JPH02254409A - Scanning optical system and laser beam printer using its system - Google Patents

Scanning optical system and laser beam printer using its system

Info

Publication number
JPH02254409A
JPH02254409A JP7758989A JP7758989A JPH02254409A JP H02254409 A JPH02254409 A JP H02254409A JP 7758989 A JP7758989 A JP 7758989A JP 7758989 A JP7758989 A JP 7758989A JP H02254409 A JPH02254409 A JP H02254409A
Authority
JP
Japan
Prior art keywords
optical system
plane
parallel
image
ferroelectric crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7758989A
Other languages
Japanese (ja)
Inventor
Yoshiharu Yamamoto
義春 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7758989A priority Critical patent/JPH02254409A/en
Publication of JPH02254409A publication Critical patent/JPH02254409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To control the spot diameter brought to image formation on the surface to be scanned by applying an electric field to a plane-parallel element consisting of a ferroelectric substance crystal and varying a refractive index of the plane-parallel element by an electro- optical effect, and making the optical path length variable. CONSTITUTION:A roughly parallel luminous flux emitted from a light source part 1 consisting of a semiconductor laser and a collimator lens passes through a cylindrical lens 2 having refracting power only in the sub-scanning direction for constituting a first image forming optical system and a parallel plane element 14 consisting of a ferroelectric substance crystal, is deflected by the deflecting/reflecting surface of a rotary polygon mirror 3 for rotating in the direction as indicated with an arrow 8, and its luminous flux forms an image on the surface 6 to be scanned by a second image forming optical system 5, and also, allowed to execute a scan in the direction as indicated with an arrow 7. On the other hand, in the sub-scanning direction, the luminous flux from the light source part 1 forms an image linearly in the vicinity of the deflecting/reflecting surface 4 by a first image forming optical system constituted of the lens 2 and the element 14. A second image forming optical system 5 forms an image point on the surface 6 to be scanned being in an optical conjugate relation by setting an image forming point as an object point. In such a way, by varying an electric field applied to the element 14 and varying a refractive index of the element 14, a position of a focal line by the lens 2 can be varied.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、被走査面上での副走査方向のスポット径をほ
ぼ一定に保つ走査光学系とそれを用いたレーザービーム
プリンタに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a scanning optical system that keeps the spot diameter in the sub-scanning direction substantially constant on a surface to be scanned, and a laser beam printer using the same.

従来の技術 走査光学系は、レーザービームプリンタ等に用いられ、
感光ドラム等の被走査面上にレーザー光をスポット状に
結像し、且つ走査するものである。
Conventional technology scanning optical systems are used in laser beam printers, etc.
A laser beam is imaged into a spot on a surface to be scanned, such as a photosensitive drum, and then scanned.

レーザー光束を偏向させる手段として回転多面鏡が用い
られることが一般的である。しかしながら、複数の反射
面からなる回転多面鏡は、加工誤差、加工歪み等の原因
で、各反射面は所謂面倒れが発生し、主走査線の間隔す
なわち副走査方向にピッチむらが生ずる。この面倒れの
補正を光学的に行う技術が知られている。高い補正能力
を有するものとして、上記反射面と被走査面が副走査方
向において光学的共役関係とする方法が良く知られてい
る。このような光学的パワー配置を実現するには、長尺
のシリンドリカルレンズを用いる方法(特開昭50−9
3720号公報)、あるいはトーリックレンズを用いる
方法(特開昭62−172317号公報)が既に知られ
ている。
A rotating polygon mirror is generally used as a means for deflecting a laser beam. However, in a rotating polygon mirror made up of a plurality of reflecting surfaces, each reflecting surface has a so-called surface tilt due to processing errors, processing distortions, etc., and pitch unevenness occurs in the interval between main scanning lines, that is, in the sub-scanning direction. A technique for optically correcting this surface tilt is known. As a method having a high correction ability, a method in which the reflecting surface and the surface to be scanned have an optically conjugate relationship in the sub-scanning direction is well known. In order to realize such an optical power arrangement, a method using a long cylindrical lens (Japanese Unexamined Patent Publication No. 50-9
3720) or a method using a toric lens (Japanese Unexamined Patent Publication No. 172317/1982).

発明が解決しようとする課題 長尺のシリンドリカルレンズあるいはトーリックレンズ
を用いた従来の走査光学系は偏向角を大きくとると、像
面湾曲量が大きな値となり、微小なスポットを得る際に
問題となる。特に、副走査方向のスポット径に寄与する
非点収差が十分に補正されなくなる問題点がある。更に
、回転多面鏡の回転に伴って偏向点が光軸方向と光軸に
垂直な方向に移動する。なかでも、光軸方向の偏向点の
移動が副走査方向のスポット径の変動に与える影響が大
である。加えて偏向の左右両側で偏向点の移動量が左右
非対称であるので、上記収差の補正を良好に行うことは
、光学系の構成レンズ枚数を増やしても著しく困難であ
る。従って、高密度な記録を行う時には、偏向角の狭い
範囲を使わざるをえない為、大きな走査幅が必要な時に
は、光路長を大きくしなければならず、装置の大型化を
招くことになる。
Problems to be Solved by the Invention In conventional scanning optical systems that use long cylindrical lenses or toric lenses, when the deflection angle is large, the amount of field curvature becomes large, which poses a problem when obtaining a minute spot. . In particular, there is a problem that astigmatism, which contributes to the spot diameter in the sub-scanning direction, is not sufficiently corrected. Furthermore, as the rotating polygon mirror rotates, the deflection point moves in the optical axis direction and in a direction perpendicular to the optical axis. Among these, the movement of the deflection point in the optical axis direction has a large influence on the variation of the spot diameter in the sub-scanning direction. In addition, since the amount of movement of the deflection point on both the left and right sides of the deflection is asymmetrical, it is extremely difficult to properly correct the aberrations, even if the number of lenses constituting the optical system is increased. Therefore, when performing high-density recording, it is necessary to use a narrow range of deflection angles, and when a large scanning width is required, the optical path length must be increased, leading to an increase in the size of the device. .

本発明の目的は、光源部からの光束を偏向器の反射面の
近傍に線状に結像させる第1結像光学系の構成中に強誘
電体結晶からなる平行平面素子を設け、この強誘電体結
晶からなる平行平面素子に電界を印加し電気光学効果に
よって屈折率を変化させることによって第1結像光学系
によって形成される焦線の結像位置を変化させ、副走査
方向のスポット径に寄与する要因すなわち副走査方向の
像面位置の変動を良好に補正することにある。
An object of the present invention is to provide a parallel plane element made of a ferroelectric crystal in the configuration of a first imaging optical system that forms a linear image of a light beam from a light source in the vicinity of a reflecting surface of a deflector. By applying an electric field to a parallel plane element made of a dielectric crystal and changing the refractive index by the electro-optic effect, the imaging position of the focal line formed by the first imaging optical system is changed, and the spot diameter in the sub-scanning direction is changed. The objective is to satisfactorily correct the factors contributing to this, that is, the fluctuations in the image plane position in the sub-scanning direction.

!!!題を解決するための手段 本発明の走査光学系は、光源部と、第1結像光学系と偏
向器と第2結像光学系とを有する。光源部は、光源例え
ば半導体レーザーとコリメータレンズの如き、略平行光
束を出射する。第1結像光学系は、光源部からの光束を
線状に結像するために少なくとも1つのシリンドリカル
レンズと光路長を可変とじ焦線の結像位置を可変とする
強誘電体結晶からなる平行平面素子から構成される。偏
向器は、回転多面鏡からなり、その反射面は、上記第1
結像光学系による線状の結像の近傍に位置する。第2結
像光学系は、前記偏向器により偏向された光束を、被走
査面上に結像し走査させる。
! ! ! Means for Solving the Problems The scanning optical system of the present invention includes a light source section, a first imaging optical system, a deflector, and a second imaging optical system. The light source unit emits a substantially parallel light beam from a light source such as a semiconductor laser and a collimator lens. The first imaging optical system consists of at least one cylindrical lens and a ferroelectric crystal that has a variable optical path length and a variable focal line imaging position to form a linear image of the light beam from the light source. Consists of planar elements. The deflector consists of a rotating polygon mirror, and its reflecting surface is the first
It is located near the linear image formed by the imaging optical system. The second imaging optical system forms an image of the light beam deflected by the deflector on the surface to be scanned and scans the surface.

更に、上記第1結像光学系を構成する強誘電体結晶から
なる平行平面素子に電界を印加し電気光学効果によって
平行平面素子の屈折率を変化させる手段を有する。
Furthermore, it has means for applying an electric field to the parallel plane element made of ferroelectric crystal constituting the first imaging optical system to change the refractive index of the parallel plane element by an electro-optic effect.

作用 本発明において、被走査面上で特に副走査方向のスポッ
ト径をほぼ一定に制御するために、第1結像光学系の強
誘電体結晶からなる平行平面素子に電界を印加し電気光
学効果によって強誘電体結晶からなる平行平面素子の屈
折率を変化させ、副走査方向において第2結像光学系の
物点である、第1結像光学系の結像位置を変化させる。
In the present invention, in order to control the spot diameter on the scanned surface to be almost constant, especially in the sub-scanning direction, an electric field is applied to the parallel plane element made of ferroelectric crystal of the first imaging optical system to produce an electro-optic effect. The refractive index of the plane-parallel element made of ferroelectric crystal is changed by changing the imaging position of the first imaging optical system, which is the object point of the second imaging optical system, in the sub-scanning direction.

これによって、副走査方向の像面位置の変動を補正し、
被走査面上に結像するスポット径を良好に保つ。
This corrects fluctuations in the image plane position in the sub-scanning direction,
To maintain a good spot diameter formed on the surface to be scanned.

実施例 以下、本発明の一実施例について図面を参照して詳細に
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図および第2図は本発明の一実施例を示し、第1図
は走査光学系を偏向面に平行な方向から見たものであり
、第2図は第1図の走査光学系を光路に沿って展開し、
副走査方向に平行な方向から見たものである。従って、
第2図の上下方向は、副走査方向に対応する。第1図に
おいて、半導体レーザーとコリメータレンズからなる光
源部1か′ら出射した略平行光束は、第1結像光学系を
構成する副走査方向にのみ屈折力を有するシリンドリカ
ルレンズ2と強誘電体結晶からなる平行平面素子14を
通過し、矢印8の方向に回転する回転多面鏡3の偏向反
射面4によって偏向される。偏向された光束は第2結像
光学系5によって被走査面6上に結像し、且つ矢印7の
方向に走査される。
1 and 2 show an embodiment of the present invention. FIG. 1 shows the scanning optical system viewed from a direction parallel to the deflection plane, and FIG. 2 shows the scanning optical system of FIG. 1. unfolds along the optical path,
It is viewed from a direction parallel to the sub-scanning direction. Therefore,
The vertical direction in FIG. 2 corresponds to the sub-scanning direction. In FIG. 1, a substantially parallel light beam emitted from a light source section 1 consisting of a semiconductor laser and a collimator lens is composed of a cylindrical lens 2 having refractive power only in the sub-scanning direction and a ferroelectric lens 2, which constitutes a first imaging optical system. The light passes through a plane-parallel element 14 made of crystal, and is deflected by the deflecting reflection surface 4 of the rotating polygon mirror 3 rotating in the direction of the arrow 8. The deflected light beam forms an image on the scanning surface 6 by the second imaging optical system 5, and is scanned in the direction of the arrow 7.

一方、副走査方向においては、第2図に示す如く、光源
部1からの光束は、シリンドリカルレンズ2と強誘電体
結晶からなる平行平面素子14から構成される第1結像
光学系によって、偏向反射面4の近傍に線状に結像する
。第2結像光学系5は、前記結像点を物点として光学的
共役関係にある被走査面6上に像点を結像する。
On the other hand, in the sub-scanning direction, as shown in FIG. A linear image is formed near the reflective surface 4. The second imaging optical system 5 forms an image point on the scanned surface 6 having an optically conjugate relationship with the image forming point as an object point.

ここで、偏向器である回転多面鏡が回転し、偏向作用が
行われると、偏向反射面の偏向点位置の変化が発生し、
これによって第2結像光学系の副走査方向における物点
の位置にズレΔが生ずる。
Here, when the rotating polygon mirror that is the deflector rotates and a deflection effect is performed, a change in the deflection point position of the deflection reflection surface occurs.
This causes a shift Δ in the position of the object point in the sub-scanning direction of the second imaging optical system.

このズレΔは、第2結像光学系の副走査方向での縦倍率
をβとすると、被走査面上での副走査方向の結像位置の
ズレδは、 δ=Δ・β2 なる関係によって表される。そこで、このズレδを補正
し、更に加えて、第2結像光学系の副走査方向の像面湾
曲を補正する様に、第1結像光学系を構成する強誘電体
結晶からなる平行平面素子14に印加する電界を変化さ
せることによって強誘電体結晶からなる平行平面素子1
4の屈折率を変化させる。即ち屈折率を変化させること
によって光路長を変化させ、シリンドリカルレンズ2に
よって形成される焦線の位置を変化させることができる
。これによって、上記回転多面鏡の回転によって発生す
る第2結像光学系の副走査方向の物点位置の変動を、該
強誘電体結晶からなる平行平面素子14に印加する電界
を制御して強誘電体結晶からなる平行平面素子14の屈
折率を制御することで第1結像光学系による結像位置を
変化させ相殺させることができる。
This deviation Δ is determined by the relationship δ=Δ・β2, where β is the vertical magnification of the second imaging optical system in the sub-scanning direction, and the deviation δ of the imaging position on the scanned surface in the sub-scanning direction is calculated by the following relationship: δ=Δ・β2 expressed. Therefore, in order to correct this deviation δ and further correct the curvature of field in the sub-scanning direction of the second imaging optical system, parallel planes made of ferroelectric crystals constituting the first imaging optical system are used. By changing the electric field applied to the element 14, the parallel plane element 1 made of ferroelectric crystal
Change the refractive index of 4. That is, by changing the refractive index, the optical path length can be changed, and the position of the focal line formed by the cylindrical lens 2 can be changed. As a result, fluctuations in the object point position of the second imaging optical system in the sub-scanning direction caused by the rotation of the rotating polygon mirror can be strengthened by controlling the electric field applied to the parallel plane element 14 made of the ferroelectric crystal. By controlling the refractive index of the plane-parallel element 14 made of dielectric crystal, it is possible to change and cancel the image position by the first imaging optical system.

第3図は強誘電体結晶からなる平行平面素子14の屈折
率が変化したときの光路長の変化による第1結像光学系
の結像位置、即ち第2結像光学系の物点位置の移動の原
理を副走査方向から示したものである。光源からの略平
行光束は副走査方向にのみ屈折力を有するシリンドリカ
ルレンズ2によって収束光束となり強誘電体結晶からな
る平行平面素子14に入射する。入射光束は強誘電体結
晶の屈折率が低い時は実線19で示される如く光軸13
上に焦線を結像する。一方、強誘電体結晶の屈折率が高
い時には前記入射光束は破線20の如く焦線を結像する
。従って強誘電体結晶からなる平行平面素子の屈折率の
値の変化に応じて第1結像光学系の焦線の結像位置を任
意に制御できる。これによって、従来高密度化に伴って
特に問題となる副走査方向の像面位置の移動によるスポ
y)径の変動が抑制される。
FIG. 3 shows the imaging position of the first imaging optical system, that is, the object point position of the second imaging optical system, due to the change in optical path length when the refractive index of the parallel plane element 14 made of ferroelectric crystal changes. The principle of movement is shown from the sub-scanning direction. A substantially parallel light beam from a light source is converted into a convergent light beam by a cylindrical lens 2 having refractive power only in the sub-scanning direction and is incident on a parallel plane element 14 made of a ferroelectric crystal. When the refractive index of the ferroelectric crystal is low, the incident light beam moves along the optical axis 13 as shown by the solid line 19.
Focus a focal line on top. On the other hand, when the refractive index of the ferroelectric crystal is high, the incident light beam forms a focal line as shown by the broken line 20. Therefore, the imaging position of the focal line of the first imaging optical system can be arbitrarily controlled in accordance with the change in the value of the refractive index of the parallel plane element made of ferroelectric crystal. This suppresses fluctuations in the diameter of the spores due to movement of the image plane position in the sub-scanning direction, which has been a particular problem in the past with increasing density.

尚、上記強誘電体結晶からなる平行平面素子の屈折率の
変化は、主走査方向の偏向−周期毎に繰り返されるもの
であるから、予めその変化量を時間の関数として記憶装
置に入れておき、順次読み出すことによって、強誘電体
結晶からなる平行平面素子に印加する電界の制御を行え
ばよい。
Incidentally, since the change in the refractive index of the parallel plane element made of the ferroelectric crystal is repeated for each deflection period in the main scanning direction, the amount of change is stored in advance in a storage device as a function of time. , the electric field applied to the parallel plane element made of ferroelectric crystal can be controlled by sequentially reading out the information.

更に、上記例では、第1結像光学系は、1つのシリンド
リカルレンズと1つの強誘電体結晶からなる平行平面素
子で構成されているが、単独にあるいはそれぞれ複数枚
で構成し、収差補正の自由度を高めたり光路長の可変範
囲を高めることもできる。
Furthermore, in the above example, the first imaging optical system is composed of a parallel plane element consisting of one cylindrical lens and one ferroelectric crystal, but it may be composed of a single cylindrical lens or a plurality of each element to correct aberrations. It is also possible to increase the degree of freedom and the variable range of the optical path length.

第4図は光軸13に垂直な面に透明電極910を設けた
強誘電体結晶15からなる平行平面素子14の構成を示
す。透明電極9,10には端子11.12が接続されて
いる。端子11.12に所定の電圧が印加されると光軸
13に平行な方向に電界が加わり電気光学効果によって
強誘電体結晶15からなる平行平面素子14の屈折率が
変化し、光路長を所望の値にすることができる。第5図
は光軸13に平行な面に電極16.17を設けた強誘電
体結晶15からなる平行平面素子14の構成を示す。電
極16.17には端子11゜12が接続されている。端
子11.12に所定の電圧が印加されると光軸13に垂
直な方向に電界が加わり電気光学効果によって強誘電体
結晶15からなる平行平面素子14の屈折率が変化し、
同様に光路長を所望の値にすることができる。これらに
より回転多面鏡の回転によって生ずる偏向点の移動がも
たらす第1結像光学系の線状の結像の結像位置の移動、
すなわち第2結像光学系の物点位置の移動を、端子11
.12に印加する電圧を制御することで強誘電体結晶か
らなる平行平面素子の屈折率を変化させ、これにより光
路長を変えることで第1結像光学系による線状の結像の
位置を上記移動を相殺する如く変化制御させることがで
きる。尚、強誘電体結晶の屈折率の変化は電界に比例す
る1次電気光学効果、別名ポッケルス効果あるいは電界
の2乗に比例する2次電気光学効果、別名カー効果、更
に高次の効果等がある。いずれにしても電界の変化によ
ってできるだけ屈折率が大きく変化するものが望ましく
、例えば、L 1Nbo3.KH2PO,、KD2 P
O4゜BaTi0.、LiTa0.等の材料からなる結
晶がよい。
FIG. 4 shows the configuration of a parallel plane element 14 made of a ferroelectric crystal 15 provided with a transparent electrode 910 on a plane perpendicular to the optical axis 13. Terminals 11.12 are connected to the transparent electrodes 9,10. When a predetermined voltage is applied to the terminals 11 and 12, an electric field is applied in a direction parallel to the optical axis 13, and the refractive index of the parallel plane element 14 made of the ferroelectric crystal 15 changes due to the electro-optic effect, thereby adjusting the optical path length to the desired length. can be the value of FIG. 5 shows the configuration of a plane-parallel element 14 made of a ferroelectric crystal 15 with electrodes 16, 17 provided on a plane parallel to the optical axis 13. Terminals 11.12 are connected to the electrodes 16.17. When a predetermined voltage is applied to the terminals 11 and 12, an electric field is applied in a direction perpendicular to the optical axis 13, and the refractive index of the parallel plane element 14 made of the ferroelectric crystal 15 changes due to the electro-optic effect.
Similarly, the optical path length can be set to a desired value. Due to these, the movement of the image formation position of the linear image of the first imaging optical system caused by the movement of the deflection point caused by the rotation of the rotating polygon mirror;
In other words, the movement of the object point position of the second imaging optical system is controlled by the terminal 11.
.. By controlling the voltage applied to 12, the refractive index of the plane-parallel element made of ferroelectric crystal is changed, and by changing the optical path length, the position of the linear image formed by the first imaging optical system can be adjusted to the above-mentioned position. Changes can be controlled so as to offset the movement. The change in the refractive index of a ferroelectric crystal is caused by a first-order electro-optic effect proportional to the electric field, also known as the Pockels effect, a second-order electro-optic effect proportional to the square of the electric field, also known as the Kerr effect, and higher-order effects. be. In any case, it is desirable that the refractive index changes as much as possible depending on changes in the electric field; for example, L 1Nbo3. KH2PO,,KD2P
O4゜BaTi0. , LiTa0. Crystals made of materials such as

本発明になる強誘電体結晶からなる平行平面素子を用い
た走査光学系は従来特に補正が困難で高解像度化に対し
て障害となっていた副走査方向の像面移動を小さくでき
るので、これを用いたレーザービームプリンタは高画質
化が可能となる。第6図は強誘電体結晶からなる平行平
面素子を第1結像光学系に用いたレーザービームプリン
タの光学系に関する部分の主要な構成を示している。
The scanning optical system using a plane-parallel element made of ferroelectric crystal according to the present invention can reduce image plane movement in the sub-scanning direction, which was previously particularly difficult to correct and was an impediment to higher resolution. Laser beam printers using this technology can achieve high image quality. FIG. 6 shows the main structure of the optical system-related portion of a laser beam printer using a parallel plane element made of ferroelectric crystal as the first imaging optical system.

光源部1からの略平行光束であるレーザービームはシリ
ンドリカルレンズ2と強誘電体結晶からなる平行平面素
子14によって回転多面鏡3の近傍に線状に結像し、更
に偏向された後第2結像光学系5によって怒光ドラム2
1上に走査線18を潜像として記録する。記録された潜
像は、通常の静電現像プロセスによって顕像化され、紙
に転写定着される。
The laser beam, which is a substantially parallel beam from the light source 1, forms a linear image in the vicinity of the rotating polygon mirror 3 by a cylindrical lens 2 and a plane-parallel element 14 made of a ferroelectric crystal, and is further deflected into a second image. Angry light drum 2 by image optical system 5
1, a scanning line 18 is recorded as a latent image. The recorded latent image is visualized by a normal electrostatic development process and transferred and fixed onto paper.

発明の効果 以上述べたように、本発明によれば、高度に副走査方向
における像面の移動を補正することが可能であり、特に
高密度なスポットによる走査を必要とするレーザービー
ムプリンタ用の走査光学系を、大きな偏向角の場合でも
実現することが可能となり、産業上の価値は大である。
Effects of the Invention As described above, according to the present invention, it is possible to highly correct the movement of the image plane in the sub-scanning direction, and it is particularly suitable for laser beam printers that require scanning with a high-density spot. It becomes possible to realize a scanning optical system even at a large deflection angle, and this has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示すもので走査光学系を
偏向面に平行な方向から見た構成図、第2図は、本発明
の一実施例を示すもので副走査方向に平行な方向から見
た構成図、第3図は副走査方向に平行な方向から見た、
第1結像光学系を構成する強誘電体結晶の屈折率が変化
した時の焦線の結像位置の変化を示す説明図、第4図、
第5図は第1結像光学系を構成する強誘電体結晶を用い
た平行平面素子の構成を示す斜視図、第6図は本発明の
走査光学系を用いたレーザービームプリンタの概略構成
図である。 1・・・・・・光源部、2・・・・・・シリンドリカル
レンズ、3・・・・・・回転多面鏡、5・・・・・・第
2結像光学系、6・・・・・・被走査面、14・・・・
・・平行平面素子。 代理人の氏名 弁理士 粟野重孝 はか1名1!2図 愚 藩 図 図 ユ 厄 図
Fig. 1 shows an embodiment of the present invention, and is a configuration diagram of the scanning optical system viewed from a direction parallel to the deflection plane. Fig. 2 shows an embodiment of the invention, and shows the configuration of the scanning optical system viewed from a direction parallel to the deflection plane. The configuration diagram seen from a parallel direction, Figure 3 is a diagram seen from a direction parallel to the sub-scanning direction.
FIG. 4 is an explanatory diagram showing changes in the imaging position of the focal line when the refractive index of the ferroelectric crystal constituting the first imaging optical system changes;
FIG. 5 is a perspective view showing the configuration of a parallel plane element using a ferroelectric crystal constituting the first imaging optical system, and FIG. 6 is a schematic configuration diagram of a laser beam printer using the scanning optical system of the present invention. It is. DESCRIPTION OF SYMBOLS 1...Light source section, 2...Cylindrical lens, 3...Rotating polygon mirror, 5...Second imaging optical system, 6... ...Scanned surface, 14...
...Parallel plane element. Name of agent: Patent attorney Shigetaka Awano

Claims (4)

【特許請求の範囲】[Claims] (1)光源部と、前記光源部からの光束を線状に結像す
る第1結像光学系と、前記第1結像光学系により線状に
結像する近傍に反射面を有する偏向器と、前記偏向器に
より偏向された光束を、被走査面上に結像する第2結像
光学系とを有し、前記第1結像光学系は少なくとも1つ
の強誘電体結晶からなる平行平面素子を含み、前記強誘
電体結晶からなる平行平面素子に電界を印加して電気光
学効果によって平行平面素子の屈折率を変化させ光路長
を可変とすることによって、前記被走査面上に結像する
スポット径を制御する走査光学系。
(1) A light source unit, a first imaging optical system that forms a linear image of the light beam from the light source unit, and a deflector that has a reflective surface near the linear image that is formed by the first imaging optical system. and a second imaging optical system that images the light beam deflected by the deflector onto a scanned surface, and the first imaging optical system has a parallel plane made of at least one ferroelectric crystal. An image is formed on the surface to be scanned by applying an electric field to the plane-parallel element made of the ferroelectric crystal and changing the refractive index of the plane-parallel element by the electro-optic effect to make the optical path length variable. A scanning optical system that controls the spot diameter.
(2)強誘電体結晶からなる平行平面素子の光軸に垂直
な面にそれぞれ透明電極を設け、当該透明電極に電圧を
印加して強誘電体結晶からなる平行平面素子の屈折率を
変化させ光路長を可変とした強誘電体結晶からなる平行
平面素子を用いた請求項(1)記載の走査光学系。
(2) A transparent electrode is provided on each plane perpendicular to the optical axis of a plane-parallel element made of a ferroelectric crystal, and a voltage is applied to the transparent electrode to change the refractive index of the plane-parallel element made of a ferroelectric crystal. 2. A scanning optical system according to claim 1, which uses a plane-parallel element made of a ferroelectric crystal with variable optical path length.
(3)強誘電体結晶からなる平行平面素子の光軸に平行
な面にそれぞれ電極を設け、当該電極に電圧を印加して
強誘電体結晶からなる平行平面素子の屈折率を変化させ
光路長を可変とした強誘電体結晶からなる平行平面素子
を用いた請求項(1)記載の走査光学系。
(3) An electrode is provided on each plane parallel to the optical axis of a plane-parallel element made of a ferroelectric crystal, and a voltage is applied to the electrodes to change the refractive index of the plane-parallel element made of a ferroelectric crystal, thereby changing the optical path length. 2. A scanning optical system according to claim 1, which uses a plane-parallel element made of a ferroelectric crystal whose oscillation is variable.
(4)請求項(1)記載の走査光学系を用いたレーザー
ビームプリンタ。
(4) A laser beam printer using the scanning optical system according to claim (1).
JP7758989A 1989-03-28 1989-03-28 Scanning optical system and laser beam printer using its system Pending JPH02254409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7758989A JPH02254409A (en) 1989-03-28 1989-03-28 Scanning optical system and laser beam printer using its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7758989A JPH02254409A (en) 1989-03-28 1989-03-28 Scanning optical system and laser beam printer using its system

Publications (1)

Publication Number Publication Date
JPH02254409A true JPH02254409A (en) 1990-10-15

Family

ID=13638157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7758989A Pending JPH02254409A (en) 1989-03-28 1989-03-28 Scanning optical system and laser beam printer using its system

Country Status (1)

Country Link
JP (1) JPH02254409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293809A (en) * 1989-05-09 1990-12-05 Ricoh Co Ltd Optical scanner
EP0589654A1 (en) * 1992-09-25 1994-03-30 Xerox Corporation Device and apparatus for scan line process direction control in a multicolor electrostatographic machine
EP0660578A2 (en) * 1993-12-20 1995-06-28 Xerox Corporation Method and apparatus for wobble correction using an agile beam polygon ros and all-spherical optics
JP2008164991A (en) * 2006-12-28 2008-07-17 Canon Inc Light beam scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293809A (en) * 1989-05-09 1990-12-05 Ricoh Co Ltd Optical scanner
EP0589654A1 (en) * 1992-09-25 1994-03-30 Xerox Corporation Device and apparatus for scan line process direction control in a multicolor electrostatographic machine
EP0660578A2 (en) * 1993-12-20 1995-06-28 Xerox Corporation Method and apparatus for wobble correction using an agile beam polygon ros and all-spherical optics
EP0660578A3 (en) * 1993-12-20 1996-01-17 Xerox Corp Method and apparatus for wobble correction using an agile beam polygon ros and all-spherical optics.
JP2008164991A (en) * 2006-12-28 2008-07-17 Canon Inc Light beam scanner

Similar Documents

Publication Publication Date Title
US5550668A (en) Multispot polygon ROS with maximized line separation depth of focus
JPS61185716A (en) Optical beam scanner
US5757549A (en) Variable focal position optical system and light beam scanning apparatus
US7602554B2 (en) Optical scanning apparatus
US7858923B2 (en) Light beam scanning apparatus and image forming apparatus provided with the same
US5130839A (en) Scanning optical apparatus
JPH05224142A (en) Electrooptical controller and system for spot position control in optical output device
US5212381A (en) Method of controlling slow scan direction of spot position in an optical output device employing an electro-optical control apparatus
JPH02254409A (en) Scanning optical system and laser beam printer using its system
EP0589651B1 (en) Optical device having an electrically variable refractive index for scan line skew correction in electrostatographic printing machines
EP0813087B1 (en) Beam scanning apparatus
JPH06118323A (en) Optical device
JPH07128604A (en) Scanning optical device
JPH08190070A (en) Optical scanner
JPH0980334A (en) Scanning optical device
JP3504680B2 (en) Optical element and light beam scanning device
JPH02250021A (en) Scanning optical system and laser beam printer using it
JPH02163721A (en) Scanning optical system and laser beam printer using same
JP4940108B2 (en) Scanning optical device
JP3156305B2 (en) Optical writing device and gradation image recording device
JPH04331912A (en) Optical scanning device
JP3755269B2 (en) Optical scanning device
JPH04372921A (en) Scanning optical system and laser beam printer with scanning optical system
JPH06265807A (en) Light beam scanning optical system
JPH01142706A (en) Scanning optical system