JP2000267034A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JP2000267034A
JP2000267034A JP11075835A JP7583599A JP2000267034A JP 2000267034 A JP2000267034 A JP 2000267034A JP 11075835 A JP11075835 A JP 11075835A JP 7583599 A JP7583599 A JP 7583599A JP 2000267034 A JP2000267034 A JP 2000267034A
Authority
JP
Japan
Prior art keywords
laser beam
light
polygon mirror
scanning
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11075835A
Other languages
Japanese (ja)
Inventor
Kazuhiro Akatsu
和宏 赤津
Kenji Mochizuki
健至 望月
Susumu Saito
進 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP11075835A priority Critical patent/JP2000267034A/en
Priority to DE2000112855 priority patent/DE10012855B4/en
Publication of JP2000267034A publication Critical patent/JP2000267034A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Abstract

PROBLEM TO BE SOLVED: To obain a scanning optical system capable of reducing the variation of the intensity of a laser beam in the whole area of scanning area even when a deflection angle is >=30 deg.. SOLUTION: This optical scanner is provided with a laser light source 1 emitting a linear polarized light beam and a rotary polygon mirror 4 deflecting the laser beam emitted from the light source 1 and using it for scanning at the deflection angle being >=30 deg. and constituted so that the intensity of the laser beam on a prescribed scanning surface can be changed to three values of strong exposure, middle exposure and weak exposure. Besides, it is provided with an adjustment means adjusting the polarizing direction of the laser beam so that three values of the intensity of the laser beam can be held at the almost equal values extending over the whole area of the scanning surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザービ−ムプ
リンタ、コピ−装置等に使用される光走査装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device used for a laser beam printer, a copying device, and the like.

【0002】[0002]

【従来の技術】図2に従来の光走査装置の概略図を示
す。半導体レ−ザなどの光源1から出た光は、コリメ−
タレンズ2を通り、平行な光線7にされる。そのあと回
転多面鏡4の面倒れ補正のためにいれている、シリンド
リカルレンズ3をとおり回転多面鏡4によって偏向走査
され、Fθレンズ5をとおって、感光体6へ結像され
る。この時、半導体レ−ザなどの光源1の中の発光点1
0からでる光の拡がりは図3のようになる。図3では中
央と拡がりの大きい方向と小さい方向の両端の光線を矢
印で示した。また偏向方向を太線の矢印で示した。図3
のように、従来は、X方向(走査方向)に光の拡がりが
大きく、Y方向(走査垂直方向)に光の拡がりが小さく
なるようにして用いていた。この時の偏向方向はY方向
である。
2. Description of the Related Art FIG. 2 is a schematic view of a conventional optical scanning device. Light emitted from the light source 1 such as a semiconductor laser is collimated.
The light passes through the lens 2 and is converted into a parallel light beam 7. Thereafter, the light is deflected and scanned by the rotating polygon mirror 4 through the cylindrical lens 3, which is provided for correcting the tilt of the rotating polygon mirror 4, and forms an image on the photosensitive member 6 through the Fθ lens 5. At this time, the light emitting point 1 in the light source 1 such as a semiconductor laser
The spread of the light from 0 is as shown in FIG. In FIG. 3, light beams at both ends in the center and in directions of large and small spread are indicated by arrows. The direction of deflection is indicated by a thick arrow. FIG.
As described above, in the related art, the light spread is large in the X direction (scanning direction) and the light spread is small in the Y direction (scan vertical direction). The deflection direction at this time is the Y direction.

【0003】この従来のときの、回転多面鏡4の反射率
と反射角度の関係を図4に示す。回転多面鏡4の反射角
により反射率が変化する。例えば、反射角が15度から
45度であれば、偏向角は2倍の30度から90度とな
り±30度となる。このとき、図4に示すように、約3
%反射率が異なることがわかっている。
FIG. 4 shows the relationship between the reflectance and the reflection angle of the rotary polygon mirror 4 in this conventional case. The reflectance changes depending on the reflection angle of the rotary polygon mirror 4. For example, if the reflection angle is 15 degrees to 45 degrees, the deflection angle is doubled from 30 degrees to 90 degrees, and becomes ± 30 degrees. At this time, as shown in FIG.
It has been found that the% reflectance differs.

【0004】ただし、従来光学系の中でこの偏向角が±
30度以下の場合は、図4に示すように反射率の差が3
%より小さいので、直線偏光光を発するレーザ光源と該
レーザ光源からのレーザビ−ムを回転多面鏡で偏向走査
するとともに、上記レーザビ−ムの所定の走査面上での
光強度を、強露光、中間露光および、弱露光の3値に変
化可能とする走査光学系においても問題とならなかっ
た。
However, in a conventional optical system, this deflection angle is ±
When the angle is 30 degrees or less, the difference in reflectance is 3 as shown in FIG.
%, The laser light source that emits linearly polarized light and the laser beam from the laser light source are deflected and scanned by a rotating polygon mirror, and the light intensity on a predetermined scanning surface of the laser beam is reduced by strong exposure, There was no problem in a scanning optical system that can change to three values of intermediate exposure and weak exposure.

【0005】[0005]

【発明が解決しようとする課題】上記のように、従来の
光走査装置では、偏向角が±30度以上になると、それ
に応じて反射率変化が大きくなり、走査位置によって光
量が3%程度以上変化すると予想できる。
As described above, in the conventional optical scanning device, when the deflection angle becomes ± 30 degrees or more, the change in reflectance becomes large accordingly, and the light amount is about 3% or more depending on the scanning position. Can be expected to change.

【0006】一方、図5に感光体6上の表面電位とそこ
に照射する光の露光量との関係をしめす。図5のV0は
表面電位で、露光量0のときである。V0/2は電位が
V0の半分の値を示す。このときの露光量をE0とす
る。また、Vdは露光量がE0の4倍のときの電位であ
る。ここで、Vdの電位を作るには露光量は4E0与え
れば良く、このときの露光量が3%程度変化したとして
も、グラフの傾きが非常に小さいので、電位レベルVd
は、ほとんど変化しない。
On the other hand, FIG. 5 shows the relationship between the surface potential on the photoreceptor 6 and the amount of light to be irradiated thereon. V0 in FIG. 5 is a surface potential when the exposure amount is 0. V0 / 2 indicates that the potential is half the value of V0. The exposure amount at this time is defined as E0. Vd is a potential when the exposure amount is four times E0. Here, in order to create the potential of Vd, the exposure amount may be given by 4E0. Even if the exposure amount at this time changes by about 3%, the slope of the graph is very small, so the potential level Vd
Hardly changes.

【0007】しかし、近年V0/2レベルの電位レベル
を用いて、感光体上に潜像を作るという要求がでてきて
いる。この場合、図5に示すように、V0/2レベルの
傾きは約−1であるので、露光量がかりに3%以上変化
すると、V0/2レベルの表面電位もそれに応じて、ほ
ぼ同じ3%以上変化してしまうことになる。
However, in recent years, there has been a demand for forming a latent image on a photoreceptor using a potential level of V0 / 2 level. In this case, as shown in FIG. 5, since the slope of the V0 / 2 level is about −1, when the exposure amount is changed by 3% or more, the surface potential of the V0 / 2 level is correspondingly 3%. This will change.

【0008】V0/2レベルの表面電位が3%以上変化
した場合、場合によっては、印刷濃度変化、背景部の汚
れなどの現象が発生し、印刷品質の悪化をもたらしてし
まうことがあるので問題であった。V0/2レベルの表
面電位は最大と最小の差が2%以内、すなわち、±1%
以内の範囲に抑えれば、上記の印刷品質悪化の問題が無
くなることがわかっている。
If the surface potential at the V0 / 2 level changes by 3% or more, a phenomenon such as a change in print density or a stain on the background may occur in some cases, resulting in deterioration of print quality. Met. The surface potential of the V0 / 2 level has a difference between the maximum and the minimum within 2%, that is, ± 1%
It has been found that the above-mentioned problem of deterioration in print quality can be eliminated by keeping the content within the range.

【0009】以上のことから、走査角が±30度以上で
あっても、走査域全体で均一な、すなわち±1%以内の
バラツキの、露光量を与えることのできる走査光学系が
必要となっていた。
From the above, it is necessary to provide a scanning optical system capable of giving an exposure amount that is uniform over the entire scanning area, that is, within ± 1% even when the scanning angle is ± 30 degrees or more. I was

【0010】逆に、従来の走査光学系で±1%以内に露
光量分布を抑えることのできる走査角度は、図4から1
5度から37度であるので、偏向走査角は2倍の30度
から74度となり、±22度の走査しかできないので問
題であった。
On the contrary, the scanning angle at which the exposure amount distribution can be suppressed within ± 1% in the conventional scanning optical system is shown in FIG.
Since the angle is 5 degrees to 37 degrees, the deflection scanning angle is doubled from 30 degrees to 74 degrees, which is a problem because only ± 22 degrees can be scanned.

【0011】[0011]

【課題を解決するための手段】上記問題を解決するため
本発明では、直線偏光光を発するレーザ光源と該レーザ
光源からのレーザビ−ムを±30度以上の偏向角度で偏
向走査を行なう回転多面鏡を有するとともに、上記レー
ザビ−ムの所定の走査面上での光強度を、強露光、中間
露光および、弱露光の3値に変化可能とする走査光学系
において、上記走査面全域にわたって上記レーザビ−ム
強度の3値がそれぞれほぼ等しい値に保持されるよう
に、上記レーザビ−ムの偏光方向を調整保持可能として
いる。そのためには、光源を光軸を中心として回転自在
とした機構を有するようにしたり、光源と回転多面鏡の
間にλ/2板を調整可能なように配置すれば良い。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, according to the present invention, there is provided a rotary polygonal surface for deflecting and scanning a laser light source emitting linearly polarized light and a laser beam from the laser light source at a deflection angle of ± 30 degrees or more. A scanning optical system having a mirror and capable of changing the light intensity of the laser beam on a predetermined scanning surface into three values of strong exposure, intermediate exposure and weak exposure, The polarization direction of the laser beam can be adjusted and held so that the three values of the beam intensity are kept substantially equal. For this purpose, a mechanism that makes the light source rotatable about the optical axis may be provided, or a λ / 2 plate may be arranged between the light source and the rotating polygon mirror so as to be adjustable.

【0012】また、直線偏光光を発するレーザ光源と該
レーザ光源からのレーザビ−ムを±30度以上の偏向角
度で偏向走査を行なう回転多面鏡を有するとともに、上
記レーザビ−ムの所定の走査面上での光強度を、強露
光、中間露光および、弱露光の3値に変化可能とする走
査光学系において、上記走査面全域にわたって上記レー
ザビ−ム強度の3値がそれぞれほぼ等しい値に保持され
るように、上記レーザビ−ムの偏光を円偏向にしてもよ
く、そのためには、光源と回転多面鏡の間にλ/4板を
配置すればよい。
A laser light source for emitting linearly polarized light, a rotary polygon mirror for deflecting and scanning a laser beam from the laser light source at a deflection angle of. +-. 30 degrees or more, and a predetermined scanning surface of the laser beam In a scanning optical system capable of changing the above light intensity into three values of strong exposure, intermediate exposure and weak exposure, the three values of the laser beam intensity are maintained at substantially the same values over the entire scanning surface. As described above, the polarization of the laser beam may be circularly polarized, and a λ / 4 plate may be disposed between the light source and the rotary polygon mirror.

【0013】[0013]

【発明の実施の形態】本発明の実施例の全体図を図1に
示す。図1では、光学素子15を除けば図2に示す従来
例と同じである。
FIG. 1 is a general view of an embodiment of the present invention. FIG. 1 is the same as the conventional example shown in FIG. 2 except for the optical element 15.

【0014】まず、半導体レ−ザなどの光源1から出た
光は、コリメ−タレンズ2をとおり、平行な光線7にさ
れる。このときの光源の偏向方向は、回転多面鏡4の回
転軸方向と同じである。そのあと、偏向方向を光軸に対
する回転角の2倍だけ回転することのできる光学素子1
5、すなわちλ/2板を光軸を中心として22.5度か
たむけて配置する。このあとの光の偏向方向は、回転多
面鏡4の回転軸にたいし、45度傾いている。そのあと
回転多面鏡4の面倒れ補正のためにいれている、シリン
ドリカルレンズ3をとおり、回転多面鏡4によって偏向
走査され、Fθレンズ5をとおって、感光体6へ結像さ
れる。
First, light emitted from a light source 1 such as a semiconductor laser passes through a collimator lens 2 and is converted into a parallel light beam 7. The direction of deflection of the light source at this time is the same as the direction of the rotation axis of the rotary polygon mirror 4. Then, an optical element 1 capable of rotating the deflection direction by twice the rotation angle with respect to the optical axis.
5, that is, the [lambda] / 2 plate is arranged at 22.5 degrees around the optical axis. The subsequent light deflection direction is inclined at 45 degrees with respect to the rotation axis of the rotary polygon mirror 4. Thereafter, the light is deflected and scanned by the rotating polygon mirror 4 through the cylindrical lens 3, which is inserted for correcting the tilt of the rotating polygon mirror 4, and is imaged on the photosensitive member 6 through the Fθ lens 5.

【0015】一方、この回転多面鏡4は光の偏向方向に
よって図6のように、反射角度と反射率の関係が異なる
特性を持っている。このなかで偏向方向を回転多面鏡4
の回転軸にたいし45度傾けた場合に、反射角度が変化
しても反射率の変化が±1%以内になる。この特性を利
用したのが本発明のポイントである。
On the other hand, as shown in FIG. 6, the rotary polygon mirror 4 has a characteristic in which the relationship between the reflection angle and the reflectance differs depending on the light deflection direction. In this, the deflection direction is set to the rotating polygon mirror 4.
When the angle of inclination is 45 degrees with respect to the rotation axis, even if the reflection angle changes, the change in reflectance falls within ± 1%. The point of the present invention is to utilize this characteristic.

【0016】その第1の実現の方法としては、すでに説
明したように図1に示すような方法で、λ/2板を2
2.5度回転させて配置し回転多面鏡4に入射させる光
の偏向方向を45度回転させる方法がある。その結果、
回転多面鏡4の反射特性は図6の(偏向方向Yから45
度回転)のような特性になるので反射角度が変化しても
反射率の変化が±1%以内になる。
As a first realization method, as described above, the λ / 2 plate is divided into two by the method shown in FIG.
There is a method in which the light is arranged to be rotated by 2.5 degrees and the deflection direction of the light incident on the rotary polygon mirror 4 is rotated by 45 degrees. as a result,
The reflection characteristic of the rotary polygon mirror 4 is shown in FIG.
(Degree rotation), so that even if the reflection angle changes, the change in reflectance falls within ± 1%.

【0017】また、第2の実現の方法としては、図7、
図8に示す方法がある。図7は全体図で、構成は従来と
同じで、半導体レ−ザなどの光源1から出た光は、コリ
メ−タレンズ2をとおり、平行な光線7にされる。その
あと回転多面鏡4の面倒れ補正のためにいれている、シ
リンドリカルレンズ3をとおり回転多面鏡4によって偏
向走査され、Fθレンズ5をとおって、感光体6へ結像
される。このなかの、半導体レ−ザなどの光源1そのも
のを光軸を中心として、45度回転させ、同時に偏向方
向も45度回転させればよい。その様子を図8に示す。
図8では中央と拡がりの大きい方向と小さい方向の両端
の光線を矢印で示した。また偏向方向を太線の矢印で示
した。従来は、X方向(走査方向)に光の拡がりが大き
く、Y方向(走査垂直方向)に光の拡がりが小さくなる
ようにして用いていたが、図8のようにすることで、偏
向方向を45度回転させている。その結果、回転多面鏡
4の反射特性は図6の(偏向方向Yから45度回転)の
ような特性になるので反射角度が変化しても反射率の変
化が±1%以内になる。
As a second method of realization, FIG.
There is a method shown in FIG. FIG. 7 is an overall view, in which the configuration is the same as that of the prior art. Light emitted from a light source 1 such as a semiconductor laser passes through a collimator lens 2 and is converted into a parallel light beam 7. Thereafter, the light is deflected and scanned by the rotating polygon mirror 4 through the cylindrical lens 3, which is provided for correcting the tilt of the rotating polygon mirror 4, and forms an image on the photosensitive member 6 through the Fθ lens 5. Among them, the light source 1 itself such as a semiconductor laser may be rotated by 45 degrees around the optical axis, and at the same time, the deflection direction may be rotated by 45 degrees. This is shown in FIG.
In FIG. 8, light rays at both ends in the center and in directions of large and small spread are indicated by arrows. The deflection direction is indicated by a thick arrow. Conventionally, light was spread in the X direction (scanning direction) so as to be large and light spread in the Y direction (scan vertical direction). However, the deflection direction can be changed as shown in FIG. Rotated 45 degrees. As a result, the reflection characteristic of the rotary polygon mirror 4 becomes such a characteristic as shown in FIG. 6 (rotation by 45 degrees from the deflection direction Y), so that even if the reflection angle changes, the change in the reflectance falls within ± 1%.

【0018】その他、第3の実現の方法は、λ/4板を
図1に示す光学素子15のところに配置するという方法
がある。この場合、光学素子15を通ったあとの光線
は、直線偏光から、円偏光に変えることができる。円偏
光の場合回転多面鏡4の反射特性は図6の(偏向方向Y
から45度回転)のような特性になるので反射角度が変
化しても反射率の変化が±1%以内になる。
In addition, as a third realization method, there is a method of disposing a λ / 4 plate at the optical element 15 shown in FIG. In this case, the light beam after passing through the optical element 15 can be changed from linearly polarized light to circularly polarized light. In the case of circularly polarized light, the reflection characteristic of the rotary polygon mirror 4 is shown in FIG.
(Rotation by 45 degrees from the above), so that even if the reflection angle changes, the change in the reflectance is within ± 1%.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、回転多
面鏡4へ入射させる光線の偏向方向を、回転多面鏡4の
回転軸に対して45度傾けているので、±30度以上の
広画角走査光学系であっても、回転多面鏡4の反射角度
による反射率の違いが±1%以内の走査光学系を提供す
ることができる。
As described above, according to the present invention, the deflection direction of the light beam incident on the rotary polygon mirror 4 is inclined by 45 degrees with respect to the rotation axis of the rotary polygon mirror 4, so that the deflection direction is ± 30 degrees or more. Can provide a scanning optical system in which the difference in reflectance depending on the reflection angle of the rotary polygon mirror 4 is within ± 1%.

【0020】同様に、回転多面鏡4へ入射させる光線を
円偏光にしているので、±30度以上の広画角走査光学
系であっても、回転多面鏡4の反射角度による反射率の
違いが、±1%以内の走査光学系を提供することができ
る。
Similarly, since the light beam incident on the rotating polygon mirror 4 is circularly polarized, the difference in the reflectance due to the reflection angle of the rotating polygon mirror 4 is different even in a wide-field-of-view scanning optical system of ± 30 degrees or more. However, it is possible to provide a scanning optical system within ± 1%.

【0021】よって、±30度以上の広画角走査光学系
であっても、走査光学系の走査全域にわたって、露光量
バラツキを±1%以内にできるので、本発明による走査
光学系は、±30度以上の広画角走査光学系で、走査全
域にわたって走査光の光量を±1%以内にさせる必要が
ある場合、すなわち、直線偏光光を発するレーザ光源と
該レーザ光源からのレーザビ−ムを±30度以上の偏向
角度で偏向走査を行なう回転多面鏡を有するとともに、
上記レーザビ−ムの所定の走査面上での光強度を、強露
光、中間露光および、弱露光の3値に変化可能とする走
査光学系において、上記走査面全域にわたって上記レー
ザビ−ム強度の3値がそれぞれほぼ等しい値に保持され
るようにする場合などに最適となる。
Therefore, even if the scanning optical system has a wide angle of view of ± 30 ° or more, the variation in the amount of exposure can be kept within ± 1% over the entire scanning range of the scanning optical system. When it is necessary to keep the light amount of the scanning light within ± 1% over the entire scanning area with a wide-angle scanning optical system of 30 degrees or more, that is, a laser light source that emits linearly polarized light and a laser beam from the laser light source are used. With a rotating polygon mirror that performs deflection scanning with a deflection angle of ± 30 degrees or more,
In a scanning optical system capable of changing the light intensity on a predetermined scanning surface of the laser beam into three values of strong exposure, intermediate exposure, and weak exposure, the laser beam intensity of three values over the entire scanning surface. This is optimal when the values are to be kept substantially equal.

【0022】なお、4段階以上のレベルを形成する場合
であっても同様な効果をもたらすことができるのは明ら
かである。
It is apparent that similar effects can be obtained even when four or more levels are formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例である。FIG. 1 is a first embodiment of the present invention.

【図2】 従来例を説明する図である。FIG. 2 is a diagram illustrating a conventional example.

【図3】 従来例を補足説明する図である。FIG. 3 is a diagram supplementarily explaining a conventional example.

【図4】 従来の回転多面鏡の反射率と反射角度の関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the reflectance and the reflection angle of a conventional rotary polygon mirror.

【図5】 感光体への露光量と表面電位の関係を示すグ
ラフである。
FIG. 5 is a graph showing a relationship between an exposure amount to a photoconductor and a surface potential.

【図6】 偏光方向と回転多面鏡の反射率と反射角度の
関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a polarization direction, a reflectance of a rotating polygon mirror, and a reflection angle.

【図7】 本発明の第2の実施例の説明図である。FIG. 7 is an explanatory diagram of a second embodiment of the present invention.

【図8】 本発明の第2の実施例の補足説明図である。FIG. 8 is a supplementary explanatory diagram of the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:半導体レ−ザなどの光源、2:コリメ−タレンズ、
3:シリンドリカルレンズ、4:回転多面鏡、5:Fθ
レンズ、6:感光体、7:光線、10:光源、11:拡
がった光線、15:光学素子、20:拡がった光線。
1: a light source such as a semiconductor laser, 2: a collimator lens,
3: Cylindrical lens 4: Rotating polygon mirror, 5: Fθ
Lens, 6: photoreceptor, 7: light beam, 10: light source, 11: expanded light beam, 15: optical element, 20: expanded light beam.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2C362 AA03 BA04 BA83 2H045 AA01 CB35 CB65 5C072 AA03 BA15 HA02 HA09 HA13 HB02 JA07 XA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2C362 AA03 BA04 BA83 2H045 AA01 CB35 CB65 5C072 AA03 BA15 HA02 HA09 HA13 HB02 JA07 XA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 直線偏光光を発するレーザ光源と該レー
ザ光源からのレーザビ−ムを±30度以上の偏向角度で
偏向走査を行なう回転多面鏡を有し、レーザビ−ムの所
定の走査面上での光強度を、強露光、中間露光および、
弱露光の3値に変化可能とする光走査装置において、 走査面全域にわたってレーザビ−ム強度の3値がそれぞ
れほぼ等しい値に保持されるように、レーザビ−ムの偏
光方向を調整する調整手段を設けたことを特徴とする光
走査装置。
1. A laser beam source for emitting linearly polarized light, and a rotary polygon mirror for deflecting and scanning a laser beam from the laser beam source at a deflection angle of. +-. 30 degrees or more, on a predetermined scanning surface of the laser beam. The light intensity at high intensity, intermediate exposure and
In an optical scanning device capable of changing to three values of weak exposure, an adjusting means for adjusting the polarization direction of the laser beam so that the three values of the laser beam intensity are kept substantially equal over the entire scanning surface. An optical scanning device, comprising:
【請求項2】 偏光方向の調整手段として、光源を光軸
を中心として回転する回転手段を設けたことを特徴とす
る請求項1記載の光走査装置。
2. The optical scanning device according to claim 1, wherein a rotation unit that rotates the light source around the optical axis is provided as the polarization direction adjusting unit.
【請求項3】 偏光方向の調整手段として、光源と回転
多面鏡の間に、λ/2板を挿入したことを特徴とする請
求項1記載の光走査装置。
3. The optical scanning device according to claim 1, wherein a λ / 2 plate is inserted between the light source and the rotating polygon mirror as the polarization direction adjusting means.
【請求項4】 直線偏光光を発するレーザ光源と該レー
ザ光源からのレーザビ−ムを±30度以上の偏向角度で
偏向走査を行なう回転多面鏡を有するとともに、上記レ
ーザビ−ムの所定の走査面上での光強度を、強露光、中
間露光および、弱露光の3値に変化可能とする光走査装
置において、 走査面全域にわたってレーザビ−ム強度の3値がそれぞ
れほぼ等しい値に保持されるように、レーザビ−ムの偏
光を円偏向とする調整手段を設けたことを特徴とする光
走査装置。
4. A laser light source for emitting linearly polarized light, a rotary polygon mirror for deflecting and scanning a laser beam from the laser light source at a deflection angle of. +-. 30 degrees or more, and a predetermined scanning surface of the laser beam In an optical scanning device capable of changing the above light intensity into three values of strong exposure, intermediate exposure and weak exposure, the three values of the laser beam intensity are kept substantially equal over the entire scanning surface. And an adjusting means for changing the polarization of the laser beam to circularly polarized light.
【請求項5】 調整手段として、光源と回転多面鏡の間
に、λ/4板を配置したことを特徴とする請求項4記載
の光走査装置。
5. The optical scanning device according to claim 4, wherein a λ / 4 plate is disposed between the light source and the rotary polygon mirror as the adjusting means.
JP11075835A 1999-03-19 1999-03-19 Optical scanner Pending JP2000267034A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11075835A JP2000267034A (en) 1999-03-19 1999-03-19 Optical scanner
DE2000112855 DE10012855B4 (en) 1999-03-19 2000-03-16 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11075835A JP2000267034A (en) 1999-03-19 1999-03-19 Optical scanner

Publications (1)

Publication Number Publication Date
JP2000267034A true JP2000267034A (en) 2000-09-29

Family

ID=13587658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11075835A Pending JP2000267034A (en) 1999-03-19 1999-03-19 Optical scanner

Country Status (2)

Country Link
JP (1) JP2000267034A (en)
DE (1) DE10012855B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847389B2 (en) 2003-05-02 2005-01-25 Kabushiki Kaisha Toshiba Optical beam scanning device and image forming apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140420A (en) * 1983-02-01 1984-08-11 Canon Inc Light source device using semiconductor laser
JPS59172624A (en) * 1983-03-23 1984-09-29 Hitachi Ltd Optical deflecting scanner
US5009472A (en) * 1987-01-08 1991-04-23 Asahi Kogaku Kogyo Kabushiki Kaisha Light scanning device with polarizing device to make light transmission more uniform
US5233188A (en) * 1989-04-03 1993-08-03 Hitachi, Ltd. Laser beam scanning apparatus for scanning a laser beam obtained by composing a plurality of beams

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847389B2 (en) 2003-05-02 2005-01-25 Kabushiki Kaisha Toshiba Optical beam scanning device and image forming apparatus
US7095431B2 (en) 2003-05-02 2006-08-22 Takashi Shiraishi Optical beam scanning device and image forming apparatus
US7304659B2 (en) 2003-05-02 2007-12-04 Kabushiki Kaisha Toshiba Optical beam scanning device and image forming apparatus

Also Published As

Publication number Publication date
DE10012855A1 (en) 2000-12-07
DE10012855B4 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
EP0713323B1 (en) Multispot polygon ros with maximized line separation depth of focus
US6999218B2 (en) Light scanning apparatus and image forming apparatus
EP0523636B1 (en) Scanning optical apparatus
US6963433B2 (en) Multibeam scanning optical device and image forming apparatus using the same
US6608643B2 (en) Systems and method for measuring or reducing spacing errors in multiple beam ROS systems
JP2000267031A (en) Optical scanner
US5574491A (en) Apparatus spot position control in an output device employing a linear array of light sources
JP2002182143A (en) Optical scanner, multibeam scanner and image forming device
JPH02226111A (en) Optical deflecting device
JP2006301482A (en) Image forming apparatus
JP2000267034A (en) Optical scanner
JPH06118323A (en) Optical device
JP2007171689A (en) Optical scanner and image forming apparatus using the same
JPH10206778A (en) Optical scanning device
JPH04242215A (en) Optical scanner
JP2005096086A (en) Image forming apparatus
JP2002350763A (en) Laser scanner and image forming device provided with the same
JP2002031771A (en) Multiple-beam scanning optical device
JPH0743627A (en) Optical scanning device
JPH09281421A (en) Optical scanner
JPH02254409A (en) Scanning optical system and laser beam printer using its system
US20100155581A1 (en) Laser scanning unit and image-forming apparatus having the same
EP0695078B1 (en) Fast scan spot correction in a polygon raster output scanner
JPH0511209A (en) Optical scanning and recording device
JPH06106776A (en) Multi-beam laser recording device