and other rare earth elements. Among them, alloys containing cobalt have a relatively large hydrogen storage capacity, are hard to be pulverized when storing hydrogen, are excellent in corrosion resistance in alkali, and are used when used for the negative electrode of nickel-metal hydride secondary batteries. It has been found that there is an effect of extending the life of the battery. On the other hand, it has been found that a smaller cobalt content is better for improving the high rate discharge characteristics. The reason for this is that the reduction in the cobalt content promotes micronization and increases the surface area per weight. However, when the cobalt content is simply reduced, the high-rate discharge characteristics are improved, but the cycle life of the battery is reduced. This is because, as mentioned above, in addition to the promotion of micronization,
This is because the corrosion resistance of the alloy surface is reduced, so that the corrosion of the alloy surface progresses, the negative electrode takes in the electrolyte solution in the battery, and a dryout occurs to lower the battery capacity.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解決するもので、微粉化を抑制し、耐食性
を向上させながら高率放電特性を改善するとともに、コ
バルト含有量を低下させた場合でも従来と同程度以上の
サイクル寿命特性を示し、しかも、高容量の水素吸蔵合
金を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, which suppresses fine powdering, improves high-rate discharge characteristics while improving corrosion resistance, and reduces the cobalt content. The present invention provides a high-capacity hydrogen storage alloy that exhibits cycle life characteristics that are at least comparable to those of the prior art even when it is used.

【0004】[0004]

【課題を解決するための手段】本発明は、La量が比較
的多く、アルカリ土類金属であるMg又はCaを不純物
以上で比較的少ない量を合金中に含有させると共に、更
に合金中にFeを含有させることで、高容量を維持したま
ま、微粉化を抑制したにもかかわらず高率放電特性を改
善し、従来よりコバルト含有量を低下させたときでも微
粉化が抑制されかつ耐食性も向上することを見い出した
ことにある。本発明は、具体的には、CaCu5型の結
晶構造であるLnNi5系(式中、LnはLaリッチな
Mmを表す。)を主相に持つ水素吸蔵合金において、L
n中のLa量が70〜100重量%であり、かつ、該合
金中にFeとともにMg及び/又はCaを含有し、Ni
に対するFe置換比が原子比で0.015〜0.40で
あり、Mg及び/又はCaが該合金中に0.1〜1重量
%含有される水素吸蔵合金に関する。さらに、好ましく
は、CaCu5型の結晶構造であるLnNi5系を主相に
持つ水素吸蔵合金において、Ln中のLa量が70〜1
00重量%であり、かつ、該合金中にFeとともにMg
及び/又はCaを含有し、さらにCoを含有し、Niに
対するFe置換比が原子比で0.015〜0.40であ
り、Niに対するCo置換比が原子比で0.50以下で
あり、Mg及び/又はCaが該合金中に0.1〜1重量
%含有される水素吸蔵合金に関する。また、本発明は、
これらの水素吸蔵合金を電極に用いたニッケル水素二次
電池に関する。
According to the present invention, an alloy contains a relatively large amount of La and a relatively small amount of Mg or Ca, which is an alkaline earth metal, in excess of impurities, and further contains Fe in the alloy. To improve the high-rate discharge characteristics despite suppressing pulverization while maintaining a high capacity, and suppress pulverization even when the cobalt content is reduced, and improve corrosion resistance. To find something to do. Specifically, the present invention relates to a hydrogen storage alloy having a main phase of an LnNi 5 system (where Ln represents La-rich Mm) having a CaCu 5 type crystal structure.
n is 70 to 100% by weight, and the alloy contains Mg and / or Ca together with Fe in the alloy;
And a hydrogen storage alloy containing 0.1 to 1% by weight of Mg and / or Ca in the alloy. Further, preferably, in a hydrogen storage alloy having a main phase of LnNi 5 having a CaCu 5 type crystal structure, the La content in Ln is 70 to 1
00% by weight, and Mg in the alloy together with Fe.
And / or Ca, further containing Co, an Fe substitution ratio with respect to Ni in an atomic ratio of 0.015 to 0.40, a Co substitution ratio with respect to Ni in an atomic ratio of 0.50 or less, And / or a hydrogen storage alloy containing 0.1 to 1% by weight of Ca in the alloy. Also, the present invention
The present invention relates to a nickel-hydrogen secondary battery using these hydrogen storage alloys for electrodes.

【0005】[0005]

【発明の実施の形態】本発明のAB5型水素吸蔵合金
は、微粉化を抑制しながら高率放電特性を改善するた
め、合金中にMg及び/又はCaを0.1〜1.0重量
%含有させ、さらに、水素吸蔵量を増加させるためと水
素平衡圧をコントロールするために、水素吸蔵合金のM
m中のLa量を70〜100重量%、寿命の点から好ま
しくは75〜95重量%とすることによって、従来の合
金に比較して、高容量で、微粉化が抑制されて、しか
も、高率放電特性を改善し、さらに、合金中のNiに対
するFe置換比が0.015〜0.40原子比含有させ
ることにより、コバルト含有量が少ない水素吸蔵合金で
も、耐微粉化性を向上させ、合金の耐食性を向上させる
ことができる。また、本発明のAB5型水素吸蔵合金
は、構成する残部を、A側は、La単独、またはLaと
ともにCe、Pr、Nd、Sm、その他の希土類元素か
ら選ばれる一以上を含み、B側は、Ni単独、またはN
iとともにCo、Al、Mn、Cu、Cr、その他の遷
移金属から選ばれる一以上を含む。A側としては、好ま
しくは、La単独、またはLaとともに少なくともCe
を含むものであり、B側としては、好ましくは、Ni、
Co、Mn及びAlの組合せである。合金中におけるB
/AとしてはCaCu5系構造をとればよいが、好まし
くはB/A=5〜5.5の範囲(Mg、Caを含まず)
にするとよい。更に好ましくはBリッチにするとよい。
本発明で用いるAB5型水素吸蔵合金は、CaCu5型の
結晶構造を主相に持つ水素吸蔵合金が好ましい。CaC
5型の結晶構造を主相に持つ水素吸蔵合金は、断面の
組織観察では一部に偏析相を確認しながらも、XRDで
の回折パターンでCaCu5型を示す合金相をいう。
BEST MODE FOR CARRYING OUT THE INVENTION The AB 5 type hydrogen storage alloy of the present invention contains 0.1 to 1.0 weight% of Mg and / or Ca in the alloy in order to improve high rate discharge characteristics while suppressing pulverization. % Of the hydrogen storage alloy in order to increase the hydrogen storage amount and control the hydrogen equilibrium pressure.
By setting the La content in m to 70 to 100% by weight, and preferably 75 to 95% by weight in terms of life, compared to a conventional alloy, it has a higher capacity, suppresses pulverization, and has a higher By improving the rate discharge characteristics, and further including the Fe substitution ratio with respect to Ni in the alloy of 0.015 to 0.40 atomic ratio, even in a hydrogen storage alloy having a small cobalt content, the pulverization resistance is improved, The corrosion resistance of the alloy can be improved. Further, the AB 5 type hydrogen storage alloy of the present invention has the remaining constituents, and the A side contains La alone or one or more selected from Ce, Pr, Nd, Sm and other rare earth elements together with La; Is Ni alone or N
In addition to i, one or more selected from Co, Al, Mn, Cu, Cr and other transition metals are included. A side is preferably La alone or at least Ce together with La.
And the B side is preferably Ni,
It is a combination of Co, Mn and Al. B in the alloy
A / A may have a CaCu 5 -based structure, but preferably B / A = 5 to 5.5 (not including Mg and Ca).
It is good to More preferably, it should be B-rich.
The AB 5 type hydrogen storage alloy used in the present invention is preferably a hydrogen storage alloy having a CaCu 5 type crystal structure as a main phase. CaC
A hydrogen storage alloy having a u 5 type crystal structure as a main phase refers to an alloy phase which shows a CaCu 5 type in a diffraction pattern by XRD, while partially observing a segregation phase in cross-sectional structure observation.

【0006】本発明の水素吸蔵合金は、合金中のNiに
対するFe置換比が0.015〜0.40原子比でか
つ、Mgまたは/及びCaが合金中に0.1〜1重量%含
有される特徴をもつ。Mg又はCa含有量が、0.1重
量%より少ない場合は微粉化抑制の効果が小さく、1.
0重量%を超えると水素吸蔵量が低下しすぎてしまう。
好ましくは、Feを0.05〜0.3の置換比にすると
よい。また、Fe原子比が0.015より少ない場合は
耐食性向上の効果が小さく、0.40を超えると水素吸
蔵量が低下しすぎてしまう。
In the hydrogen storage alloy of the present invention, the Fe substitution ratio with respect to Ni in the alloy is 0.015 to 0.40 atomic ratio, and the alloy contains 0.1 to 1% by weight of Mg and / or Ca. It has characteristics that When the Mg or Ca content is less than 0.1% by weight, the effect of suppressing pulverization is small.
If it exceeds 0% by weight, the hydrogen storage amount will be too low.
Preferably, the substitution ratio of Fe is 0.05 to 0.3. When the Fe atomic ratio is less than 0.015, the effect of improving corrosion resistance is small, and when it exceeds 0.40, the hydrogen storage amount is excessively reduced.

【0007】また、Mg又はCaを0.1〜1.0重量
%含有だけでは水素吸蔵放出時の平衡圧が上昇してしま
い、該問題と高容量を維持向上するために、Ln中のL
a含有量を70〜100重量%にした。本発明では、特
にMgを添加することが好ましい。
Further, if Mg or Ca is contained only in an amount of 0.1 to 1.0% by weight, the equilibrium pressure at the time of storing and releasing hydrogen is increased.
The content of a was adjusted to 70 to 100% by weight. In the present invention, it is particularly preferable to add Mg.

【0008】さらに、本発明は上記のように比較的少量
のMg又はCaを含有させ、かつNiの一部をFeで置
換させることにより、従来なし得なかった合金中のNi
に対するCoの置換比が0.50原子比以下での長寿命
化を達成した。即ち、コバルト含有量を低下させたとき
でも微粉化が抑制されかつ耐食性も向上するものであ。
その他Ni、Co以外の置換元素は、合計で、Niに対
する置換比で1.0原子比以下にするとよい。
[0008] Further, the present invention, as described above, contains a relatively small amount of Mg or Ca and partially replaces Ni with Fe, so that Ni in alloys that could not be obtained before can be obtained.
A long life was achieved when the substitution ratio of Co with respect to was 0.50 atomic ratio or less. That is, even when the cobalt content is reduced, pulverization is suppressed and corrosion resistance is improved.
In addition, the total substitution elements other than Ni and Co are preferably not more than 1.0 atomic ratio in terms of substitution ratio with respect to Ni.

【0009】本発明の水素吸蔵合金は、以下のようにし
て得ることができる。所定量の各元素を秤量し、高周波
溶解炉にてArガス等の不活性ガス(200〜1500
Torr)中で溶解する。このときMgやCaなどの蒸気圧
の高い元素を入れる場合には合金を構成する他の元素と
の合金を用いる。溶解後、1300〜1600℃で鉄製
鋳型などに鋳込みインゴットを作製する。また特に必要
な場合は、Arガス等の不活性雰囲気下(600〜15
00Torr)で800〜1200℃で5〜20時間熱処理
を行う。本発明では上記溶解鋳造により、合金を得られ
るが、ロール急冷法、アトマイズ法により合金を製造し
てもよい。上記方法で作製した水素吸蔵合金を、Ar等
の不活性雰囲気下で衝撃式または磨砕式粉砕機またはジ
ェットミルなどの粉砕機にて平均粒径4〜70μmにな
るよう粉砕して本発明の水素吸蔵合金を得ることができ
る。
The hydrogen storage alloy of the present invention can be obtained as follows. A predetermined amount of each element is weighed, and in an induction melting furnace, an inert gas such as Ar gas (200 to 1500) is used.
(Torr). At this time, when an element having a high vapor pressure such as Mg or Ca is added, an alloy with another element constituting the alloy is used. After melting, an ingot is cast at 1300 to 1600 ° C. in an iron mold or the like. In addition, when particularly necessary, it is preferable to use an inert gas such as Ar gas (600 to 15
(00 Torr) at 800 to 1200 ° C. for 5 to 20 hours. In the present invention, an alloy can be obtained by the above-mentioned melting casting, but the alloy may be produced by a roll quenching method or an atomizing method. The hydrogen storage alloy prepared by the above method is pulverized in an inert atmosphere such as Ar by a pulverizer such as an impact or attrition pulverizer or a jet mill to have an average particle size of 4 to 70 μm. A hydrogen storage alloy can be obtained.

【0010】このようにして得られた水素吸蔵合金粉末
は、既知の方法、たとえば、ポリビニルアルコール、メ
チルセルロース等のセルロース類、PTFE、ポリエチ
レンオキサイド、高分子ラテックス等のバインダーを用
いて混練させペースト化し、ニッケル発泡体、ニッケル
繊維体等の三次元導電支持体、パンチングメタル等の二
次元導電支持体に充填することによって電極とすること
ができる。該バインダーの使用量は、合金100重量%
に対し、0.1〜20重量%を用いるとよい。更に必要
により、カーボングラファイト、Ni、Cu粉末等の導
電助剤を合金に対し0.1〜10重量%添加してもよ
い。本発明の水素吸蔵合金を負極用電極として使用した
アルカリ電池は、低コバルトであっても、サイクル寿命
が長く、高率放電特性および低温時における放電特性が
優れている。
The hydrogen-absorbing alloy powder thus obtained is kneaded into a paste by a known method, for example, using a binder such as polyvinyl alcohol and methyl cellulose, or a binder such as PTFE, polyethylene oxide or polymer latex. An electrode can be formed by filling a three-dimensional conductive support such as a nickel foam or a nickel fiber, or a two-dimensional conductive support such as a punching metal. The amount of the binder used is 100% by weight of the alloy.
It is preferable to use 0.1 to 20% by weight. If necessary, a conductive auxiliary such as carbon graphite, Ni, or Cu powder may be added in an amount of 0.1 to 10% by weight based on the alloy. An alkaline battery using the hydrogen storage alloy of the present invention as a negative electrode has a long cycle life and excellent high rate discharge characteristics and low temperature discharge characteristics even with low cobalt.

【0011】[0011]

【実施例】以下、実施例によって本発明を詳述するが、
本発明はこれに限定されるものではない。 実施例1〜7、比較例1〜5 Mm、または、La、Ce、Pr、Ndの各元素と、N
i、Co、Mn、Al、Feの各元素、及び、Mgを表
1及び表2の組成になるよう秤量した。このとき、Mg
の添加は、Mg−Ni合金を用いた。高周波溶解炉によ
り加熱溶解し、鉄製鋳型に鋳造して各インゴットを得
た。該インゴットをAr雰囲気下で1050℃において
6時間熱処理をおこない、粉砕機にて平均粒径が50μ
mになるよう粉砕し、水素吸蔵合金粉末を得た。合金粉
末をXRDで測定したところ、CaCu5型結晶構造を
表していた。
Hereinafter, the present invention will be described in detail with reference to Examples.
The present invention is not limited to this. Examples 1 to 7, Comparative Examples 1 to 5 Mm, or each element of La, Ce, Pr, and Nd, and N
The elements i, Co, Mn, Al, and Fe, and Mg were weighed so that the compositions shown in Tables 1 and 2 were obtained. At this time, Mg
Was added using a Mg-Ni alloy. Each of the ingots was obtained by heating and melting in a high frequency melting furnace and casting in an iron mold. The ingot was heat-treated at 1050 ° C. for 6 hours in an Ar atmosphere, and the average particle size was 50 μm by a pulverizer.
m to obtain a hydrogen storage alloy powder. When the alloy powder was measured by XRD, it showed a CaCu 5 type crystal structure.

【0012】この粉末10gに対し3重量%のポリビニ
ルアルコール(平均重合度2000、けん化度98モル
%)の水溶液を2.5gの割合で混合してペースト状と
し、このペーストを発泡状ニッケル金属多孔体内に30
vol%充填、乾燥後、加圧成形して厚さ0.5〜1.0
mmの極板を制作し、次いでリード線を取り付けて負極
とした。正極には焼結式電極を用いて、ポリプロピレン
製セパレータを介して負極と張り合わせ、6N−KOH
電解液に浸漬して電池を作製した。
An aqueous solution of 3% by weight of polyvinyl alcohol (average degree of polymerization: 2,000, saponification degree: 98 mol%) is mixed with 2.5 g of a 10 wt% powder to form a paste. 30 in the body
After filling with vol%, drying and pressure molding, the thickness is 0.5-1.0
mm electrode plate was prepared, and then a lead wire was attached to obtain a negative electrode. Using a sintered electrode for the positive electrode, the negative electrode is bonded to the negative electrode via a polypropylene separator, and 6N-KOH
The battery was fabricated by immersion in an electrolyte.

【0013】得られた電池についてまず、20℃にて負
極容量に対し0.3Cで120%充電、30分休止後、
0.2Cで電池電圧が0.6Vになるまで放電した。こ
のサイクルを20回繰り返したときの最大の放電容量を
その合金の「容量」とした。その後0.3Cで120%
充電後、2.0Cで放電した容量を「高率放電容量」と
した。その後、微粉化の進行具合を観測するために、電
極を分解し、合金粉を水中で超音波ホーンにて集電体か
ら分離し、充放電後の粒度分布をマイクロトラックにて
測定し、平均粒径D50μmを得た。「微粉化維持率」を
下記の式により求めた。微粉化維持率(%)=(充放電後
の合金粒度/充放電前の合金粒度)×100結果を表1及び
表2に示す。なお、D50は、粒度分布を測定した場合
に、個々の粒子径を検出したときの頻度累計において、
小径粒子から累積加算した値が分布全体の50%にあた
る粒子径をD50と定義するものである。
First, the obtained battery was charged at 120 ° C. at 20 ° C. at 0.3 C with respect to the capacity of the negative electrode, and after resting for 30 minutes,
The battery was discharged at 0.2 C until the battery voltage reached 0.6 V. The maximum discharge capacity when this cycle was repeated 20 times was defined as the "capacity" of the alloy. 120% at 0.3C afterwards
The capacity discharged at 2.0 C after charging was defined as “high-rate discharge capacity”. After that, in order to observe the progress of the pulverization, the electrode was disassembled, the alloy powder was separated from the current collector with an ultrasonic horn in water, and the particle size distribution after charge / discharge was measured with a microtrack, and averaged. A particle size D of 50 μm was obtained. The “micronization maintenance rate” was determined by the following equation. Micronization maintenance rate (%) = (alloy particle size after charge / discharge / alloy particle size before charge / discharge) × 100 The results are shown in Tables 1 and 2. Incidentally, D 50 is, when measuring the particle size distribution, in the cumulative frequency when detecting the individual particle size,
The particle diameter at which the value obtained by cumulative addition from the small-diameter particles corresponds to 50% of the entire distribution is defined as D 50 .

【0014】合金粉の耐食性試験 合金粉末3gを6N−KOH30mlに浸積し、80℃
で3日間放置した後ろ過・水洗・乾燥後、XRDによる
希土類水酸化物(XRD:201面)のピークの積分強
度を求めた。さらに、下式により計算し耐食性を表し
た。 耐食性(%)=(Mg, Fe含有合金の積分強度/Mg, Fe無し
の積分強度)× 100
Corrosion resistance test of alloy powder 3 g of alloy powder was immersed in 30 ml of 6N-KOH,
After filtering, washing and drying, the integrated intensity of the peak of the rare earth hydroxide (XRD: 201 plane) by XRD was determined. Further, the corrosion resistance was calculated by the following equation. Corrosion resistance (%) = (integral strength of Mg, Fe-containing alloy / integral strength without Mg, Fe) x 100

【0015】サイクル寿命 高率放電容量を確認後、20℃にて負極容量に対し0.
3Cで120%充電、30分休止後、0.2Cで電池電
圧が0.6Vになるまで放電する充放電サイクルを20
0サイクル行い、放電容量の維持率を下記の式により求
めた。 維持率(%)=(200サイクル後の放電容量/20サイクル後
の放電容量)×100
Cycle life After confirming the high rate discharge capacity, at 20 ° C., the capacity of the negative electrode was reduced to 0.
After charging for 30% at 3C and resting for 30 minutes, a charge / discharge cycle of discharging at 0.2C until the battery voltage becomes 0.6V is 20
After 0 cycles, the discharge capacity retention rate was determined by the following equation. Retention rate (%) = (discharge capacity after 200 cycles / discharge capacity after 20 cycles) x 100

【0016】表1と表2に結果を示す。表1の「Lm」
は、すべてLa80重量%とCe12重量%とPr4重
量%とNd4重量%の組成を有する。表2のB側組成
は、すべてNi4.08Co0.40Mn0.37Al0.30Fe0.10
である。表1と表2の「耐食性」と「微粉化維持率」
は、比較例2を100として表した。表2(実施例6〜
8)の結果では、Laが70重量%を下回ると、耐食性
は維持されるものの微粉化が進行するため、サイクル寿
命が低下することがわかった。また、放電容量も低下す
るので、La量は70重量%以上が良いと考えられる。
Tables 1 and 2 show the results. "Lm" in Table 1
All have a composition of 80% by weight of La, 12% by weight of Ce, 4% by weight of Pr and 4% by weight of Nd. The compositions on the B side in Table 2 are all Ni 4.08 Co 0.40 Mn 0.37 Al 0.30 Fe 0.10
It is. "Corrosion resistance" and "micronization maintenance rate" in Tables 1 and 2
Represents Comparative Example 2 as 100. Table 2 (Examples 6 to
According to the result of 8), when La is less than 70% by weight, the corrosion resistance is maintained but the pulverization proceeds, so that the cycle life is reduced. Further, since the discharge capacity also decreases, it is considered that the La content is preferably 70% by weight or more.

【0017】[0017]

【発明の効果】本発明の水素吸蔵合金は、アルカリ蓄電
池の負極として使用した場合、電池の高容量化を可能に
し、また、高率放電特性を改善し、さらに、低コバルト
にもかかわらず、微粉化を抑制すると共に耐食性を向上
できるので電池の低コスト化が可能となる。
According to the present invention, when used as a negative electrode of an alkaline storage battery, the hydrogen storage alloy of the present invention can increase the capacity of the battery, improve the high rate discharge characteristics, and furthermore, despite the low cobalt, Since the pulverization can be suppressed and the corrosion resistance can be improved, the cost of the battery can be reduced.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CaCu5型の結晶構造であるLnNi5
系(式中、LnはLaリッチミッシュメタルを表す。)
を主相に持つ水素吸蔵合金において、該Ln中のLa量
が70〜100重量%であり、かつ、該水素吸蔵合金が
FeとともにMg及び/又はCaを含有し、Niに対す
るFe置換比が原子比で0.015〜0.40であり、
Mg及び/又はCaが該水素吸蔵合金中に0.1〜1重量
%含有される水素吸蔵合金。
1. LnNi 5 having a CaCu 5 type crystal structure
System (where Ln represents La-rich misch metal)
A La content in the Ln is 70 to 100% by weight, and the hydrogen storage alloy contains Mg and / or Ca together with Fe, and the Fe substitution ratio with respect to Ni is atomic. 0.015 to 0.40 in ratio,
A hydrogen storage alloy containing Mg and / or Ca in an amount of 0.1 to 1% by weight in the hydrogen storage alloy.
【請求項2】 さらに、Coを含有し、Niに対するC
oの置換比が原子比で0.50以下である請求項1に記
載の水素吸蔵合金。
2. The composition according to claim 1, further comprising Co, wherein C is
The hydrogen storage alloy according to claim 1, wherein the substitution ratio of o is 0.50 or less in atomic ratio.
【請求項3】 請求項1又は請求項2に記載の水素吸蔵
合金を電極に用いたニッケル水素二次電池。
3. A nickel-hydrogen secondary battery using the hydrogen storage alloy according to claim 1 for an electrode.
JP2000012370A 2000-01-21 2000-01-21 Hydrogen storage alloy and nickel hydrogen secondary battery Pending JP2001200324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000012370A JP2001200324A (en) 2000-01-21 2000-01-21 Hydrogen storage alloy and nickel hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000012370A JP2001200324A (en) 2000-01-21 2000-01-21 Hydrogen storage alloy and nickel hydrogen secondary battery

Publications (1)

Publication Number Publication Date
JP2001200324A true JP2001200324A (en) 2001-07-24

Family

ID=18540096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000012370A Pending JP2001200324A (en) 2000-01-21 2000-01-21 Hydrogen storage alloy and nickel hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2001200324A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291510A (en) * 2000-04-06 2001-10-19 Hitachi Maxell Ltd Alkaline storage battery
EP4129534A1 (en) * 2021-08-03 2023-02-08 GRZ Technologies SA Ab5-type based hydrogen storage alloys, methods of preparation and uses thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291510A (en) * 2000-04-06 2001-10-19 Hitachi Maxell Ltd Alkaline storage battery
EP4129534A1 (en) * 2021-08-03 2023-02-08 GRZ Technologies SA Ab5-type based hydrogen storage alloys, methods of preparation and uses thereof
WO2023012139A1 (en) 2021-08-03 2023-02-09 Grz Technologies Sa Ab5 type-based hydrogen storage alloys, methods of preparation and uses thereof

Similar Documents

Publication Publication Date Title
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP3965209B2 (en) Low Co hydrogen storage alloy
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JPH09213319A (en) Sealed alkaline battery
KR100669593B1 (en) A hydrogen adsorption alloy and a nickel hydrogen secondary battery
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
CN114946051B (en) Hydrogen storage alloy for alkaline storage battery
JP2001200324A (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP2005093297A (en) Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2805994B2 (en) Hydrogen storage Ni-Zr alloy
JP2001216960A (en) Hydrogen absorbing alloys and secondary cell of nickel hydrogen
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2000192177A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JP2002069511A (en) Method for producing hydrogen storage alloy and hydrogen storage alloy electrode
JP3301879B2 (en) Hydrogen storage alloy electrode for sealed metal-hydride alkaline storage batteries
JPH06145849A (en) Hydrogen storage alloy electrode
JP2983425B2 (en) Production method and electrode for hydrogen storage alloy
JP3351227B2 (en) Hydrogen storage alloy powder for battery and its manufacturing method
JP2001181763A (en) Hydrogen storage alloy
JP2762669B2 (en) Hydrogen storage Ni-Zr alloy