JP2000273565A - High strength aluminum alloy fin material for heat exchanger excellent in thermal conductivity - Google Patents

High strength aluminum alloy fin material for heat exchanger excellent in thermal conductivity

Info

Publication number
JP2000273565A
JP2000273565A JP11077244A JP7724499A JP2000273565A JP 2000273565 A JP2000273565 A JP 2000273565A JP 11077244 A JP11077244 A JP 11077244A JP 7724499 A JP7724499 A JP 7724499A JP 2000273565 A JP2000273565 A JP 2000273565A
Authority
JP
Japan
Prior art keywords
fin material
thermal conductivity
brazing
aluminum alloy
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11077244A
Other languages
Japanese (ja)
Inventor
Atsushi Fukuda
淳 福田
Taketoshi Toyama
猛敏 外山
Yoshihiko Kamiya
善彦 神谷
Yoshifusa Shoji
美房 正路
Yuji Hisatomi
裕二 久富
Hiroshi Ikeda
洋 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP11077244A priority Critical patent/JP2000273565A/en
Publication of JP2000273565A publication Critical patent/JP2000273565A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength aluminum alloy fin material for a heat exchanger excellent in thermal conductivity and strength characteristics after brazing and also good in brazing properties and sacrificial anode effect. SOLUTION: This fin material has a compsn. contg. 0.5 to 2.0% Mn, >0.4 to 2% Si and 0.1 to 1.0% Ni, furthermore contg. one or >= two kinds among 0.1 to 1.0% Zn, 0.005 to 0.1% In and 0.01 to 0.1% Sn, and the balance Al with impurities. The ratio of the Mn content to the Si content (Mn/Si) is preferably controlled to 1.0 to 2.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導性に優れた
熱交換器用高強度アルミニウム合金フィン材、詳しくは
ラジエータ、ヒータあるいはカーエアコンのエバポレー
タ等、ろう付けにより接合するアルミニウム合金製熱交
換器のフィンとして使用され、特にろう付け後の熱伝導
性および強度に優れるとともに、犠牲陽極効果に優れ、
良好なろう付け性を有する熱交換器用高強度アルミニウ
ム合金フィン材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy fin material for a heat exchanger having excellent heat conductivity, and more particularly to an aluminum alloy heat exchanger joined by brazing, such as a radiator, a heater or an evaporator of a car air conditioner. Used as fins, with excellent thermal conductivity and strength especially after brazing, and excellent sacrificial anode effect,
The present invention relates to a high-strength aluminum alloy fin material for a heat exchanger having good brazing properties.

【0002】[0002]

【従来の技術】アルミニウム合金製熱交換器は、自動車
のラジエータ、オイルクーラ、インタークーラ、ヒータ
及びエアコンのエバポレータやコンデンサなどの熱交換
器として広く使用されており、一般に、Al−Mn系合
金、Al−Cu系合金、Al−Mn−Cu系合金などか
らなる作動流体通路構成材料とAl−Mn系合金フィン
材とをろう付けすることにより組立てられている。
2. Description of the Related Art Aluminum alloy heat exchangers are widely used as heat exchangers for automobile radiators, oil coolers, intercoolers, heaters, and evaporators and condensers for air conditioners. It is assembled by brazing a working fluid passage forming material made of an Al-Cu-based alloy, an Al-Mn-Cu-based alloy or the like, and an Al-Mn-based alloy fin material.

【0003】フィン材には、熱交換性能を確保するため
に熱伝導性が必要とされ、作動流体構成材料を防食する
ために犠牲陽極効果が要求される。また、ろう付け時に
溶融ろうが浸透して座屈を生じることのない良好なろう
付け性も要求される。最近では、熱交換器の軽量化、製
造コストの低減が強く要請され、フィン材など熱交換器
用材料の薄肉化がさらに必要となっており、フィン材を
薄肉化すると伝熱面積が小さくなるために熱交換性能が
低下して熱交換器の強度、耐久性に問題が生じることか
ら、フィン材について、熱伝導性およびろう付け後の強
度の一層の改善が望まれている。
[0003] The fin material is required to have thermal conductivity in order to ensure heat exchange performance, and to have a sacrificial anode effect in order to prevent corrosion of the working fluid constituent material. In addition, good brazing properties are required so that the molten braze does not penetrate during brazing to cause buckling. In recent years, there has been a strong demand for lighter heat exchangers and lower manufacturing costs, and it is necessary to further reduce the thickness of heat exchanger materials such as fin materials. However, since the heat exchange performance deteriorates and the strength and durability of the heat exchanger become problematic, it is desired to further improve the heat conductivity and the strength after brazing of the fin material.

【0004】従来、フィン材として使用されているJI
S 3003合金、JIS 3203合金などのAl−
Mn系合金では、Mnがろう付け時の変形やろうの浸食
を防ぐために有効に作用するが、ろう付け時の加熱によ
りMnが固溶するために熱伝導性が低下するという難点
があり、この難点を解決するために、Mn含有量を少な
くしたアルミニウム合金フィン材が提案されている(特
公昭63−23260号公報)が、このフィン材におい
ては、ろう付け後の強度が十分でなく、熱交換器として
使用中にフィン倒れや変形が生じ易くなる。
[0004] JI conventionally used as a fin material
Al- such as S 3003 alloy and JIS 3203 alloy
In Mn-based alloys, Mn works effectively to prevent deformation and brazing of brazing, but there is a drawback that Mn is solid-dissolved by heating during brazing, so that thermal conductivity is reduced. In order to solve the difficulties, an aluminum alloy fin material having a reduced Mn content has been proposed (Japanese Patent Publication No. 63-23260). However, the strength of this fin material after brazing is insufficient, and When used as an exchanger, the fins are likely to collapse or deform.

【0005】ろう付け後の強度を改善し、熱伝導性や犠
牲陽極効果も従来より向上させたフィン用アルミニウム
合金として、Al−Mn−Si−Mg−Fe系合金にI
n、ZnやGa、Snなどを添加したアルミニウム合金
が提案されており(特開平4−128337号公報、特
開平3−20436号公報)、ある程度の薄肉化は可能
であるが、最近の薄肉化の要求に十分に答えるまでには
至っていない。
As an aluminum alloy for fins, which has improved strength after brazing and has improved thermal conductivity and sacrificial anode effect, Al-Mn-Si-Mg-Fe alloys have
Aluminum alloys to which n, Zn, Ga, Sn and the like are added have been proposed (Japanese Patent Application Laid-Open Nos. 4-128337 and 3-20436), and although a certain degree of thinning is possible, recent thinning is possible. Has not yet been fully answered.

【0006】また、アルミニウム合金製熱交換器のろう
付け接合においては、近年、無公害、低コストの観点か
ら、フッ化物系フラックスを使用するろう付けが注目さ
れ、普及しているが、フッ化物系フラックスを用いるろ
う付け接合においては、Mgを含有するアルミニウム合
金材を使用した場合、ろう付け性が劣るため、フィン接
合率が低下し、熱交換器としての伝熱特性に問題が生じ
る。
[0006] In the brazing of aluminum alloy heat exchangers, brazing using a fluoride-based flux has recently attracted attention from the viewpoints of no pollution and low cost. In the brazing joining using a system flux, when an aluminum alloy material containing Mg is used, the brazing property is inferior, so that the fin joining rate is reduced and a problem occurs in the heat transfer characteristics as a heat exchanger.

【0007】[0007]

【発明が解決しようとする課題】本発明は、熱交換器用
アルミニウム合金フィン材における上記従来の問題点を
解消して、最近における薄肉化の要求を満足させるアル
ミニウム合金フィン材を得るために、熱交換器用フィン
として要求される諸特性に対する合金成分およびその組
合わせの効果について多角的に実験、検討を重ねた結果
としてなされたものであり、その目的は、ろう付け後に
おいて高い熱伝導性と強度を有し、犠牲陽極効果に優
れ、ろう付け性が良好な熱交換器用高強度アルミニウム
合金フィン材を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems in an aluminum alloy fin material for a heat exchanger and obtains an aluminum alloy fin material satisfying the recent demand for thinning. It is a result of repeated experiments and studies on the effects of alloy components and their combinations on various characteristics required for exchanger fins, and the purpose is to achieve high thermal conductivity and strength after brazing. It is an object of the present invention to provide a high-strength aluminum alloy fin material for a heat exchanger having excellent sacrificial anode effect and good brazing property.

【課題を解決するための手段】[Means for Solving the Problems]

【0008】上記の目的を達成するための請求項1に記
載の本発明による熱伝導性に優れた熱交換器用高強度ア
ルミニウム合金フィン材は、Mn:0.5〜2.0 %、Si:
0.4%を越え2 %以下、Ni:0.1〜1.0 %を含有し、さ
らにZn:0.1〜1.0 %、In:0.005〜0.1 %、Sn:0.0
1 〜0.1 %のうちの1種または2種以上を含み、残部A
lおよび不純物からなることを特徴とする。
According to the first aspect of the present invention, there is provided a high-strength aluminum alloy fin material for a heat exchanger having excellent thermal conductivity according to the present invention, wherein Mn: 0.5 to 2.0%, Si:
More than 0.4% and 2% or less, Ni: 0.1 to 1.0%, Zn: 0.1 to 1.0%, In: 0.005 to 0.1%, Sn: 0.0
1 to 0.1% of one or more kinds, the balance being A
1 and impurities.

【0009】また請求項2に記載の熱伝導性に優れた熱
交換器用高強度アルミニウム合金フィン材は、上記の組
成において、Mn含有量とSi含有量の比(Mn/S
i)を1.0〜2.5としたことを特徴とする。
The high-strength aluminum alloy fin material for heat exchangers having excellent thermal conductivity according to claim 2 has a ratio of Mn content to Si content (Mn / S
i) is set to 1.0 to 2.5.

【0010】[0010]

【発明の実施の形態】本発明による熱交換器用高強度ア
ルミニウム合金フィン材における合金成分の意義および
その限定理由について説明する。Mnは、Siと共存し
てAl−Mn−Si系の化合物を生成し、ろう付け前お
よびろう付け後のフィン材の強度を向上させ、耐高温座
屈性および成形加工性を改善する。Mnの好ましい含有
範囲は0.5 %〜2.0 %であり、0.5 %未満ではその効果
が小さく、2.0 %を越えて含有すると、鋳造時に粗大な
化合物が生成し、圧延加工性が害される結果、健全なク
ラッド材が得難く、Mnの固溶量が増加して熱伝導性を
害する。Mnのさらに好ましい含有範囲は0.5 〜1.6 %
である。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of alloy components in a high-strength aluminum alloy fin material for a heat exchanger according to the present invention and the reasons for limiting the same will be described. Mn coexists with Si to produce an Al-Mn-Si-based compound, improves the strength of the fin material before and after brazing, and improves high-temperature buckling resistance and formability. The preferred range of Mn content is 0.5% to 2.0%. If the content is less than 0.5%, the effect is small. If the content exceeds 2.0%, a coarse compound is formed at the time of casting, which impairs the rolling processability. It is difficult to obtain a clad material, and the amount of solid solution of Mn increases to impair thermal conductivity. A more preferred content range of Mn is 0.5 to 1.6%.
It is.

【0011】Siは、Mnと共存してAl−Mn−Si
系の化合物を生成し、強度を向上させるとともに、Mn
の固溶量を減少させてフィン材の熱伝導度を高める。S
iの好ましい含有範囲は0.4 %を越え1.5 %以下であ
り、0.4 %以上ではその効果が十分でなく、1.5 %を越
えると、融点が低下して、ろう付け時にフィン材の局部
溶融が生じ易くなる。Siのさらに好ましい含有範囲は
0.5 〜1.3 %である。
Si is coexisted with Mn and Al—Mn—Si
System compounds to improve the strength and improve the Mn
To increase the thermal conductivity of the fin material. S
The preferred content range of i is more than 0.4% and not more than 1.5%. If it is more than 0.4%, the effect is not sufficient. If it exceeds 1.5%, the melting point is lowered, and local melting of the fin material is likely to occur during brazing. Become. A more preferred content range of Si is
0.5-1.3%.

【0012】MnとSiは、前記のように、Al−Mn
−Si系の化合物を生成して、MnおよびSiの固溶量
をそれぞれ減少させ、熱伝導度を向上させる機能を有す
るが、Mn含有量とSi含有量との比(Mn/Si)の
比が1.0未満ではSiの固溶量が増加して熱伝導性が
低下し、(Mn/Si)が2.5を越えると、Mnの固
溶量が増加して熱伝導性が低下するので、(Mn/S
i)は、1.0〜2.5の範囲に調整するのが好まし
い。(Mn/Si)のさらに好ましい範囲は、1.0〜
2.0である。
Mn and Si are, as described above, Al-Mn.
-Has a function of generating a Si-based compound to reduce the solid solution amounts of Mn and Si, and to improve the thermal conductivity, but has a ratio of Mn content to Si content (Mn / Si) Is less than 1.0, the amount of solid solution of Si increases and thermal conductivity decreases, and when (Mn / Si) exceeds 2.5, the amount of solid solution of Mn increases and thermal conductivity decreases. Therefore, (Mn / S
i) is preferably adjusted in the range of 1.0 to 2.5. A more preferred range of (Mn / Si) is 1.0 to
2.0.

【0013】Niは、合金マトリックス中に微細な金属
間化合物を生成して、熱伝導度をそれほど低下させるこ
となく強度を向上させるよう機能する。Niの好ましい
含有量は0.1 〜1.0 %の範囲であり、0.1 %未満ではそ
の効果が十分でなく、1.0 %を越えると、鋳造時に粗大
な晶出物が生成して加工性を低下させるため板材の製造
が困難となる。また自己耐食性を低下させる。Niのさ
らに好ましい含有範囲は0.3 〜1.0 %である。
Ni forms fine intermetallic compounds in the alloy matrix and functions to increase the strength without significantly reducing the thermal conductivity. The preferred content of Ni is in the range of 0.1 to 1.0%. If the content is less than 0.1%, the effect is not sufficient. If the content exceeds 1.0%, coarse crystals are formed during casting to reduce workability. Is difficult to manufacture. It also lowers self-corrosion resistance. The more preferable content range of Ni is 0.3 to 1.0%.

【0014】Znは、フィン材の電位を卑にし、犠牲陽
極効果を与える。Znの好ましい含有量は0.1 〜1.0 %
の範囲であり、0.1 %未満ではその効果が小さく、1.0
%を越えると自己耐食性が低下し、またZnの固溶によ
り熱伝導性が低下する。Znのさらに好ましい含有範囲
は0.1 %以上0.5 %未満である。
Zn makes the potential of the fin material lower and gives a sacrificial anode effect. The preferred content of Zn is 0.1-1.0%
The effect is small at less than 0.1%, 1.0%
%, The self-corrosion resistance decreases, and the thermal conductivity decreases due to the solid solution of Zn. A more preferred range of Zn content is 0.1% or more and less than 0.5%.

【0015】InおよびSnは、フィン材の熱伝導度を
ほとんど低下させることなく電位を卑にし、犠牲陽極効
果を与える。InおよびSnの好ましい含有量は、それ
ぞれ0.005 〜0.1 %および0.01〜0.1 %の範囲であり、
それぞれ下限未満ではその効果が十分でなく、それぞれ
上限を越えると、効果が飽和するとともに、自己耐食性
および圧延加工性が低下する。
In and Sn lower the potential without substantially reducing the thermal conductivity of the fin material, and provide a sacrificial anode effect. Preferred contents of In and Sn are in the range of 0.005 to 0.1% and 0.01 to 0.1%, respectively.
If each is less than the lower limit, the effect is not sufficient, and if each exceeds the upper limit, the effect is saturated and the self-corrosion resistance and the rolling workability are reduced.

【0016】本発明のフィン材中には、上記の合金成分
の他、Fe、Cu、Cr、Zr、Ti、V、Mg等の不
純物が本発明の効果を損なわない範囲で含有しても良
い。ただし、Cuは、フィン材の電位を貴にするため0.
03%以下に制限するのが好ましく、Cr、Zr、Ti、
Vは、微量でもフィン材の熱伝導度を著しく低下させる
ため、それぞれ0.03%以下に制限するのが好ましい。
In the fin material of the present invention, impurities such as Fe, Cu, Cr, Zr, Ti, V, and Mg may be contained in addition to the above-mentioned alloy components as long as the effects of the present invention are not impaired. . However, Cu is used in order to make the potential of the fin material noble.
It is preferable to limit it to not more than 03%.
Since V significantly reduces the thermal conductivity of the fin material even in a small amount, V is preferably limited to 0.03% or less.

【0017】また、Mgは、熱交換器の組立てにフッ化
物系のフラックスを使用するろう付けを適用した場合、
フラックス成分のフッ素と反応してMgF2 などの化合
物が生成し易く、このことに起因して、ろう付け時に有
効に作用するフラックスの絶対量が不足し、ろう付け不
良の原因となるから0.04%以下に制限するのが好まし
い。
Further, when the brazing using a fluoride-based flux is applied to the assembly of the heat exchanger,
A compound such as MgF 2 is easily formed by reacting with the fluorine component of the flux component. Due to this, the absolute amount of the flux that works effectively at the time of brazing is insufficient, which causes poor brazing. It is preferable to limit to the following.

【0018】本発明の熱交換器用高強度アルミニウム合
金フィン材は、成分を調整したアルミニウム合金を、例
えば、半連続鋳造により造塊し、均質化処理後、熱間圧
延、冷間圧延、中間焼鈍および仕上げ冷間圧延の工程を
経て製造されるが、また、連続鋳造圧延、冷間圧延、中
間焼鈍および仕上げ冷間圧延の工程を経ても製造でき
る。
The high-strength aluminum alloy fin material for a heat exchanger according to the present invention is obtained by, for example, forming an aluminum alloy having adjusted components by semi-continuous casting, homogenizing, then hot rolling, cold rolling, and intermediate annealing. And finished cold rolling, but it can also be manufactured through continuous casting rolling, cold rolling, intermediate annealing and finish cold rolling.

【0019】例えば0.1mm以下の厚さに仕上げ圧延
されたフィン材は、所定幅にスリッティングした後コル
ゲート加工してフィンとし、例えば、3003合金にろ
う材をクラッドした複合板材の偏平管からなる作動流体
通路と交互に積層して、ろう付け接合することにより熱
交換器ユニットとする。
For example, a fin material finish-rolled to a thickness of 0.1 mm or less is slit into a predetermined width and then corrugated to form fins. For example, a flat plate of a composite plate material obtained by cladding a brazing material with 3003 alloy is used. The working fluid passages are alternately laminated and brazed to form a heat exchanger unit.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 半連続鋳造により、表1に示す組成のアルミニウム合金
を造塊し、常法に従って均質化処理、熱間圧延、冷間圧
延、中間焼鈍および仕上げ冷間圧延を行い、厚さ0.0
7mmのフィン材とした。得られたフィン材について、
以下に示す試験を行った。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 An aluminum alloy having the composition shown in Table 1 was ingoted by semi-continuous casting, and subjected to homogenization, hot rolling, cold rolling, intermediate annealing, and finish cold rolling according to a conventional method. 0
The fin material was 7 mm. About the obtained fin material,
The following tests were performed.

【0021】引張試験:フィン材を所定の幅に切断して
試験材とし、試験材の表面にフッ化物系フラックス(濃
度1%)を塗布した後、ろう付けと同じ条件に従い、窒
素ガス雰囲気中において600℃で3分間加熱し、加熱
後の試験材について引張試験を行った。
Tensile test: A fin material is cut into a predetermined width to obtain a test material, and a fluoride-based flux (concentration: 1%) is applied to the surface of the test material. At 600 ° C. for 3 minutes, and a tensile test was performed on the test material after heating.

【0022】熱伝導性の評価:上記に従って加熱後の試
験材について、25℃で電気伝導度を測定する。本発明
のフィン材においては、一般の金属材料と同様、熱伝導
度と電気伝導度との間には比例関係があり、電気伝導度
を測定することにより熱伝導度を評価し得ることがわか
っている。
Evaluation of thermal conductivity: The electrical conductivity of the test material heated as described above is measured at 25 ° C. In the fin material of the present invention, similarly to general metal materials, there is a proportional relationship between thermal conductivity and electrical conductivity, and it can be seen that thermal conductivity can be evaluated by measuring electrical conductivity. ing.

【0023】犠牲陽極効果の評価:フィン材を、pH3
に調整した3%NaCl水溶液中に8時間浸漬後、自然
電位を測定した。
Evaluation of sacrificial anode effect: The fin material was adjusted to pH 3
After immersion in a 3% aqueous NaCl solution adjusted for 8 hours for 8 hours, the self potential was measured.

【0024】ろう付け性の評価:フィン材をコルゲート
加工し、これを1.2 %Mn、0.5 %Cuを含有し、残部
Alおよび不純物からなるアルミニウム合金芯材に40
45合金ろう材をクラッドしたプレート材(0.3mm
厚さ)上に載置して、フッ化物系フラックスを用いるろ
う付けを行い、フィンとプレートとのろう付け接合性
を、フィンの座屈状況、接合部の断面観察によるフィン
の局部溶融状況より評価した。
Evaluation of brazeability: The fin material was corrugated, and this was added to an aluminum alloy core material containing 1.2% Mn and 0.5% Cu, the balance being Al and impurities.
Plate material (0.3mm) clad with 45 alloy brazing material
Thickness), brazing using a fluoride-based flux is performed, and the brazing joint between the fin and the plate is determined based on the buckling of the fin and the local melting of the fin by observing the cross section of the joint. evaluated.

【0025】CASS試験:フィンとプレートとのろう
付け接合部について、JIS H8681に基づいて、
CASS試験を1か月間行い、プレートの最大腐食深さ
を測定し、フィンの腐食状況を観察した。評価結果を表
2に示す。
CASS test: The brazing joint between the fin and the plate is based on JIS H8681.
The CASS test was performed for one month, the maximum corrosion depth of the plate was measured, and the corrosion state of the fin was observed. Table 2 shows the evaluation results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 《表注》ろう付け性 ○:局部溶融、座屈、接合不良がみられないもの[Table 2] << Table Note >> Brazing performance ○: No local melting, buckling, poor bonding

【0028】表2にみられるように、本発明に従う試験
材は、ろう付け後に相当する引張強さが120MPa以
上の優れた強度を示し、電気伝導度は45%IACS以
上であり、従来のJIS 3N23合金フィン材(電気
伝導度35%IACS)に比べてより良好な熱伝導性を
そなえている。ろう付け性にも優れており、また、自然
電位は−760〜−800mVvsSCEの範囲で電気
化学的にも十分に卑であり、CASS試験後のプレート
の最大腐食深さも0.08〜0.11mmと浅く、フィ
ンの犠牲陽極効果が優れていることを示した。
As can be seen from Table 2, the test material according to the present invention exhibits excellent tensile strength after brazing of 120 MPa or more, electrical conductivity of 45% IACS or more, and the conventional JIS. It has better thermal conductivity than 3N23 alloy fin material (electrical conductivity 35% IACS). It is also excellent in brazing properties, has a self potential of -760 to -800 mV vs SCE, is electrochemically sufficiently low, and has a maximum corrosion depth of 0.08 to 0.11 mm after the CASS test. This indicates that the fin has an excellent sacrificial anode effect.

【0029】比較例1 連続鋳造により、表3に示す組成を有するアルミニウム
合金を造塊し、上記実施例1と同一の工程により厚さ
0.07mmのアルミニウム合金フィン材を作製し、得
られたフィン材について、実施例1と同じ方法に従っ
て、引張強度、熱伝導性、犠牲陽極効果、ろう付け性、
接合部の耐食性の評価を行った。評価結果を表4に示
す。表3において、本発明の条件を外れたものには下線
を付した。
Comparative Example 1 An aluminum alloy having a composition shown in Table 3 was ingoted by continuous casting, and an aluminum alloy fin material having a thickness of 0.07 mm was obtained by the same process as in Example 1 above. Regarding the fin material, the tensile strength, thermal conductivity, sacrificial anode effect, brazing property,
The corrosion resistance of the joint was evaluated. Table 4 shows the evaluation results. In Table 3, those out of the conditions of the present invention are underlined.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 《表注》ろう付け性 ○:局部溶融、座屈、接合不良がみられないもの ×:局部溶融、座屈、接合不良のいずれかが発生[Table 4] << Table Note >> Brazing properties ○: No local melting, buckling, poor bonding ×: Any of local melting, buckling, poor bonding

【0032】表4に示すように、試験材No.13はM
n量が少ないため、引張強さが不十分である。試験材N
o.14は、Mn含有量が多いため、熱間圧延が困難と
なり健全な材料の製造ができなかった。試験材No.1
5はSi量が少ないため、引張強さが十分でない。試験
材No.16はSi含有量が多いため、ろう付け加熱に
おいてフィンの局部溶融により座屈が生じた。
As shown in Table 4, the test material No. 13 is M
Since the amount of n is small, the tensile strength is insufficient. Test material N
o. In No. 14, since the Mn content was large, hot rolling was difficult and a sound material could not be produced. Test material No. 1
In No. 5, the tensile strength is not sufficient because the amount of Si is small. Test material No. No. 16 buckled due to local melting of the fins during brazing heating due to high Si content.

【0033】試験材No.17はNiの含有量が少ない
ため引張強さが十分でない。試験材No.18は、Ni
含有量が多いため、熱間圧延が困難となり健全な材料の
製造ができなかった。試験材No.19は、Zn、I
n、Snの含有量が少なく、自然電極電位が貴となるた
め、犠牲陽極効果が劣り、CASS試験においてプレー
トに貫通孔が生じた。また、試験材No.19は、(M
n/Si)比が小さいため、Siの固溶量が増加して電
気伝導度が低くなり熱伝導性の劣るものとなった。
Test material No. No. 17 has insufficient tensile strength because of a small Ni content. Test material No. 18 is Ni
Due to the large content, hot rolling became difficult and a sound material could not be produced. Test material No. 19 is Zn, I
Since the content of n and Sn was small and the natural electrode potential was noble, the sacrificial anode effect was inferior, and a through-hole was formed in the plate in the CASS test. The test material No. 19 is (M
Since the (n / Si) ratio was small, the amount of solid solution of Si increased and the electrical conductivity decreased, resulting in poor thermal conductivity.

【0034】試験材No.20、No.21、No.2
2は、それぞれZn、InおよびSnの含有量が多いた
め、自然電極電位が卑となり過ぎ、自己腐食性が大きく
なってフィン材の腐食消耗が顕著となり、フィン材の犠
牲陽極効果が持続されない。また、試験材No.20は
(Mn/Si)比が大きいため、Mnの固溶量が増加し
て電気伝導度が低くなり熱伝導性が不十分なものとなっ
た。
Test material No. 20, no. 21, no. 2
In No. 2, since the contents of Zn, In, and Sn are large, the natural electrode potential becomes too low, the self-corrosion is increased, and the corrosion consumption of the fin material becomes remarkable, and the sacrificial anode effect of the fin material is not maintained. The test material No. In No. 20, since the (Mn / Si) ratio was large, the solid solution amount of Mn was increased, the electric conductivity was lowered, and the heat conductivity became insufficient.

【0035】試験材No.23、No.24、No.2
5は、それぞれJIS3003合金、3203合金およ
び3N23合金に相当し、Niを含有せずSi量が少な
いため、引張強さが十分でなく、(Mn/Si)比が大
きいため、Mnの固溶量が増加して電気伝導度が低くな
り、熱伝導性が劣るものとなった。また、試験材No.
25は、Zn含有量が多いため、自然電極電位が卑とな
り過ぎ、自己腐食性が大きくなってフィン材の腐食消耗
が顕著となり、フィン材の犠牲陽極効果が持続されな
い。
Test material No. 23, no. 24, no. 2
No. 5 corresponds to JIS3003 alloy, 3203 alloy and 3N23 alloy, respectively, does not contain Ni, has a small amount of Si, has insufficient tensile strength, and has a large (Mn / Si) ratio. And the electrical conductivity decreased, resulting in poor thermal conductivity. The test material No.
In No. 25, since the Zn content is large, the natural electrode potential becomes too low, the self-corrosion becomes large, and the corrosion consumption of the fin material becomes remarkable, and the sacrificial anode effect of the fin material is not maintained.

【0036】試験材No.26はJIS3005合金に
相当し、Mgを多く含有するため、ろう付け性が劣化し
てフィンの接合不良が多くなり、(Mn/Si)比が大
きいため、Mnの固溶量が増加して電気伝導度が低くな
り、熱伝導性が劣るものとなった。また、試験材No.
23、No.24およびNo.26は、Zn、In、S
nを含有せず自然電位が貴となるため、プレートに貫通
孔が生じた。
Test material No. 26 corresponds to a JIS 3005 alloy and contains a large amount of Mg, so that the brazing property is degraded and the bonding failure of the fins is increased, and the (Mn / Si) ratio is large, so that the amount of Mn solid solution increases and the The conductivity was low, and the thermal conductivity was poor. The test material No.
23, no. 24 and No. 26 is Zn, In, S
Since no n was contained and the natural potential was noble, a through hole was formed in the plate.

【0037】[0037]

【発明の効果】本発明によれば、ろう付け後の熱伝導性
および強度特性に優れ、ろう付け性、犠牲陽極効果も良
好な熱交換器用高強度アルミニウム合金フィン材が提供
される。当該フィン材を適用することにより、フィンの
薄肉化が可能となり、熱交換器の軽量化、長寿命化が達
成できる。
According to the present invention, there is provided a high-strength aluminum alloy fin material for a heat exchanger having excellent heat conductivity and strength characteristics after brazing, and also having good brazing properties and a sacrificial anode effect. By using the fin material, the thickness of the fin can be reduced, and the weight and the life of the heat exchanger can be reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 外山 猛敏 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソ−内 (72)発明者 神谷 善彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソ−内 (72)発明者 正路 美房 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 久富 裕二 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 池田 洋 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Taketoshi Toyama 1-1-1, Showa-cho, Kariya-shi, Aichi Pref. Denso Corporation (72) Inventor Yoshihiko Kamiya 1-1-1, Showa-cho, Kariya-shi, Aichi Co., Ltd. Within Denso (72) Inventor Masaji Bibo 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries Co., Ltd. (72) Inventor Yuji Hisatomi 5-113-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Within Metal Industry Co., Ltd. (72) Inventor Hiroshi Ikeda 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mn:0.5〜2.0 %(重量%、以下同
じ)、Si:0.4%を越え2 %以下、Ni:0.1〜1.0 %を
含有し、さらにZn:0.1〜1.0 %、In:0.005〜0.1
%、Sn:0.01 〜0.1 %のうちの1種または2種以上を
含み、残部Alおよび不純物からなることを特徴とする
熱伝導性に優れた熱交換器用高強度アルミニウム合金フ
ィン材。
1. Mn: 0.5 to 2.0% (weight%, the same applies hereinafter), Si: more than 0.4%, 2% or less, Ni: 0.1 to 1.0%, Zn: 0.1 to 1.0%, In: 0.005 ~ 0.1
%, Sn: 0.01 to 0.1%. A high-strength aluminum alloy fin material for heat exchangers having excellent thermal conductivity, comprising one or more of 0.01 to 0.1% and the balance of Al and impurities.
【請求項2】 Mn含有量とSi含有量の比(Mn/S
i)を1.0〜2.5としたことを特徴とする請求項1
記載の熱伝導性に優れた熱交換器用高強度アルミニウム
合金フィン材。
2. The ratio of Mn content to Si content (Mn / S
2. The method according to claim 1, wherein i) is 1.0 to 2.5.
A high-strength aluminum alloy fin material for a heat exchanger having excellent heat conductivity as described above.
JP11077244A 1999-03-23 1999-03-23 High strength aluminum alloy fin material for heat exchanger excellent in thermal conductivity Withdrawn JP2000273565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077244A JP2000273565A (en) 1999-03-23 1999-03-23 High strength aluminum alloy fin material for heat exchanger excellent in thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11077244A JP2000273565A (en) 1999-03-23 1999-03-23 High strength aluminum alloy fin material for heat exchanger excellent in thermal conductivity

Publications (1)

Publication Number Publication Date
JP2000273565A true JP2000273565A (en) 2000-10-03

Family

ID=13628459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077244A Withdrawn JP2000273565A (en) 1999-03-23 1999-03-23 High strength aluminum alloy fin material for heat exchanger excellent in thermal conductivity

Country Status (1)

Country Link
JP (1) JP2000273565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457975C (en) * 2006-03-08 2009-02-04 中国科学院海洋研究所 Double layer aluminum alloy composite sacrificial anode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100457975C (en) * 2006-03-08 2009-02-04 中国科学院海洋研究所 Double layer aluminum alloy composite sacrificial anode

Similar Documents

Publication Publication Date Title
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP4190295B2 (en) Aluminum alloy clad tube material excellent in corrosion resistance and heat exchanger assembled with the clad tube material
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP2006037135A (en) Highly corrosion resistant aluminum clad material for heat exchanger
JP2002161324A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP2000273565A (en) High strength aluminum alloy fin material for heat exchanger excellent in thermal conductivity
JPH1088267A (en) Aluminum alloy clad fin material and heat exchanger made of aluminum alloy using the clad fin material
JP3847076B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP2000239774A (en) High strength aluminum alloy fin material for heat exchanger, excellent in thermal conductivity
JP2000202681A (en) Aluminum alloy fin material for heat exchanger excellent in brazability
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JP2000202682A (en) Aluminum alloy brazing filler metal and aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance using the brazing filler metal for clad material
JP2764909B2 (en) Brazing sheet and heat exchanger
JPH1053828A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance and cladding rollability
JP2004225062A (en) Aluminum alloy clad tube material having excellent corrosion resistance, and heat exchanger with the clad tube material assembled
JP2004156109A (en) Aluminum alloy fin material for heat exchanger excellent in corrosion resistance
JP2002012934A (en) High strength aluminum alloy fin material for heat exchanger, excellent in heat transfer property
JP2813489B2 (en) Aluminum brazing sheet
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger
JP2813484B2 (en) Aluminum brazing sheet
JP2001226729A (en) Aluminum alloy for heat exchanger excellent in corrosion resistance
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JP2006037137A (en) Highly corrosion resistant aluminum clad material for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102