JP2000273074A - Synthesis of n-monoalkyl(meth)acrylamide - Google Patents

Synthesis of n-monoalkyl(meth)acrylamide

Info

Publication number
JP2000273074A
JP2000273074A JP11078794A JP7879499A JP2000273074A JP 2000273074 A JP2000273074 A JP 2000273074A JP 11078794 A JP11078794 A JP 11078794A JP 7879499 A JP7879499 A JP 7879499A JP 2000273074 A JP2000273074 A JP 2000273074A
Authority
JP
Japan
Prior art keywords
meth
adduct
acrylamide
monoalkyl
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11078794A
Other languages
Japanese (ja)
Inventor
Masahiko Kawada
正彦 河田
Akimoto Nagamoto
明元 永本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP11078794A priority Critical patent/JP2000273074A/en
Publication of JP2000273074A publication Critical patent/JP2000273074A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively and stably obtain the subject high-purity compound by using industrially inexpensively available cyclohexylamine as a protective agent for the double bond of a (meth)acrylic ester. SOLUTION: This compound, an N-monoalkyl(meth)acrylamide, is obtained using an amino amide of formula I (R1 is H or CH3; R2 is CnH2n+1; n is a natural number of 1-4) as intermediate. The amide adduct of formula I, in turn, is prepared by synthesizing a Michael adduct of a (meth)acrylic ester of formula II (R3 is CmH2m+1; m is a natural number of 1-4) and cyclohexylamine followed by reaction of the Michael adduct with a monoalkylamine in the presence of a strongly basic catalyst; the amino adduct thus obtained is thermally decomposed to form the objective N-monoalkyl(meth)acrylamide, which can be purified by distillation; thereby the objective compound can be afforded in an industrially advantageous way, such as without substantially producing dimeric adduct.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、他のモノマーと共
重合する事により、樹脂改質剤、接着剤、増粘剤、分散
剤、紙薬品、コンクリート混和剤等として工業的に利用
する事ができるN−モノアルキルアクリルアミドおよび
N−モノアルキルメタクリルアミド(以下N−モノアル
キル(メタ)アクリルアミドという)の合成法に関す
る。
TECHNICAL FIELD The present invention relates to the industrial use of the present invention as a resin modifier, an adhesive, a thickener, a dispersant, a paper chemical, a concrete admixture, etc. by copolymerizing with other monomers. To a method for synthesizing N-monoalkylacrylamide and N-monoalkylmethacrylamide (hereinafter referred to as N-monoalkyl (meth) acrylamide).

【0002】[0002]

【従来の技術】従来N−置換(メタ)アクリルアミドの
工業的製法として、(メタ)アクリル酸エステルとアミ
ン化合物を反応させる方法がある。例えば、USP2,
451,436号公報のように、アクリル酸メチルある
いはエチルとモノあるいはジアルキルアミンとを反応さ
せてアミノアミド(以下アミドアダクトという)とし、
これを熱分解して各種N−置換アクリルアミドに変換す
る方法、また特開平4−208258号公報のように、
アミドアダクトを液相で熱分解してN,N−ジアルキル
(メタ)アクリルアミドを得る方法、さらにUSP2,
683,741号公報には、アクリル酸エチルとメチル
アミンとを水存在下で反応させた後熱分解し、N−メチ
ルアクリルアミドを製造する方法が報告されている。
2. Description of the Related Art Conventionally, as an industrial production method of N-substituted (meth) acrylamide, there is a method of reacting a (meth) acrylic ester with an amine compound. For example, USP2,
No. 451,436, methyl or ethyl acrylate is reacted with mono- or dialkylamine to form an aminoamide (hereinafter referred to as amide adduct).
This is thermally decomposed into various N-substituted acrylamides, and as disclosed in JP-A-4-208258,
A method in which an amide adduct is pyrolyzed in a liquid phase to obtain N, N-dialkyl (meth) acrylamide;
No. 683,741 reports a method for producing N-methylacrylamide by reacting ethyl acrylate and methylamine in the presence of water, followed by thermal decomposition.

【0003】(メタ)アクリル酸エステルとアミン化合
物を反応させてN−置換(メタ)アクリルアミドを製造
する方法は、N,N−ジアルキル(メタ)アクリルアミ
ドを製造する場合に好適であるが、N−モノアルキル
(メタ)アクリルアミドの製造に適用した場合は、(メ
タ)アクリル酸エステルとアミン化合物とのマイケル付
加体に活性水素が残存しているため、これに(メタ)ア
クリル酸エステルが更に付加した二重付加物を生じ、さ
らにこれがアミド化された化合物も生じて、高沸点、高
粘度の不純物が大量に共存することとなる。
A method of producing an N-substituted (meth) acrylamide by reacting a (meth) acrylic ester with an amine compound is suitable for producing an N, N-dialkyl (meth) acrylamide. When applied to the production of monoalkyl (meth) acrylamide, since active hydrogen remains in the Michael adduct of (meth) acrylic ester and amine compound, (meth) acrylic ester was further added to this. A double adduct is formed, and a compound obtained by amidating the double adduct is also formed, so that a large amount of impurities having high boiling point and high viscosity coexist.

【0004】二重付加物の生成を抑える方法として、反
応液中のモノアルキルアミン濃度を上げる方法、例え
ば、USP2,683,741号公報では、高濃度のメ
チルアミンを水溶液中で反応し、二重付加物の生成を抑
えながら、N−モノアルキルアクリルアミドを製造する
方法が記されている。しかしこの方法は、付加物の加水
分解により収率が低下し、多量の水を留去する必要があ
るなど工業的に満足すべき方法ではない。
As a method for suppressing the formation of double adducts, a method of increasing the concentration of monoalkylamine in the reaction solution, for example, in US Pat. No. 2,683,741, a high concentration methylamine is reacted in an aqueous solution, A method for producing N-monoalkylacrylamide while suppressing the formation of a polyadduct is described. However, this method is not industrially satisfactory because the yield is reduced due to hydrolysis of the adduct and a large amount of water needs to be distilled off.

【0005】これらの問題を解決する方法として、まず
(メタ)アクリル酸エステルにジアルキルアミンをマイ
ケル付加し、それにモノアルキルアミンを反応させアミ
ドアダクトとしたのち、熱分解する方法(特願平4−3
05860号)があるが、蒸留での主要な不純物である
中間体のアミドアダクトが、目的製品であるN−モノア
ルキル(メタ)アクリルアミドと沸点差が小さい為、製
品へのアミドアダクトの混入を防ぎ、高純度の製品を得
るためには、蒸留時に高い還流比を必要とする。一方、
N−モノアルキル(メタ)アクリルアミドは、窒素原子
に結合した活性水素を有する為、蒸留時に、架橋性のポ
ップコーン重合物を生じ易い。特に、高い還流比で滞留
時間が長くなる程ポップコーン重合が発生する傾向にあ
る。ポップコーン重合が発生すると、充填塔や配管部の
閉塞を招き、蒸留ができなくなる危険性がある。
As a method for solving these problems, first, a dialkylamine is added to a (meth) acrylic acid ester by Michael, a monoalkylamine is reacted therewith to form an amide adduct, and then a thermal decomposition is carried out (Japanese Patent Application No. Hei. 3
No. 05860), but since the intermediate amide adduct, which is a major impurity in distillation, has a small difference in boiling point from the target product, N-monoalkyl (meth) acrylamide, it prevents contamination of the product with the amide adduct. In order to obtain a high-purity product, a high reflux ratio is required during distillation. on the other hand,
Since N-monoalkyl (meth) acrylamide has active hydrogen bonded to a nitrogen atom, a cross-linkable popcorn polymer is easily generated during distillation. In particular, popcorn polymerization tends to occur as the residence time becomes longer at a high reflux ratio. When popcorn polymerization occurs, there is a risk that the packed tower and the pipe section will be blocked, and distillation will not be possible.

【0006】(メタ)アクリル酸エステルの2重結合を
保護するアミン化合物の分子量が大きくなると、アミド
アダクトの沸点が高くなり、蒸留で分離する際、N−モ
ノアルキル(メタ)アクリルアミドとの分離が容易にな
る。しかしながら、ジアルキルアミンであれば、分子量
が大きくなるにつれて、マイケル付加反応時、立体障害
により付加反応速度が遅く、完結し難いものとなると共
に、一般にアミンのモル価格が上昇し、コスト的にも不
利になる。更に、アミド化では、モノアルキルアミンを
反応させるため、アミン交換体が発生しやすい。
[0006] When the molecular weight of the amine compound that protects the double bond of the (meth) acrylic acid ester increases, the boiling point of the amide adduct increases, and when it is separated by distillation, separation from N-monoalkyl (meth) acrylamide occurs. It will be easier. However, in the case of a dialkylamine, as the molecular weight increases, the rate of the addition reaction is slow due to steric hindrance during the Michael addition reaction, making it difficult to complete the addition reaction. In addition, the molar price of the amine generally increases, which is disadvantageous in cost. become. Furthermore, in amidation, a monoalkylamine is reacted, so that an amine exchanger is easily generated.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の状況
に鑑みてなされたもので、アミドアダクトを中間体とす
るN−モノアルキル(メタ)アクリルアミドの合成法に
おいて、高純度のN−モノアルキル(メタ)アクリルア
ミドを、安価に且つ安定的に合成する方法を提供するこ
とを課題とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and is directed to a method for synthesizing N-monoalkyl (meth) acrylamide using an amide adduct as an intermediate. An object of the present invention is to provide a method for inexpensively and stably synthesizing alkyl (meth) acrylamide.

【0008】[0008]

【課題を解決するための手段】本発明者等は、この課題
解決のため鋭意検討し、蒸留での不純物たるアミドアダ
クトの沸点が、N−モノアルキル(メタ)アクリルアミ
ドの沸点と大きく離れていれば、蒸留工程での還流比が
小さくとも高純度のN−モノアルキル(メタ)アクリル
アミドを容易に得ることが出来るのではないかという点
に着目し、工業的に安価に供給可能なシクロヘキシルア
ミンを(メタ)アクリル酸エステル2重結合の保護剤と
して用いる事により、N−モノ置換アミンでありなが
ら、マイケル付加反応速度は影響を受けず、二量体付加
物がほとんど生じない事、またアミド化工程でモノアル
キルアミンとのアミン交換体が発生し難い事、さらに得
られたアミドアダクトが高沸点であり、蒸留での還流比
が低くともN−モノアルキル(メタ)アクリルアミドが
高純度で得られる事、及び蒸留の処理速度が速く、ポッ
プコーン重合発生を抑制することが出来る事を知見し本
発明を完成するに至った。
Means for Solving the Problems The present inventors diligently studied to solve this problem, and found that the boiling point of the amide adduct, which is an impurity in the distillation, is far away from the boiling point of N-monoalkyl (meth) acrylamide. For example, focusing on the point that high purity N-monoalkyl (meth) acrylamide can be easily obtained even if the reflux ratio in the distillation step is low, cyclohexylamine that can be supplied industrially at low cost is considered. By using as a protective agent for the (meth) acrylate double bond, the rate of Michael addition reaction is not affected even though it is an N-monosubstituted amine, and almost no dimer adduct is formed. It is difficult to generate an amine exchanger with a monoalkylamine in the process, and furthermore, the obtained amide adduct has a high boiling point, and even if the reflux ratio in the distillation is low, N-mono Alkyl (meth) that acrylamide is obtained in high purity, and the processing speed of the distillation is fast, thereby completing the findings by the present invention be able to inhibit popcorn polymerization occurs.

【0009】すなわち本発明は、化2で表されるアミド
アダクトを中間体とするN−モノアルキル(メタ)アク
リルアミドの合成法である。
That is, the present invention is a method for synthesizing N-monoalkyl (meth) acrylamide using an amide adduct represented by Chemical formula 2 as an intermediate.

【化2】 (nは1以上4以下の自然数)Embedded image (N is a natural number from 1 to 4)

【0010】以下に、本発明を更に詳細に説明する。化
2で表されるアミドアダクトは、化3で表される(メ
タ)アクリル酸エステルとシクロヘキシルアミンのマイ
ケル付加物を合成し、これを強塩基性触媒下モノアルキ
ルアミンと反応させる事により得ることができる。
Hereinafter, the present invention will be described in more detail. The amide adduct represented by the chemical formula 2 is obtained by synthesizing a Michael adduct of the (meth) acrylate ester represented by the chemical formula 3 with cyclohexylamine, and reacting the adduct with a monoalkylamine under a strong basic catalyst. Can be.

【化3】 (mは1以上4以下の自然数)Embedded image (M is a natural number from 1 to 4)

【0011】化3で表される(メタ)アクリル酸エステ
ルとしては、例えばアクリル酸メチル、メタクリル酸メ
チル、アクリル酸エチル、メタクリル酸エチル、アクリ
ル酸プロピル、メタクリル酸プロピル、アクリル酸ブチ
ル、メタクリル酸ブチル等が例示される。
Examples of the (meth) acrylate represented by the chemical formula 3 include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, and butyl methacrylate. Etc. are exemplified.

【0012】マイケル付加は、特殊な触媒を必要とせ
ず、(メタ)アクリル酸エステルとシクロヘキシルアミ
ンを混合するだけで容易に反応する事ができる。また、
例えばプロトン性溶媒であるメタノール等を添加するこ
とで、マイケル付加反応を促進させる事も可能である。
かかるマイケル付加反応は、反応温度50〜100℃で
行うことができるがこの限りではない。
The Michael addition does not require a special catalyst, and can be easily reacted only by mixing the (meth) acrylate and cyclohexylamine. Also,
For example, the Michael addition reaction can be promoted by adding a protic solvent such as methanol.
Such a Michael addition reaction can be performed at a reaction temperature of 50 to 100 ° C., but is not limited thereto.

【0013】次に、未反応物を減圧留去した後に 強塩
基性触媒下でモノアルキルアミンとアミド化反応させる
事によりアミドアダクトを得ることができる。モノアル
キルアミンが常温常圧で気体のものは加圧液化された状
態で反応釜に導入する他、ガスの状態で反応液中に導
入、あるいは水以外の溶液として反応に供する方法が挙
げられる。
Next, an unreacted substance is distilled off under reduced pressure and then subjected to an amidation reaction with a monoalkylamine under a strong basic catalyst to obtain an amide adduct. When the monoalkylamine is gaseous at normal temperature and normal pressure, it may be introduced into the reaction vessel in a state of being pressurized and liquefied, or may be introduced into the reaction solution in a gaseous state or subjected to the reaction as a solution other than water.

【0014】強塩基性触媒としては、液状で活性の高い
アルコキシアルカリ金属があり、例えばナトリウムメチ
ラート、ナトリウムエチラート、カリウムメチラート、
カリウムエチラートが例示される。使用量は一般的にマ
イケル付加体に対して0.5〜10モル%であるがこの
限りではない。一般的にアミド化反応触媒である強塩基
性触媒は、水分により失活する事、及びモノアルキルア
ミンの漏洩を防ぐ目的から、耐圧密閉容器で行うことが
好ましい。反応温度は10〜100℃で行われるがこの
限りではない。アミド化反応終了後、強塩基触媒を鉱産
例えば硫酸等で中和した後、副生したアルコール、及び
未反応のモノアルキルアミンを減圧留去する事により本
発明のアミドアダクトを得る事ができる。
Examples of the strong basic catalyst include liquid and highly active alkoxy alkali metals such as sodium methylate, sodium ethylate, potassium methylate, and the like.
An example is potassium ethylate. The amount used is generally 0.5 to 10 mol% based on the Michael adduct, but is not limited thereto. Generally, a strong basic catalyst which is an amidation reaction catalyst is preferably performed in a pressure-resistant closed vessel for the purpose of deactivation by moisture and preventing leakage of monoalkylamine. The reaction is carried out at a temperature of 10 to 100 ° C., but is not limited thereto. After completion of the amidation reaction, the strong base catalyst is neutralized with a mineral such as sulfuric acid, and then the by-product alcohol and unreacted monoalkylamine are distilled off under reduced pressure, whereby the amide adduct of the present invention can be obtained.

【0015】かかるアミドアダクトは、公知の方法で熱
分解されN−モノアルキル(メタ)アクリルアミドとな
り、蒸留する事により精製する事ができる。蒸留時の主
な不純物は未分解のアミドアダクトである。蒸留工程
は、一般的に0.13kPa〜0.67kPaの高真空
度で行われるが、本発明のアミドアダクトは、N−モノ
アルキル(メタ)アクリルアミドと沸点差が大きい事よ
り、殆ど還流させること無く、高純度の製品を得ること
ができる。また、殆ど還流しなくてもよいということ
は、充填塔部での液の滞留量が少なく滞留時間も短く出
来る、すなわち蒸留の処理速度を上げる事が出来るとい
うことであり、塔内でのポップコーン重合発生の危険性
が抑制でき、工業的にも安定して高純度のN−モノアル
キル(メタ)アクリルアミドを得る事ができるものであ
る。なお念のため、熱分解や蒸留時のポップコーン重合
抑制のために、従来用いられてきた一般的な重合禁止剤
等を液相、気相に添加使用しても何ら差し支えない。
The amide adduct is thermally decomposed into N-monoalkyl (meth) acrylamide by a known method, and can be purified by distillation. The main impurity during distillation is undecomposed amide adduct. The distillation step is generally performed at a high vacuum of 0.13 kPa to 0.67 kPa, but the amide adduct of the present invention is almost refluxed because of a large difference in boiling point from N-monoalkyl (meth) acrylamide. And a high-purity product can be obtained. In addition, the fact that there is almost no need for reflux means that the amount of liquid retained in the packed tower section is small and the residence time can be shortened, that is, the processing speed of distillation can be increased. The risk of occurrence of polymerization can be suppressed, and high-purity N-monoalkyl (meth) acrylamide can be obtained industrially stably. As a precautionary measure, a conventional polymerization inhibitor or the like, which has been conventionally used, may be added to the liquid phase or the gaseous phase for the purpose of suppressing popcorn polymerization during thermal decomposition or distillation.

【0016】[0016]

【実施例】以下実施例により本発明をさらに具体的に説
明する。アクリル酸メチル86.1重量部(1.0モル
比)、シクロヘキシルアミン104.1重量部(1.0
5モル比)、メタノール32.04重量部(1.0モル
比)を水冷下混合し、50℃で3時間反応しマイケル付
加体を得た。ガスクロマトグラフィーで分析した結果反
応率は100.0%であり二重付加物は0.43%であ
った。 減圧下メタノールと過剰シクロヘキシルアミン
を留去して純度99.33%のマイケル付加体を得た。
The present invention will be described more specifically with reference to the following examples. 86.1 parts by weight of methyl acrylate (1.0 mole ratio), 104.1 parts by weight of cyclohexylamine (1.0 mole ratio)
5 mol ratio) and 32.04 parts by weight (1.0 mol ratio) of methanol were mixed under water cooling and reacted at 50 ° C. for 3 hours to obtain a Michael adduct. As a result of analysis by gas chromatography, the conversion was 100.0% and the double adduct was 0.43%. The methanol and excess cyclohexylamine were distilled off under reduced pressure to obtain a Michael adduct having a purity of 99.33%.

【0017】得られたマイケル付加体176.01重量
部(0.95モル比)とモノメチルアミン40%メタノ
ール溶液81.15重量部(モノメチルアミン1.04
モル比)を混合し、ナトリウムメチラート28%メタノ
ール溶液3.67重量部(ナトリウムメチラート0.0
19モル比)を添加し、50℃で22時間反応しアミド
アダクトを得た。ガスクロマトグラフィーで分析した結
果、反応率は99.8%であり、アミン交換体は0.3
%であった。ナトリウムメチラートを硫酸0.93重量
部(0.0095モル比)で中和後、モノメチルアミン
および副生したメタノールを減圧留去した。
176.01 parts by weight of the obtained Michael adduct (0.95 mol ratio) and 81.15 parts by weight of a 40% methanol solution of monomethylamine (1.04 mol of monomethylamine)
Mol ratio) and 3.67 parts by weight of a 28% methanol solution of sodium methylate (0.04% sodium methylate).
(19 mol ratio) and reacted at 50 ° C. for 22 hours to obtain an amide adduct. As a result of analysis by gas chromatography, the conversion was 99.8%, and the amine exchanger was 0.3%.
%Met. After sodium methylate was neutralized with 0.93 parts by weight of sulfuric acid (0.0095 molar ratio), monomethylamine and by-produced methanol were distilled off under reduced pressure.

【0018】得られたアミドアダクト167.21重量
部(0.91モル比)に重合禁止剤フェノチアジンを
0.17重量部、p−メトキシフェノール0.17重量
部、熱分解触媒として硫酸2.68重量部(0.027
モル比)添加し、マクマホン充填塔を備えた熱分解装置
でNOガス存在下、釜温150〜163℃、真空度2.
66kPaにて2時間液相熱分解し、分縮温度90℃で
純度92.5%の粗N−モノメチルアクリルアミド5
7.0重量部を得た。この間充填塔およびコンデンサ部
にはポップコーン重合物の生成はなかった。
To 167.21 parts by weight (0.91 mole ratio) of the obtained amide adduct, 0.17 parts by weight of a polymerization inhibitor phenothiazine, 0.17 parts by weight of p-methoxyphenol, and 2.68 sulfuric acid as a thermal decomposition catalyst. Parts by weight (0.027
(Molar ratio), and in a pyrolysis apparatus equipped with a McMahon packed tower, in the presence of NO gas, a kettle temperature of 150 to 163 ° C and a degree of vacuum of 2.
The liquid phase was pyrolyzed at 66 kPa for 2 hours, and crude N-monomethylacrylamide 5 having a purity of 92.5% at a decompression temperature of 90 ° C.
7.0 parts by weight were obtained. During this period, no popcorn polymer was formed in the packed tower and the condenser section.

【0019】得られた粗N−モノメチルアクリルアミド
50重量部にフェノチアジン0.15重量部を添加しN
Oガス存在下、真空度0.133〜0.266kPaで
1時間単蒸留を行った。単蒸留であったが、純度99.
7%のN−モノメチルアクリルアミド40重量部が得ら
れた。蒸留後の釜内やコンデンサにはポップコーン重合
物は見られなかった。
To 50 parts by weight of the obtained crude N-monomethylacrylamide, 0.15 parts by weight of phenothiazine was added.
In the presence of O gas, simple distillation was performed at a degree of vacuum of 0.133 to 0.266 kPa for 1 hour. Although it was simple distillation, the purity was 99.
40 parts by weight of 7% N-monomethylacrylamide were obtained. No popcorn polymer was found in the pot or condenser after distillation.

【0020】比較例 マイケル付加にジエチルアミンを用い実施例と同様の手
順でにアミドアダクトを得た。アミドアダクト中のアミ
ン交換体は3.5モル%であった。アミドアダクト14
4.00重量部(0.91モル比)に重合禁止剤フェノ
チアジン0.14重量部、p−メトキシフェノール0.
14重量部、熱分解触媒として硫酸2.68重量部
(0.027モル比)添加し、実施例と同じ熱分解装置
でNOガス存在下、釜温145〜155℃、真空度2.
66kPaにて2時間液相熱分解した。得られた粗N−
モノメチルアクリルアミドは30重量部で純度86%で
あった。
Comparative Example An amide adduct was obtained in the same procedure as in the example using diethylamine for Michael addition. The amine exchanger in the amide adduct was 3.5 mol%. Amide adduct 14
To 4.00 parts by weight (0.91 mole ratio) were added 0.14 parts by weight of a polymerization inhibitor phenothiazine and 0.1 part by weight of p-methoxyphenol.
14 parts by weight, 2.68 parts by weight of sulfuric acid (0.027 mol ratio) as a thermal decomposition catalyst were added, and in the same thermal decomposition apparatus as in the example, in the presence of NO gas, the vessel temperature was 145 to 155 ° C., and the degree of vacuum was 2.
Liquid phase pyrolysis was performed at 66 kPa for 2 hours. The obtained crude N-
Monomethylacrylamide was 30 parts by weight and had a purity of 86%.

【0021】粗N−モノメチルアクリルアミド127重
量部にフェノチアジン0.38重量部添加し、マクマホ
ン充填物を詰めた充填塔を備えた分配器付きの蒸留装置
でNOガス存在下、真空度0.133〜0.333kP
aで減圧蒸留した。純度99.0%のものを得るため
に、還流比を2以上にしなければならなかった。蒸留開
始から30分後、充填塔がポップコーン重合より閉塞
し、殆ど製品を得ることができなかった。
0.38 parts by weight of phenothiazine was added to 127 parts by weight of crude N-monomethylacrylamide, and a distillation apparatus equipped with a distributor equipped with a packed column filled with a McMahon packing was used. 0.333kP
Vacuum distillation was carried out at a. In order to obtain a purity of 99.0%, the reflux ratio had to be 2 or more. Thirty minutes after the start of distillation, the packed tower was blocked by popcorn polymerization, and almost no product could be obtained.

【0022】[0022]

【発明の効果】本発明により、アミドアダクトを中間体
とするN−モノアルキル(メタ)アクリルアミドの合成
法において、高純度のN−モノアルキル(メタ)アクリ
ルアミドを、安価に且つ安定的に合成することが出来
た。
According to the present invention, in a method for synthesizing N-monoalkyl (meth) acrylamide using an amide adduct as an intermediate, high-purity N-monoalkyl (meth) acrylamide can be synthesized inexpensively and stably. I was able to do it.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化1で表されるアミノアミドを中間体と
するN−モノアルキルアクリルアミドおよびN−モノア
ルキルメタクリルアミドの合成法。 【化1】 (nは1以上4以下の自然数)
1. A method for synthesizing N-monoalkylacrylamide and N-monoalkylmethacrylamide using an aminoamide represented by Chemical Formula 1 as an intermediate. Embedded image (N is a natural number from 1 to 4)
JP11078794A 1999-03-24 1999-03-24 Synthesis of n-monoalkyl(meth)acrylamide Pending JP2000273074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11078794A JP2000273074A (en) 1999-03-24 1999-03-24 Synthesis of n-monoalkyl(meth)acrylamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11078794A JP2000273074A (en) 1999-03-24 1999-03-24 Synthesis of n-monoalkyl(meth)acrylamide

Publications (1)

Publication Number Publication Date
JP2000273074A true JP2000273074A (en) 2000-10-03

Family

ID=13671791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11078794A Pending JP2000273074A (en) 1999-03-24 1999-03-24 Synthesis of n-monoalkyl(meth)acrylamide

Country Status (1)

Country Link
JP (1) JP2000273074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528427A (en) * 2003-06-27 2007-10-11 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Blocked polyisocyanate
JP2016113567A (en) * 2014-12-17 2016-06-23 東洋インキScホールディングス株式会社 Resin composition and manufacturing method thereof, adhesive and adhesive sheet
JP2017186303A (en) * 2016-03-30 2017-10-12 Kjケミカルズ株式会社 MANUFACTURING METHOD OF β-SUBSTITUTED PROPIONIC ACID AMIDE AND N-SUBSTITUTED (METH)ACRYLAMIDE
CN108164477A (en) * 2016-12-07 2018-06-15 深圳市有为化学技术有限公司 The preparation method of single or multiple degree of functionality acid/acrylic amide type compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007528427A (en) * 2003-06-27 2007-10-11 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Blocked polyisocyanate
JP2016113567A (en) * 2014-12-17 2016-06-23 東洋インキScホールディングス株式会社 Resin composition and manufacturing method thereof, adhesive and adhesive sheet
JP2017186303A (en) * 2016-03-30 2017-10-12 Kjケミカルズ株式会社 MANUFACTURING METHOD OF β-SUBSTITUTED PROPIONIC ACID AMIDE AND N-SUBSTITUTED (METH)ACRYLAMIDE
CN108164477A (en) * 2016-12-07 2018-06-15 深圳市有为化学技术有限公司 The preparation method of single or multiple degree of functionality acid/acrylic amide type compound
CN108164477B (en) * 2016-12-07 2023-05-16 深圳有为技术控股集团有限公司 Process for preparing mono-or polyfunctional acrylamide compounds

Similar Documents

Publication Publication Date Title
EP3652151B1 (en) Method for preparing c-h acidic (meth)acrylates
ES2464442T3 (en) Procedure for the continuous preparation of alkylamino (meth) acrylamides
JP7346544B2 (en) Method for producing N-methyl (meth)acrylamide
JP4941959B2 (en) Method for producing alkylaminopropionic acid amide derivative
JP2013189411A (en) METHOD FOR PRODUCING N-SUBSTITUTED-β-ALKOXYPROPIONIC ACID AMIDE
JP2000273074A (en) Synthesis of n-monoalkyl(meth)acrylamide
JP2818652B2 (en) Method for producing isobornyl (meth) acrylate
JPH07316111A (en) Production of n,n-disubstituted (meth)acrylamide derivative
JPH07145122A (en) Production of n-alkyl-alpha,beta-unsaturated carboxamide
EP1094059B1 (en) Process for production of N-acyl amino acid amide
JP3274258B2 (en) Method for producing N-monosubstituted- (meth) acrylamide
JPS5818346A (en) Manufacture of n-substituted acrylamide and methacrylamide
JP3242213B2 (en) Method for producing N- (meth) acryloylmorpholine
JP2926375B2 (en) Method for producing hydroxycarboxylic acid ester
WO1994008946A1 (en) Process for producing n-monosubstituted (meth)acrylamyde
EP0009041A1 (en) Process for preparing aromatic amide antioxidants.
JPH02306950A (en) Aminoacetal derivative
JPH0753483A (en) Production of aminopropionic acid ester derivative
JP2012097005A (en) Method of manufacturing hydroxyalkyl (meth) acrylamide
JP2013095666A (en) Method for producing hydroxyalkyl (meth)acrylamide
CA2200036A1 (en) Process for the preparation of n-lauroyl-glutamic acid di-n-butylamide
JPH0434982B2 (en)
EP0670316A1 (en) 1,3,6-Trialkylhexahydro-1,3,6-triazocine-2-one and preparation process thereof
JPH0578296A (en) Production of n-substituted (meth)acrylamide derivative
JP2991791B2 (en) Method for producing 3-carboxamido-5-vinyl-2-pyrrolidone