JP2007171689A - Optical scanner and image forming apparatus using the same - Google Patents

Optical scanner and image forming apparatus using the same Download PDF

Info

Publication number
JP2007171689A
JP2007171689A JP2005370864A JP2005370864A JP2007171689A JP 2007171689 A JP2007171689 A JP 2007171689A JP 2005370864 A JP2005370864 A JP 2005370864A JP 2005370864 A JP2005370864 A JP 2005370864A JP 2007171689 A JP2007171689 A JP 2007171689A
Authority
JP
Japan
Prior art keywords
light beam
luminous flux
scanning device
light
optical scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005370864A
Other languages
Japanese (ja)
Other versions
JP4853015B2 (en
Inventor
Osamu Ide
収 井出
Shigemoto Washino
滋基 鷲野
Satoshi Tsuda
諭 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005370864A priority Critical patent/JP4853015B2/en
Publication of JP2007171689A publication Critical patent/JP2007171689A/en
Application granted granted Critical
Publication of JP4853015B2 publication Critical patent/JP4853015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep the stability of exposure intensity, particularly the stability of the exposure intensity of a half-tone image, by suppressing the dependency of a laser light source such as a surface light emitting laser on a driving current. <P>SOLUTION: The optical scanner comprises: a light source 1; a luminous flux focusing means 2 which focuses a plurality of luminous fluxes emitted from the light source 1; a luminous flux deflecting means 3 which deflects and scans the focused luminous flux; and an imaging optical means 4 which images the deflected and scanned luminous flux on a imaging face 5. The luminous flux focusing means 2 comprises: a parallel luminous flux converting member 2a which converts the luminous flux emitted from the light source 1 into a substantially parallel luminous flux; a luminous flux branching member 2d which branches the parallel luminous flux from the parallel luminous flux converting member 2a into a passing luminous flux and a reflected luminous flux, and is so disposed that the reflecting face of which member intersects substantially parallel to or at right angle with the reflecting face of the luminous flux deflecting means 3; and a 1/4-wavelength plate 2c which is disposed between the parallel luminous flux converting member 2a and the luminous flux branching member 2d, and so disposed that the reflectance of the luminous flux branching member 2d is kept constant even when the ratio of the polarized light direction component of the luminous flux varies. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機やプリンタ等の画像形成装置に用いられる光走査装置に係り、特に、電子写真方式にて潜像を形成するための露光光源として面発光レーザのような複数の発光ビームを有する光走査装置及びこれを用いた画像形成装置に関する。   The present invention relates to an optical scanning device used in an image forming apparatus such as a copying machine or a printer, and in particular, a plurality of light emitting beams such as a surface emitting laser are used as an exposure light source for forming a latent image by electrophotography. The present invention relates to an optical scanning device and an image forming apparatus using the same.

一般に、電子写真方式による画像形成装置では、半導体レーザを用いた光源からの光ビームを回転多面鏡で偏向し、帯電された感光体上を露光走査する光走査装置を用いて所望の潜像を形成する方式が知られている。このような方式において、光源として面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser diode)を用いたものが知られている。この面発光レーザは、端面出射型のレーザ(端面発光レーザ)と異なり、真円形状のビームプロファイルのため光学系を簡略化し易い、レーザアレイの二次元化が容易、低消費電力/高速駆動等の利点があり、各分野で利用が活発化している。   In general, in an electrophotographic image forming apparatus, a light beam from a light source using a semiconductor laser is deflected by a rotary polygon mirror, and a desired latent image is formed using an optical scanning device that performs exposure scanning on a charged photoreceptor. A method of forming is known. In such a system, one using a surface emitting laser (VCSEL) as a light source is known. Unlike the edge-emitting laser (edge-emitting laser), this surface-emitting laser is easy to simplify the optical system due to the perfect circular beam profile, easy to make the laser array two-dimensional, low power consumption / high-speed driving, etc. There is an advantage, and the use is increasing in each field.

一方、半導体レーザを用いて光走査装置を構成するには、通常、半導体レーザ自体の発光量をモニタして、これを基にレーザのパワーコントロール(光量制御)を行う必要がある。この場合、端面出射型のレーザでは後方出射光を利用することが可能であるが、面発光レーザでは前方出射光を利用するしかない。そのため、例えば図6に示すように、面発光レーザ101から前方に出射される出射光が通過する光学系内にビームスプリッタ102を挿入し、このビームスプリッタ102で出射光の一部を分岐させてモニタ光103とすることが提案されている(特許文献1参照)。   On the other hand, in order to configure an optical scanning device using a semiconductor laser, it is usually necessary to monitor the light emission amount of the semiconductor laser itself and perform laser power control (light amount control) based on this. In this case, the rear emission light can be used with the edge emitting laser, but the front emission light can only be used with the surface emitting laser. Therefore, for example, as shown in FIG. 6, a beam splitter 102 is inserted into an optical system through which outgoing light emitted forward from the surface emitting laser 101 passes, and a part of the outgoing light is branched by this beam splitter 102. It has been proposed to use the monitor light 103 (see Patent Document 1).

また、面発光レーザの基本形状は等方形のため、偏光方向は基本的にランダムであり、同一素子でも注入電流(駆動電流)によって偏光方向に変化がある。そのため、共振器の断面形状を楕円形にしたり、配線によってストレスを与えることで複数ビームの偏光方向を所定の方向に揃えるようにした提案もなされている。
しかしながら、面発光レーザの複数ビームの偏光方向を揃える効果は、面発光レーザの構造や製造方法によって異なり、全ての面発光レーザに対して効果があるわけではない。そのため、面発光レーザは端面発光レーザほどの偏光比を確保することは困難であり、更に、その比が注入電流(駆動電流)によって変化することもある。
Further, since the basic shape of the surface emitting laser is isotropic, the polarization direction is basically random, and even in the same element, the polarization direction varies depending on the injection current (drive current). Therefore, proposals have been made to make the polarization direction of a plurality of beams uniform in a predetermined direction by making the cross-sectional shape of the resonator elliptical or applying stress by wiring.
However, the effect of aligning the polarization directions of a plurality of beams of a surface emitting laser differs depending on the structure and manufacturing method of the surface emitting laser, and is not effective for all surface emitting lasers. Therefore, it is difficult for the surface emitting laser to secure a polarization ratio as that of the edge emitting laser, and the ratio may change depending on the injection current (drive current).

一方、光学部品への各種コーティングは、その反射率がビームの偏光方向に対して依存性を有する。そのため、例えばハーフミラーへのコーティングによっては、偏光比が悪くなったり、偏光比が変動するようになると、回転多面鏡によって偏向されたビームを折り返す折り返しミラーの反射率が走査角度によって変化するようになり、結像面(感光体)上を均一な光量で露光することが難しくなる。   On the other hand, various coatings on optical components have a dependency on the polarization direction of the beam. Therefore, for example, depending on the coating on the half mirror, when the polarization ratio becomes worse or the polarization ratio fluctuates, the reflectivity of the folding mirror that folds the beam deflected by the rotating polygon mirror changes depending on the scanning angle. Therefore, it becomes difficult to expose the imaging surface (photosensitive member) with a uniform light amount.

また、光量制御のためにビームスプリッタ(ハーフミラー)を用いた場合、このハーフミラーの透過/反射比に偏光方向依存性があると、偏光比によってモニタ光を受光する受光素子と結像面(感光体)上の光量との相関関係が変化してしまい、光量検出精度が悪化し、適正な光量制御ができなくなるという問題がある。   When a beam splitter (half mirror) is used for light quantity control, if the transmission / reflection ratio of the half mirror has a polarization direction dependency, a light receiving element that receives monitor light according to the polarization ratio and an imaging plane ( There is a problem that the correlation with the light quantity on the photosensitive member) changes, the light quantity detection accuracy deteriorates, and proper light quantity control cannot be performed.

このような問題に対し、図7に示すように、面発光レーザ111の結晶成長のA軸方向からB軸方向に45度傾斜した方向に直線偏光素子(偏光ビームスプリッタ)112を配置することによって、A軸とB軸の中間の45度に偏光されたビームだけを取り出して出力を安定化させる技術も知られている(特許文献2参照)。   To solve such a problem, as shown in FIG. 7, a linearly polarizing element (polarizing beam splitter) 112 is arranged in a direction inclined 45 degrees from the A-axis direction to the B-axis direction in the crystal growth of the surface emitting laser 111. A technique is also known in which only the beam polarized at 45 degrees between the A axis and the B axis is taken out to stabilize the output (see Patent Document 2).

特開平8−330661号公報(実施例、図11)JP-A-8-330661 (Example, FIG. 11) 実開平4−121771号公報(実施例、図1)Japanese Utility Model Laid-Open No. 4-121771 (Example, FIG. 1) 特開平8−264873号公報(実施例、図1)JP-A-8-264873 (Example, FIG. 1) 特開平2002−40350号公報(発明の実施の形態、図9)JP-A-2002-40350 (Embodiment of the Invention, FIG. 9)

しかしながら、この方式では、ビームの大部分が所望の偏光方向となっていても、光量は約半分に減衰してしまい、光量の利用効率が常に低くなってしまう問題があった。
面発光レーザは、端面発光レーザよりも共振器長が短いため、端面発光レーザより出力が小さい。更に、上述したように、所望の偏光方向以外のビームを除去するようにすれば、実効パワーは益々小さくなる。そのため、光量検出用(モニタ光検出用)の受光素子の感度よりも各ビームのパワーが小さくなりすぎて受光素子での光量検出ができなかったり、検出精度が低下するようにもなる。
However, this method has a problem that even if most of the beam has a desired polarization direction, the amount of light is attenuated by about half, and the efficiency of use of the amount of light is always reduced.
Since the surface emitting laser has a shorter cavity length than the edge emitting laser, the output is smaller than that of the edge emitting laser. Further, as described above, if the beam other than the desired polarization direction is removed, the effective power becomes smaller. For this reason, the power of each beam becomes too smaller than the sensitivity of the light receiving element for detecting the light amount (for detecting the monitor light), and the light amount cannot be detected by the light receiving element, or the detection accuracy is lowered.

このような問題に対し、本件出願人は、ビーム1本ずつではなく、複数本まとめて受光素子に入射させて検出光量を稼ぎ、各ビームの駆動電流と発光強度の関係を予め測定して記憶しておくことで、ばらつき分を考慮しながら、光量制御を全ビームの総和光量で行うようにした方式を提案した(特許文献3参照)。しかし、各ビームの駆動電流に対する発光強度は、使用温度や経時によって変化するためビーム毎に変化の仕方が異なり、ビーム間でのばらつき自体が大きくなってしまう懸念がある。更に、偏光方向は駆動電流によって変動するため、ベタ画像を露光する際の露光強度の変動は吸収されるものの、駆動電流に依存して起こるレーザ発光立ち上がり時の透過率変動を補正できず、ハーフトーン画像を露光する際の露光変動を抑制することができない懸念もある。   In response to such a problem, the applicant of the present invention collects a plurality of beams, rather than one beam at a time, and enters the light receiving element to increase the amount of light detected, and measures and stores in advance the relationship between the drive current and emission intensity of each beam. Thus, a method has been proposed in which the light amount control is performed with the total light amount of all the beams while taking into account the variation (see Patent Document 3). However, since the light emission intensity with respect to the drive current of each beam changes depending on the use temperature and time, the method of change differs for each beam, and there is a concern that the dispersion itself between the beams becomes large. Furthermore, since the polarization direction varies depending on the driving current, the variation in exposure intensity when a solid image is exposed is absorbed, but the variation in transmittance at the rise of laser emission that occurs depending on the driving current cannot be corrected, and half There is also a concern that exposure fluctuations when a tone image is exposed cannot be suppressed.

本発明は、以上の技術的課題を解決するためになされたものであって、面発光レーザのような偏光方向が異なる複数の光束を出射するレーザ光源の駆動電流依存性を抑制し、露光強度の安定性、特に、ハーフトーン画像露光時の露光強度の安定性を維持するようにした光走査装置及びこれを用いた画像形成装置を提供するものである。   The present invention has been made to solve the above technical problems, and suppresses the drive current dependency of a laser light source that emits a plurality of light beams having different polarization directions, such as a surface emitting laser, and exposure intensity. In particular, the present invention provides an optical scanning apparatus and an image forming apparatus using the same, which maintain the stability of the exposure, particularly the stability of the exposure intensity during halftone image exposure.

以上のような問題に対し、本件出願人は、複数のビームを平行光化した後、アパーチャによって絞り、また、1/4波長板を用いることで、ビームスプリッタへの偏光を全て円偏光にすることで、ビームスプリッタや折り返しミラーでの反射率の影響を低減させるようにした方式を提案した(特許文献4参照)。しかしながら、面発光レーザによるビームの偏光方向は一様でないため、1/4波長板を透過した光線を全て円偏光にすることができず、所望の特性を得ることが困難であった。そのため、本件発明者らは、光量の安定化を図るため、波長板の特性に更に着目し、本件発明を見出すに至った。   For the above problems, the applicant of the present application collimates a plurality of beams and then stops the aperture with an aperture and uses a quarter-wave plate to make all the polarization to the beam splitter circular. Thus, a method has been proposed in which the influence of the reflectance at the beam splitter and the folding mirror is reduced (see Patent Document 4). However, since the polarization direction of the beam by the surface emitting laser is not uniform, it is difficult to obtain all the light beams that have been transmitted through the quarter-wave plate, and to obtain desired characteristics. Therefore, the present inventors have found the present invention by paying more attention to the characteristics of the wave plate in order to stabilize the amount of light.

すなわち、本発明は、図1に示すように、夫々の偏光方向成分の比率p/(p+s)が異なり且つ駆動電流による偏光成分の比率が変動する複数の光束を出射する光源1と、光源1から出射された複数の光束を集光する光束集光手段2と、集光された光束を偏向走査する光束偏向手段3と、偏向走査された光束を結像面5に結像させる結像光学手段4とを備え、光束集光手段2は、光源1から出射された光束を略平行な光束にする平行光束変換部材2aと、平行光束変換部材2aからの平行光束を透過光束及び反射光束に分岐すると共にその反射面が前記光束偏向手段3の反射面と略平行又は略直交するように配設された光束分岐部材2dと、平行光束変換部材2aと光束分岐部材2dとの間に設けられ且つ光束分岐部材2dでの反射率が光束の偏光方向成分の比率が変動しても一定となるように配設される1/4波長板2cとを具備することを特徴とするものである。   That is, as shown in FIG. 1, the present invention includes a light source 1 that emits a plurality of light fluxes having different polarization direction component ratios p / (p + s) and varying polarization component ratios due to drive currents, and a light source 1. A light beam condensing unit 2 that condenses a plurality of light beams emitted from the light beam, a light beam deflecting unit 3 that deflects and scans the collected light beam, and an imaging optical that forms an image on the imaging surface 5 with the deflected and scanned light beam The light beam condensing means 2 includes a parallel light beam conversion member 2a that converts the light beam emitted from the light source 1 into a substantially parallel light beam, and the parallel light beam from the parallel light beam conversion member 2a into a transmitted light beam and a reflected light beam. The light beam branching member 2d is arranged between the parallel light beam conversion member 2a and the light beam branching member 2d. The light beam branching member 2d is arranged so as to be branched and its reflection surface is substantially parallel or substantially orthogonal to the reflection surface of the light beam deflecting means 3. In addition, the reflectance at the light beam branching member 2d is light. It is characterized in that even when the variation ratio of the polarization direction component and a quarter-wave plate 2c disposed so as to be constant.

このような技術的手段において、光源1としては複数の光束が出射されるものであればよく、光源1の数量は特に限定されない。例えば1個の面発光レーザ(VCSEL)にて複数の光束を出射するようなタイプでもよいし、面発光レーザや端面発光レーザを複数備えるようなタイプでもよい。尚、複数の端面発光レーザの偏光方向を揃えて並べる態様は本件には含まない。
また、通常、面発光レーザを使用すると、偏光方向のp成分(反射面に平行な成分)とs成分(反射面に垂直な成分)との比率p/(p+s)が異なると共に、駆動電流による偏光方向成分の比率が変動する。そのため、この安定化が要請されるようになる。
In such technical means, the light source 1 may be any one that emits a plurality of light beams, and the number of the light sources 1 is not particularly limited. For example, a type in which a plurality of light beams are emitted by one surface emitting laser (VCSEL), or a type in which a plurality of surface emitting lasers and end surface emitting lasers are provided may be used. Note that the case where the polarization directions of a plurality of edge-emitting lasers are aligned is not included in this case.
In general, when a surface emitting laser is used, the ratio p / (p + s) between the p component in the polarization direction (a component parallel to the reflection surface) and the s component (a component perpendicular to the reflection surface) is different. The ratio of the polarization direction component varies. Therefore, this stabilization is required.

更に、光束偏向手段3は、入射される光束を偏向走査できるものであればよく、代表的態様としては回転するポリゴンミラーが挙げられる。更に、結像光学手段4は、光束偏向手段3によって偏向走査された光束を結像面5上に結像させるようになっていればよく、例えば反射鏡やfθレンズ等で構成される。
そして、本発明での光束集光手段2は、光源1から出射された光束を集光して光束偏光手段3に照射できればよく、光源1側に配置され且つ光源1から出射された光束を略平行な光束にする平行光束変換部材2aと、光束偏向手段3側に配置され且つ平行光束を等価光束及び反射光束に分岐すると共にその反射面が光束偏向手段3の反射面と平行又は直交するように設定された光束分岐部材2dと、両者の間に設けられた1/4波長板2cを含むものである。
ここで、平行光束変換部材2aとしては、光源1からの光束を平行光束に変換するものであり、代表的態様としてはコリメータレンズが挙げられる。また、光束分岐部材2dとしては、光束を透過光束と反射光束に分岐するものであり、ハーフミラーを用いた態様やビームスプリッタを用いた態様が挙げられる。尚、本件でいう「反射面」とは、ある境界面に対し、入射光と出射光(反射光)とがなす平面を意味する。
Further, the light beam deflecting means 3 may be any device that can deflect and scan an incident light beam, and a typical embodiment includes a rotating polygon mirror. Further, the imaging optical means 4 is only required to form an image of the light beam deflected and scanned by the light beam deflecting means 3 on the imaging surface 5, and is composed of, for example, a reflecting mirror or an fθ lens.
The light beam condensing means 2 in the present invention only needs to collect the light beam emitted from the light source 1 and irradiate the light beam polarizing means 3. The light beam concentrating means 2 disposed on the light source 1 side and substantially emitting the light beam emitted from the light source 1. A parallel light beam conversion member 2a that converts the light beam into a parallel light beam and the light beam deflecting means 3 side, and splits the parallel light beam into an equivalent light beam and a reflected light beam, and its reflecting surface is parallel or orthogonal to the reflecting surface of the light beam deflecting means 3. And a quarter-wave plate 2c provided between them.
Here, as the parallel light beam conversion member 2a, the light beam from the light source 1 is converted into a parallel light beam, and a typical mode includes a collimator lens. Further, as the light beam branching member 2d, a light beam is branched into a transmitted light beam and a reflected light beam, and a mode using a half mirror or a mode using a beam splitter can be mentioned. The “reflecting surface” in this case means a plane formed by incident light and outgoing light (reflected light) with respect to a certain boundary surface.

本発明では、1/4波長板2cを光学軸が光束分岐部材2dの反射面に対し±45度傾斜して配置することが好ましく、このように配置することで、この波長板に入射する光束の偏光方向が各種あっても、1/4波長板2cを通過した光束は直線偏光、円偏光、楕円偏光のいずれかになり、夫々の偏光は異なるが、時間平均した振幅反射率はいずれも等しくなり、光源1側の光束の偏光によらず、安定した光束として捉えることができるようになる。そのため、光束分岐部材2dでの透過光束及び反射光束の双方を共に安定させることができる。尚、±45度とは実際に波長板を設置する際の許容差を含み、略±45度を意味する。   In the present invention, it is preferable that the quarter wavelength plate 2c is disposed with the optical axis inclined by ± 45 degrees with respect to the reflecting surface of the light beam branching member 2d. By arranging in this way, the light beam incident on the wave plate Even if there are various polarization directions, the light beam that has passed through the quarter-wave plate 2c is either linearly polarized light, circularly polarized light, or elliptically polarized light, and each polarized light is different, but the time-averaged amplitude reflectivity is all It becomes equal and can be regarded as a stable light beam regardless of the polarization of the light beam on the light source 1 side. Therefore, it is possible to stabilize both the transmitted light beam and the reflected light beam in the light beam branching member 2d. In addition, ± 45 degrees includes a tolerance when the wave plate is actually installed, and means approximately ± 45 degrees.

また、本発明は、光束分岐部材2dによる透過光束又は反射光束のいずれかの光束の強度に基づいて光源1の出射強度を補正する光強度補正手段6を備えることが好ましく、これによれば、光源1から出射される光束の安定化を図ることができるようになる。   In addition, the present invention preferably includes light intensity correction means 6 that corrects the emission intensity of the light source 1 based on the intensity of either the transmitted light beam or the reflected light beam by the light beam branching member 2d. The light flux emitted from the light source 1 can be stabilized.

更に、本件発明における光束集光手段2は、平行光束変換部材2aと光束偏向手段3との間に平行光束を形状規制する光束規制部材2bを備えることが好ましく、これによれば、光束偏向手段3へ入射される光束を有効に絞ることができ、結像面5でのビームスポットが絞り易くなる。また、前述した1/4波長板2cは、光束規制部材2bと光束分岐部材2dとの間に配置してもよいし、平行光束変換部材2aと光束規制部材2bとの間に配置するようにしても差し支えないが、光束規制部材2bによる光束の形状規制がなされたものの後に配置する方が、特性の安定性を向上させる観点から好ましい。   Further, the light beam condensing means 2 in the present invention preferably includes a light beam regulating member 2b for regulating the shape of the parallel light beam between the parallel light beam converting member 2a and the light beam deflecting means 3, and according to this, the light beam deflecting means. The light beam incident on 3 can be effectively reduced, and the beam spot on the image plane 5 can be easily reduced. The quarter-wave plate 2c described above may be disposed between the light beam restricting member 2b and the light beam branching member 2d, or may be disposed between the parallel light beam converting member 2a and the light beam restricting member 2b. However, it is preferable to arrange the light beam after the light beam shape restriction by the light beam restriction member 2b from the viewpoint of improving the stability of the characteristics.

また、本発明における結像光学手段4は、反射鏡を有し、この反射鏡の主走査方向中央部にて反射される光束の当該反射鏡における反射面が光束分岐部材2dの反射面と略直交又は略平行するように配置されていることが好ましく、結像光学手段4にこのような反射鏡を備えることで、レイアウトの自由度、小型化が促進されるようになる。
更に、この反射鏡は、反射される光束の偏光方向のp成分とs成分との差が共に互いの2%以下になるように当該反射鏡表面に反射防止層を備えていることが好ましく、これによれば、反射される光束のp成分とs成分との差が2%以下と小さいため、反射鏡での反射による偏光の影響を無視できるようになる。また、反射防止層を備えることで、反射鏡表面での不要な反射を防ぎ、反射境界面での反射を確実に行うことができるようになる。
そして、反射防止層としては、互いに屈折率の異なる複数の薄膜層を積層した積層膜とすることが好ましく、更には、4層以上の薄膜層からなる積層膜であることが好ましい。これによれば、反射される光束のp成分とs成分との差を2%以下にすることも比較的容易になされるようになる。
The imaging optical means 4 in the present invention has a reflecting mirror, and the reflecting surface of the light beam reflected at the central portion in the main scanning direction of the reflecting mirror is substantially the same as the reflecting surface of the light beam branching member 2d. It is preferable that they are arranged so as to be orthogonal or substantially parallel, and by providing such a reflecting mirror in the imaging optical means 4, freedom of layout and miniaturization are promoted.
Further, the reflecting mirror preferably includes an antireflection layer on the surface of the reflecting mirror so that the difference between the p component and the s component in the polarization direction of the reflected light beam is 2% or less of each other. According to this, since the difference between the p component and the s component of the reflected light beam is as small as 2% or less, the influence of the polarization due to the reflection by the reflecting mirror can be ignored. Further, by providing the antireflection layer, unnecessary reflection on the surface of the reflecting mirror can be prevented, and reflection on the reflection boundary surface can be reliably performed.
The antireflection layer is preferably a laminated film in which a plurality of thin film layers having different refractive indexes are laminated, and more preferably a laminated film comprising 4 or more thin film layers. According to this, it becomes relatively easy to make the difference between the p component and the s component of the reflected light beam 2% or less.

また、本発明の複数の光束を出射する光源1は、1個の面発光レーザであることが好ましく、この場合、設計の自由度を大きく向上させることができるようになる。
更に、本発明は光走査装置に限らず、画像形成装置をも対象とするものであり、この場合、静電潜像が担持される像担持体と、この像担持体上に結像可能な光走査装置として、上述の光走査装置を備えるようにすればよい。
The light source 1 for emitting a plurality of light beams according to the present invention is preferably a single surface emitting laser, and in this case, the degree of freedom in design can be greatly improved.
Furthermore, the present invention is not limited to an optical scanning device, and is also intended for an image forming apparatus. In this case, an image carrier on which an electrostatic latent image is carried and an image can be formed on the image carrier. What is necessary is just to make it provide the above-mentioned optical scanning device as an optical scanning device.

本発明によれば、複数の光束を出射する光源と、光束集光手段と、光束偏向手段と、結像光学手段とを備え、光束集光手段には、平行光束変換部材と、平行光束変換部材からの平行光束を透過光束及び反射光束に分岐すると共にその反射面が前記光束偏向手段の反射面と略平行又は略直交するように配設された光束分岐部材と、平行光束変換部材と光束分岐部材との間に設けられ且つ光学軸が光束分岐部材の反射面に対し+45度又は−45度傾けて配設される1/4波長板とを具備するようにしたので、複数の光束の偏光方向が異なっても、安定した光量制御が可能になり、露光強度を安定化させることができるようになる。そのため、特に、ハーフトーン画像露光時の露光強度を安定させることができ、高画質な潜像形成が可能な光走査装置を提供することができる。
また、このような光走査装置を用いることで、高画質、特にハーフトーン画像をも高画質化可能な画像形成装置を提供することができる。
According to the present invention, a light source that emits a plurality of light beams, a light beam condensing unit, a light beam deflecting unit, and an imaging optical unit are provided. The light beam condensing unit includes a parallel light beam conversion member and a parallel light beam conversion unit. A light beam branching member that branches a parallel light beam from the member into a transmitted light beam and a reflected light beam and whose reflection surface is substantially parallel or substantially orthogonal to the reflection surface of the light beam deflecting means; a parallel light beam conversion member; And a quarter-wave plate provided between the branching member and the optical axis inclined at +45 degrees or -45 degrees with respect to the reflecting surface of the beam branching member. Even if the polarization directions are different, stable light quantity control is possible, and the exposure intensity can be stabilized. Therefore, in particular, it is possible to provide an optical scanning device that can stabilize the exposure intensity at the time of halftone image exposure and can form a high-quality latent image.
Further, by using such an optical scanning device, it is possible to provide an image forming apparatus capable of improving the image quality, particularly the halftone image.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図2は本発明が適用された画像形成装置の実施の形態を示す。
同図において、本実施の形態の画像形成装置は、装置本体50内に、感光体ドラム20と、この感光体ドラム20からトナー像を転写させるために感光体ドラム20に対向配置される中間転写ベルト30とを備え、4色のカラー画像を得るために中間転写ベルト30上に4回の多重転写を行う所謂4サイクル方式の中間転写型カラー画像形成装置である。
本実施の形態において、感光体ドラム20は光の照射によって抵抗値が低下する感光層を備えたものであり、この感光体ドラム20の周囲には、感光体ドラム20を帯電する帯電装置21と、帯電された感光体ドラム20上に各色成分(本例ではブラック(K)、イエロー(Y)、マゼンタ(M)、シアン(C))の静電潜像を書込む光走査装置(露光装置)60と、感光体ドラム20上に形成された各色成分潜像を各色成分トナーにて可視像化するロータリ型現像装置23と、中間転写ベルト30と、感光体ドラム20上の残留トナーを清掃するクリーニング装置27とが配設されている。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
FIG. 2 shows an embodiment of an image forming apparatus to which the present invention is applied.
In the figure, the image forming apparatus according to the present embodiment includes a photoconductor drum 20 and an intermediate transfer disposed opposite to the photoconductor drum 20 in order to transfer a toner image from the photoconductor drum 20 in the apparatus main body 50. This is a so-called four-cycle type intermediate transfer type color image forming apparatus that includes a belt 30 and performs four times of multiple transfers on the intermediate transfer belt 30 to obtain four color images.
In the present embodiment, the photosensitive drum 20 includes a photosensitive layer whose resistance value is reduced by light irradiation. Around the photosensitive drum 20, a charging device 21 for charging the photosensitive drum 20 and a charging device 21 are provided. An optical scanning device (exposure device) for writing an electrostatic latent image of each color component (in this example, black (K), yellow (Y), magenta (M), cyan (C)) on the charged photosensitive drum 20. ) 60, a rotary developing device 23 that visualizes each color component latent image formed on the photosensitive drum 20 with each color component toner, an intermediate transfer belt 30, and residual toner on the photosensitive drum 20. A cleaning device 27 for cleaning is disposed.

ここで、帯電装置21としては、例えば帯電ロールが用いられるが、コロトロン等の帯電器を用いてもよい。また、ロータリ型現像装置23は各色成分トナーが収容された現像器23a〜23dを回転可能に搭載したものであり、例えば感光体ドラム20上で露光によって電位が低下した部分に各色成分トナーを付着させるものであれば適宜選定して差し支えなく、使用するトナーも形状、粒径等特に制限はなく、感光体ドラム20上の静電潜像上に正確に載るものであればよい。尚、本例では、ロータリ型現像装置23が用いられているが、4台の現像装置を用いるようにしてもよい。更に、クリーニング装置27は、感光体ドラム20上の残留トナーを清掃するものであれば、ブレードクリーニング方式を採用したもの等適宜選定して差し支えない。ただし、転写率の高いトナーを使用する場合にはクリーニング装置27を使用しない態様もあり得る。   Here, as the charging device 21, for example, a charging roll is used, but a charger such as a corotron may be used. Further, the rotary developing device 23 is rotatably mounted with developing units 23a to 23d containing respective color component toners. For example, the respective color component toners are attached to a portion of the photosensitive drum 20 where the potential is lowered by exposure. The toner to be used is not particularly limited in shape and particle size, and any toner may be used as long as it is accurately placed on the electrostatic latent image on the photosensitive drum 20. In this example, the rotary developing device 23 is used, but four developing devices may be used. Furthermore, as long as the cleaning device 27 cleans the residual toner on the photosensitive drum 20, a cleaning device employing a blade cleaning method may be appropriately selected. However, there may be a mode in which the cleaning device 27 is not used when toner having a high transfer rate is used.

また、中間転写ベルト30は、3つの張架ロール31〜33に掛け渡されるものであって、例えば張架ロール31を駆動ロールとして循環移動するようになっている。
ここで、中間転写ベルト30は、ポリイミド樹脂等の樹脂材を適宜選定して差し支えないが、ホロキャラクター等の画質欠陥を有効に抑えるには、感光体ドラム20との接触面圧を下げることが必要であり、また、ウォークレス及びテンショナーレスという観点を考慮すれば、弾性ゴムを基体(弾性層)としたウレタンゴム等のゴム製ベルト材を使用することが好ましい。
Further, the intermediate transfer belt 30 is stretched around three stretching rolls 31 to 33, and circulates and moves, for example, using the stretching roll 31 as a driving roll.
Here, the intermediate transfer belt 30 may be appropriately selected from a resin material such as polyimide resin. However, in order to effectively suppress image quality defects such as a holocharacter, the contact surface pressure with the photosensitive drum 20 may be lowered. In consideration of the viewpoint of walkless and tensionerless, it is preferable to use a rubber belt material such as urethane rubber having an elastic rubber as a base (elastic layer).

更に、本実施の形態において、中間転写ベルト30の感光体ドラム20に対向する部位では、中間転写ベルト30の裏面側に一次転写部材としての一次転写ロール25が接触配置されており、所定の一次転写バイアスが印加されている。
更にまた、中間転写ベルト30の張架ロール32に対向した部位には、二次転写部材としての二次転写ロール35が張架ロール32をバックアップロールとして対向配置されており、例えば二次転写ロール35に所定の二次転写バイアスが印加され、バックアップロールを兼用する張架ロール32が接地されている。
尚、中間転写ベルト30の張架ロール31に対向した部位にはベルトクリーニング装置36が配設され、中間転写ベルト30上の残留トナーを清掃するようになっている。
また、用紙などの記録材40は、図示外の供給トレイ内に収容されており、フィードロール41にて供給された後、レジストロール42を経て二次転写部位に導かれ、二次転写ロール35によって中間転写ベルト30上に多重転写されたトナー像が記録材上に一括転写される。トナー像が一括転写された記録材は搬送ベルト43を介して定着装置45へと搬送され、しかる後、搬送ロール46、排出ロール47を経て装置本体50上部に形成された排出トレイ48へ収容されるようになっている。
Further, in the present embodiment, a primary transfer roll 25 as a primary transfer member is disposed in contact with the back side of the intermediate transfer belt 30 at a portion of the intermediate transfer belt 30 facing the photosensitive drum 20, and a predetermined primary A transfer bias is applied.
Furthermore, a secondary transfer roll 35 as a secondary transfer member is disposed opposite to the tension roll 32 of the intermediate transfer belt 30 with the tension roll 32 as a backup roll. For example, the secondary transfer roll A predetermined secondary transfer bias is applied to 35, and a stretching roll 32 that also serves as a backup roll is grounded.
Note that a belt cleaning device 36 is disposed at a portion of the intermediate transfer belt 30 facing the stretching roll 31 so as to clean the residual toner on the intermediate transfer belt 30.
Further, the recording material 40 such as paper is accommodated in a supply tray (not shown), and is supplied by a feed roll 41 and then guided to a secondary transfer portion through a resist roll 42 and a secondary transfer roll 35. As a result, the toner images that have been multiple-transferred onto the intermediate transfer belt 30 are collectively transferred onto the recording material. The recording material on which the toner images are collectively transferred is conveyed to the fixing device 45 via the conveyance belt 43, and then accommodated in the discharge tray 48 formed on the upper portion of the apparatus main body 50 via the conveyance roll 46 and the discharge roll 47. It has become so.

そして、特に、本実施の形態における光走査装置60は、図3に示すように、複数の発光ビームを出射する面発光レーザ(VCSEL)61、VCSEL61から出射された発光ビームを集光する集光装置70、集光装置70によって集光された光束を偏向走査するポリゴンミラー80、ポリゴンミラー80によって偏向走査された光束を感光体ドラム20上に結像する結像光学装置90とで構成されている。尚、本実施の形態のVCSEL61は、活性層に対して発光ビームが垂直に出射されるので偏光方向が不規則になり易い性質を持っている。   In particular, the optical scanning device 60 according to the present embodiment, as shown in FIG. 3, is a surface emitting laser (VCSEL) 61 that emits a plurality of emission beams, and a condensing beam that collects the emission beams emitted from the VCSEL 61. A device 70, a polygon mirror 80 that deflects and scans the light beam condensed by the light collector 70, and an imaging optical device 90 that forms an image on the photosensitive drum 20 of the light beam deflected and scanned by the polygon mirror 80. Yes. Note that the VCSEL 61 of the present embodiment has a property that the polarization direction tends to be irregular because the emitted light beam is emitted perpendicularly to the active layer.

また、集光装置70は、VCSEL61から出射された発光ビームを平行光化(コリメート)し平行光束にするコリメータレンズ71、コリメータレンズ71による平行光束の断面形状を整形する光束規制部材としての絞り72、整形された光束が透過する1/4波長板73、1/4波長板を透過した光束を透過光束と反射光束に分岐するハーフミラー74、ハーフミラー74を透過した光束を副走査方向に沿って集光するシリンドリカルレンズ75とで構成されている。
更に、絞り72は、コリメータレンズ71の像側焦点位置に配置されており、VCSEL61から出射された複数の発光ビームが絞り72に設けられた開口部(アパーチャ)72aの位置で交差するようになる。そのため、複数の発光ビームを1つのアパーチャ72aで等価的に整形することができるようになる。尚、アパーチャ72aの開口幅は光学系の横倍率と感光体ドラム20のスポットサイズに依存することから、所望の光学系横倍率とスポットサイズが選択されるように、アパーチャ72a形状が決められている。
更にまた、1/4波長板73は、アパーチャ72aで整形された光束が透過する際、偏光方向のp成分とs成分との間に位相差が生じる複屈折素子であり、位相差が90度になるものとなっている。
The condensing device 70 also collimates the emitted light beam emitted from the VCSEL 61 into a parallel light beam, and a diaphragm 72 as a light beam regulating member that shapes the cross-sectional shape of the parallel light beam by the collimator lens 71. The quarter-wave plate 73 through which the shaped light beam is transmitted, the half mirror 74 that branches the light beam that has passed through the quarter-wave plate into the transmitted light beam and the reflected light beam, and the light beam that has passed through the half mirror 74 along the sub-scanning direction And a cylindrical lens 75 that collects light.
Further, the diaphragm 72 is disposed at the image-side focal position of the collimator lens 71, and a plurality of emission beams emitted from the VCSEL 61 intersect at the position of an opening (aperture) 72 a provided in the diaphragm 72. . For this reason, a plurality of emitted light beams can be equivalently shaped by one aperture 72a. Since the aperture width of the aperture 72a depends on the lateral magnification of the optical system and the spot size of the photosensitive drum 20, the shape of the aperture 72a is determined so that a desired optical system lateral magnification and spot size are selected. Yes.
Furthermore, the quarter-wave plate 73 is a birefringent element in which a phase difference occurs between the p component and the s component in the polarization direction when the light beam shaped by the aperture 72a is transmitted, and the phase difference is 90 degrees. Has become.

ここで、集光装置70を中心にしたレイアウトについて、図4を用いて詳細に説明する。
1/4波長板(λ/4板)73は、その軸がハーフミラー74の反射面(ハーフミラー74への入射光と反射光とがなす面)に対して、+45度あるいは−45度傾斜されて設けられている。また、ハーフミラー74の反射面は、ポリゴンミラー80の反射面と平行になるように配置されている。尚、本実施の形態では、ハーフミラー74の反射面とポリゴンミラー80の反射面とが平行になるように配置されているが、垂直になるように配置される構成であっても差し支えない。
Here, the layout centering on the condensing device 70 is demonstrated in detail using FIG.
The quarter wavelength plate (λ / 4 plate) 73 has an axis tilted by +45 degrees or −45 degrees with respect to the reflecting surface of the half mirror 74 (the surface formed by the incident light and the reflected light on the half mirror 74). Has been provided. Further, the reflecting surface of the half mirror 74 is arranged to be parallel to the reflecting surface of the polygon mirror 80. In the present embodiment, the reflecting surface of the half mirror 74 and the reflecting surface of the polygon mirror 80 are arranged so as to be parallel to each other.

そして、本実施の形態では、ハーフミラー74によって反射された光束によってVCSEL61の出射強度を補正するため、ハーフミラー74による反射光束を受光する受光素子62と、この受光素子62からの信号に基づいてVCSEL61を制御する制御装置63が設けられている。これによって、受光素子62へ入射された光束によって光電変換された出力信号が制御装置63に入力され、VCSEL61の駆動電流を制御することで、VCSEL61が所定の出力となるように制御される。そのため、所謂APC制御(Automatic Power Control)が行われている。
尚、アパーチャ72aの位置で交差した複数の光束は、その後徐々に離れていくため、ハーフミラー74によって反射されて受光素子62に入射される光束は拡がる傾向になり、受光素子62の受光面は入射される光束より広い方が好ましい。また、ハーフミラー74と受光素子62との間に別途集光レンズを設けるようにすれば、受光面の面積を小さくすることも可能になる。
In this embodiment, since the emission intensity of the VCSEL 61 is corrected by the light beam reflected by the half mirror 74, the light receiving element 62 that receives the reflected light beam by the half mirror 74 and the signal from the light receiving element 62 are used. A control device 63 for controlling the VCSEL 61 is provided. Accordingly, an output signal photoelectrically converted by the light beam incident on the light receiving element 62 is input to the control device 63, and the VCSEL 61 is controlled to have a predetermined output by controlling the drive current of the VCSEL 61. Therefore, so-called APC control (Automatic Power Control) is performed.
Since the plurality of light beams intersecting at the position of the aperture 72a are gradually separated thereafter, the light beam reflected by the half mirror 74 and incident on the light receiving element 62 tends to spread, and the light receiving surface of the light receiving element 62 is The one wider than the incident light beam is preferable. Further, if a condensing lens is separately provided between the half mirror 74 and the light receiving element 62, the area of the light receiving surface can be reduced.

また、本実施の形態では、図3に示すように、ポリゴンミラー80は、側面に複数の反射境界面が設けられた正多角形状(本例では正六角形)となっており、図示外のポリゴンモータに軸着されており、ポリゴンモータの駆動力によって図中矢印R方向に所定の回転速度で回転するようになっている。そのため、ポリゴンミラー80に入射された光束は、その回転に伴って結像光学装置90内を主走査方向、すなわち、感光体ドラム20をその軸線方向に沿って偏向走査するようになる。   In the present embodiment, as shown in FIG. 3, the polygon mirror 80 has a regular polygonal shape (in this example, a regular hexagon) having a plurality of reflection boundary surfaces on its side surface. A shaft is attached to the motor, and is rotated at a predetermined rotational speed in the direction of arrow R in the figure by the driving force of the polygon motor. Therefore, the light beam incident on the polygon mirror 80 deflects and scans the imaging optical device 90 along the main scanning direction, that is, the photosensitive drum 20 along the axial direction in accordance with the rotation.

一方、結像光学装置90は、ポリゴンミラー80によって偏向走査された光束を感光体ドラム20表面での走査速度を一定にするための結像レンズ系として、例えばシリンドリカルレンズ91、トーリックレンズ92、結像レンズ93を有している。尚、本実施の形態では、結像レンズ系としてこのような構成を示したが、これに限定されず、感光体ドラム20表面での走査速度が一定になる結像レンズ系であれば他の構成によっても差し支えない。
また、本実施の形態における結像光学装置90では、結像レンズ系を透過した光束が2つの反射鏡、すなわち、放物面を備えたシリンドリカルミラー94と、平面鏡の折り返しミラー95を経由して、感光体ドラム20表面にスポット像として結像され、画像情報に応じた静電潜像が感光体ドラム20上に形成されるようになっている。
更に、結像光学装置90には、結像レンズ系を透過した光束の一部(ポリゴンミラー80の各反射境界面によって走査開始位置に相当する光束)を反射するミラー96と、このミラー96からの反射光を検知するフォトディテクタ等からなるSOS(Start of Scan)受光部97が設けられている。そのため、このSOS受光部97によって感光体ドラム20へのライン毎(主走査方向)の走査開始タイミングが検知されるようになっている。尚、SOS受光部97はポリゴンミラー80によって偏向走査される光束の領域外に設けられていることは云うまでもない。
On the other hand, the imaging optical device 90 has, for example, a cylindrical lens 91, a toric lens 92, a coupling lens as an imaging lens system for keeping the scanning speed of the light beam deflected and scanned by the polygon mirror 80 on the surface of the photosensitive drum 20 constant. An image lens 93 is included. In the present embodiment, such a configuration is shown as the imaging lens system. However, the present invention is not limited to this, and any other imaging lens system may be used as long as the scanning speed on the surface of the photosensitive drum 20 is constant. There is no problem depending on the configuration.
In the imaging optical device 90 according to the present embodiment, the light beam transmitted through the imaging lens system passes through two reflecting mirrors, that is, a cylindrical mirror 94 having a paraboloid and a folding mirror 95 of a plane mirror. The image is formed as a spot image on the surface of the photosensitive drum 20, and an electrostatic latent image corresponding to the image information is formed on the photosensitive drum 20.
Further, the imaging optical device 90 includes a mirror 96 that reflects a part of the light beam that has passed through the imaging lens system (the light beam corresponding to the scanning start position by each reflection boundary surface of the polygon mirror 80). An SOS (Start of Scan) light receiving unit 97 including a photodetector or the like that detects the reflected light is provided. For this reason, the SOS light receiving unit 97 detects the scanning start timing for each line (main scanning direction) to the photosensitive drum 20. Needless to say, the SOS light receiving unit 97 is provided outside the region of the light beam deflected and scanned by the polygon mirror 80.

また、本実施の形態では、シリンドリカルミラー94と折り返しミラー95は、夫々の主走査方向中央部での反射面が集光装置70のハーフミラー74の反射面と直交するように設けられている。更に、これらの反射鏡表面には、屈折率の異なる層を4層以上積層した反射防止層を設け、反射される光束のp成分とs成分との差が2%以下になるようになっている。そのため、ハーフミラー74の反射面と平行な反射面を有するポリゴンミラー80による偏向方向に依存した反射が、シリンドリカルミラー94や折り返しミラー95で可能であり、また、VCSEL61での駆動電流や発光ビーム間のばらつきによる反射率変動を最小限に抑えることができるようになる。
尚、シリンドリカルミラー94や折り返しミラー95の反射面を上述した面と直交するように配置しても差し支えない。
In the present embodiment, the cylindrical mirror 94 and the folding mirror 95 are provided so that the reflection surface at the center in the main scanning direction is orthogonal to the reflection surface of the half mirror 74 of the light collector 70. Furthermore, an antireflection layer in which four or more layers having different refractive indexes are laminated is provided on the surfaces of these reflecting mirrors so that the difference between the p component and the s component of the reflected light beam is 2% or less. Yes. Therefore, reflection depending on the deflection direction by the polygon mirror 80 having a reflection surface parallel to the reflection surface of the half mirror 74 can be performed by the cylindrical mirror 94 and the folding mirror 95, and the drive current in the VCSEL 61 and the interval between the emission beams. Thus, it is possible to minimize the reflectance variation due to the variation of the.
The reflective surfaces of the cylindrical mirror 94 and the folding mirror 95 may be arranged so as to be orthogonal to the above-described surface.

ここで、反射防止層について詳述する。本実施の形態の反射防止層としては、高屈折率の膜(例えばZnSe:n=2.55、ZnTe:n=2.92、ZnS:n=2.37、TiO:n=2.45等)と低屈折率の膜(例えばMgF:n=1.39、NaF:n=1.32、LiF:n=1.39等)を交互に積層した多層膜コーティングを施すことで、反射率のp/s差を軽減することができるようになっている。
このとき、各層の厚みは、λ/4相当で、基板側から順に、低屈折率層、高屈折率層、空気層となるように必要な層を積層する。ただし、基板が誘電体ではなく、金属鏡のように金属面(例えばAl等)に接する最下層の厚みは、λ/4に対して10%程度薄くする必要がある。
Here, the antireflection layer will be described in detail. As the antireflection layer of this embodiment, a film having a high refractive index (for example, ZnSe: n = 2.55, ZnTe: n = 2.92, ZnS: n = 2.37, TiO 2 : n = 2.45). Etc.) and a film having a low refractive index (for example, MgF 2 : n = 1.39, NaF: n = 1.32, LiF: n = 1.39, etc.) are applied to form a multilayer coating. The p / s difference in rate can be reduced.
At this time, the thickness of each layer is equivalent to λ / 4, and necessary layers are laminated in order from the substrate side so as to become a low refractive index layer, a high refractive index layer, and an air layer. However, the thickness of the lowermost layer in contact with the metal surface (for example, Al or the like) such as a metal mirror is not a dielectric, and it is necessary to make the thickness about 10% thinner than λ / 4.

次に、本実施の形態に係る画像形成装置の作動について、光走査装置60を中心に説明する。図3において、VCSEL61から出射された複数の発光ビームは、コリメータレンズ71によって平行光の光束になり、絞り72のアパーチャ72aによって平行光束の一部は遮蔽され、整形された光束のみが絞り72を透過する。
整形された光束はλ/4板73を透過する。このとき、VCSEL61から出射された複数の発光ビームの偏光方向(p成分とs成分の比率)は駆動電流や発光ビーム間のばらつきによって変化するが、λ/4板73は、その遅相軸が後続のハーフミラー74の反射面に対し+45度あるいは−45度傾けて設けられていることから、λ/4板73への入射光がいずれの状態であっても、λ/4板73を透過した光束は次の3種に絞り込むことができる。
すなわち、円偏光、ハーフミラー74の反射面に対し+45度又は−45度傾いた楕円偏光、ハーフミラー74の反射面に対し+45度又は−45度傾いた直線偏光となる。
そのため、ハーフミラー74での反射率(ハーフミラー74を透過する透過率も等しくなる)が等しくなり、VCSEL61の駆動電流による変化(すなわち、偏光方向依存性)や発光ビーム間でのばらつきをなくすことができるようになる。
Next, the operation of the image forming apparatus according to the present embodiment will be described focusing on the optical scanning device 60. In FIG. 3, a plurality of light-emitting beams emitted from the VCSEL 61 become parallel light beams by the collimator lens 71, a part of the parallel light beams are shielded by the aperture 72 a of the diaphragm 72, and only the shaped light beam passes through the diaphragm 72. To Penetrate.
The shaped light beam passes through the λ / 4 plate 73. At this time, the polarization directions (ratio between the p component and the s component) of the plurality of emitted beams emitted from the VCSEL 61 vary depending on the drive current and the variation between the emitted beams, but the λ / 4 plate 73 has a slow axis. Since it is provided with an inclination of +45 degrees or −45 degrees with respect to the reflection surface of the subsequent half mirror 74, the incident light on the λ / 4 plate 73 is transmitted through the λ / 4 plate 73 in any state. The luminous flux can be narrowed down to the following three types.
That is, circularly polarized light, elliptically polarized light inclined +45 degrees or −45 degrees with respect to the reflecting surface of the half mirror 74, and linearly polarized light inclined +45 degrees or −45 degrees with respect to the reflecting surface of the half mirror 74.
Therefore, the reflectance at the half mirror 74 (the transmittance through the half mirror 74 is also equal) is equal, and changes due to the drive current of the VCSEL 61 (that is, polarization direction dependence) and variations among the emitted beams are eliminated. Will be able to.

ここで、本実施の形態におけるλ/4板の作用について詳述する。図5は、λ/4板を単色光の電場内にセットしたときの様子を示したもので、光線の中心線を基点として、夫々の位置での電場ベクトルを描き、そのベクトルの先端を結んだ曲線が示されている。
同図において、λ/4板は、その遅相軸が45度傾斜するように設置されているため、入射光線として45度傾いた直線偏光(図に示す)がλ/4板を透過すると、そのまま45度傾いた直線偏光となる。また、λ/4板の入射光線として、垂直偏光(y軸方向)であれば、透過光は円偏光になる。更に、入射光線がこれらと異なる角度の直線偏光であれば、透過光は楕円偏光になる。
Here, the operation of the λ / 4 plate in the present embodiment will be described in detail. FIG. 5 shows the state when the λ / 4 plate is set in the electric field of monochromatic light. The electric field vector at each position is drawn with the center line of the light beam as the base point, and the tips of the vectors are connected. The curve is shown.
In the same figure, the λ / 4 plate is installed so that its slow axis is inclined by 45 degrees. Therefore, when linearly polarized light (shown in the figure) inclined by 45 degrees as incident light passes through the λ / 4 plate, The linearly polarized light is tilted 45 degrees as it is. Further, if the incident light of the λ / 4 plate is vertically polarized light (y-axis direction), the transmitted light is circularly polarized light. Further, if the incident light is linearly polarized light at an angle different from these, the transmitted light becomes elliptically polarized light.

次に、直線偏光に位相板(波長板)を挿入する効果について検証する。
今、x軸からΩ傾いた偏波面を持った直線偏光
Ex = A cosΩ cos 2πνt、 Ey = A sinΩ cos 2πνt (1)
の座標軸を、位相板の遅相軸がx軸となす角ωだけ回転すると、新しい軸について、
Ex’=Ex cosω+Ey sinω
=A cos 2πνt ( cosΩ cosω+sinΩ sinω)=A cos2πνt cos(Ω−ω)
Ey’=−Ex sinω+Ey cosω
=A cos 2πνt (−cosΩ sinω+sinΩ cosω)=A cos2πνt sin(Ω−ω) (2)
と書くことができる。
(2)が位相板を通過すると、位相板による位相の差(δ)のために、次のように変化する。
Ex’=A cos 2πνt cos(Ω−ω)
Ey’=A cos(2πνt+δ) sin(Ω−ω) (3)
(3)を元の軸について書き直すために−ω回転すると、
Ex = Ex’ cosω−Ey’ sinω
= A { cos 2πνt cos(Ω−ω) cosω−cos (2πνt+δ) sin(Ω−ω) sinω}
= A { cos 2πνt cos(Ω−ω) cosω−cos 2πνt cosδsin(Ω−ω) sinω
+ sin 2πνt sinδsin(Ω−ω) sinω}
= A [ cos 2πνt { cos(Ω−ω) cosω−cosδsin(Ω−ω) sinω}
+ sin 2πνt sinδsin(Ω−ω) sinω]
Ey = Ex’ sinω+Ey’ cosω
= A { cos 2πνt cos(Ω−ω) sinω+cos(2πνt+δ) sin(Ω−ω) cosω}
= A { cos 2πνt cos(Ω−ω) sinω+cos 2πνt cosδsin(Ω−ω) cosω
−sin 2πνt sinδsin(Ω−ω) cosω}
= A [ cos 2πνt { cos(Ω−ω) sinω+ cosδsin(Ω−ω) cosω}
−sin 2πνt sinδsin(Ω−ω) cosω] (4)
となる。
(4)は楕円偏光であるから、
Ex = Ap cos(2πνt+δp) = Ap (cos2πνt cosδp−sin2πνt sinδp)
Ey = As cos(2πνt+δs) = As (cos2πνt cosδs−sin2πνt sinδs) (5)
と書くことができるが、
Ex = P cos 2πνt + Q sin 2πνt
Ey = S cos 2πνt + T sin 2πνt (6)
とおき (5) と比較すると、
P = Ap cosδp、Q = −Ap sinδp、S = As cosδs、T = −As sinδs (7)
(4) と比較すると、
P = A{ cos(Ω−ω) cosω−cosδsin(Ω−ω) sinω}
Q = A sinδsin(Ω−ω) sinω
S = A { cos(Ω−ω) sinω+cosδsin(Ω−ω) cosω}
T = −A sinδsin(Ω−ω) cosω (8)
(7) より、
Ap2= P2 + Q2、As2 = S2 + T2、tanδp = − Q / P、tanδs = − T / S (9)
であるが、(8)を代入すると、
Ap2 = A2[{cos (Ω−ω) cosω−cosδsin(Ω−ω) sinω}2
+sin2δsin2(Ω−ω) sin2ω]
= A2{cos2 (Ω−ω) cos2ω−2cosδsin(Ω−ω) cos(Ω−ω) sinω cosω
+cos2δsin2(Ω−ω) sin2ω+sin2δsin2(Ω−ω) sin2ω}
= A2{cos2 (Ω−ω) cos2ω+sin2(Ω−ω) sin2ω
−2cosδsin(Ω−ω) cos(Ω−ω) sinω cosω}
As2 = A2[{cos (Ω−ω) sinω+cosδsin(Ω−ω) cosω}2
+sin2δsin2(Ω−ω) cos2ω]
= A2[{cos2 (Ω−ω) sin2ω+2cosδsin(Ω−ω) cos(Ω−ω) sinω cosω
+cos2δsin2(Ω−ω) cos2ω+sin2δsin2(Ω−ω) cos2ω]
= A2[{ cos2 (Ω−ω) sin2ω+sin2(Ω−ω) cos2ω
+2cosδsin(Ω−ω) cos(Ω−ω) sinω cosω] (10)
となる。この和(光の強度)は、
Ap2 + As2 = A2 (11)
となり、Ωとωによって偏光度が変わるが、エネルギーの損失はないので、光の強度(Ap2 + As2 )は一定である。
Next, the effect of inserting a phase plate (wavelength plate) into linearly polarized light will be verified.
Now, linearly polarized light with a polarization plane tilted Ω from the x-axis
Ex = A cosΩ cos 2πνt, Ey = A sinΩ cos 2πνt (1)
Is rotated by an angle ω between the slow axis of the phase plate and the x axis,
Ex '= Ex cosω + Ey sinω
= A cos 2πνt (cosΩ cosω + sinΩ sinω) = A cos2πνt cos (Ω−ω)
Ey '= − Ex sinω + Ey cosω
= A cos 2πνt (−cosΩ sinω + sinΩ cosω) = A cos2πνt sin (Ω−ω) (2)
Can be written.
When (2) passes through the phase plate, it changes as follows due to the phase difference (δ) due to the phase plate.
Ex '= A cos 2πνt cos (Ω−ω)
Ey '= A cos (2πνt + δ) sin (Ω−ω) (3)
If you rotate -ω to rewrite (3) about the original axis,
Ex = Ex 'cosω−Ey' sinω
= A {cos 2πνt cos (Ω−ω) cosω−cos (2πνt + δ) sin (Ω−ω) sinω}
= A {cos 2πνt cos (Ω−ω) cosω−cos 2πνt cosδsin (Ω−ω) sinω
+ Sin 2πνt sinδsin (Ω−ω) sinω}
= A [cos 2πνt {cos (Ω−ω) cosω−cosδsin (Ω−ω) sinω}
+ Sin 2πνt sinδsin (Ω−ω) sinω]
Ey = Ex 'sinω + Ey' cosω
= A {cos 2πνt cos (Ω−ω) sinω + cos (2πνt + δ) sin (Ω−ω) cosω}
= A {cos 2πνt cos (Ω−ω) sinω + cos 2πνt cosδsin (Ω−ω) cosω
−sin 2πνt sinδsin (Ω−ω) cosω}
= A [cos 2πνt {cos (Ω−ω) sinω + cosδsin (Ω−ω) cosω}
−sin 2πνt sinδsin (Ω−ω) cosω] (4)
It becomes.
(4) is elliptically polarized,
Ex = Ap cos (2πνt + δp) = Ap (cos2πνt cosδp−sin2πνt sinδp)
Ey = As cos (2πνt + δs) = As (cos2πνt cosδs−sin2πνt sinδs) (5)
Can be written,
Ex = P cos 2πνt + Q sin 2πνt
Ey = S cos 2πνt + T sin 2πνt (6)
Compared with Toki (5)
P = Ap cosδp, Q = -Ap sinδp, S = As cosδs, T = -As sinδs (7)
Compared to (4)
P = A {cos (Ω−ω) cosω−cosδsin (Ω−ω) sinω}
Q = A sinδsin (Ω−ω) sinω
S = A {cos (Ω−ω) sinω + cosδsin (Ω−ω) cosω}
T = −A sinδsin (Ω−ω) cosω (8)
(7)
Ap 2 = P 2 + Q 2 , As 2 = S 2 + T 2 , tanδp = − Q / P, tanδs = − T / S (9)
However, if (8) is substituted,
Ap 2 = A 2 [{cos (Ω-ω) cosω-cosδsin (Ω-ω) sinω} 2
+ Sin 2 δsin 2 (Ω−ω) sin 2 ω]
= A 2 (cos 2 (Ω−ω) cos 2 ω−2cosδsin (Ω−ω) cos (Ω−ω) sinω cosω
+ Cos 2 δsin 2 (Ω−ω) sin 2 ω + sin 2 δsin 2 (Ω−ω) sin 2 ω}
= A 2 (cos 2 (Ω−ω) cos 2 ω + sin 2 (Ω−ω) sin 2 ω
−2cosδsin (Ω−ω) cos (Ω−ω) sinω cosω}
As 2 = A 2 [{cos (Ω−ω) sinω + cosδsin (Ω−ω) cosω} 2
+ Sin 2 δsin 2 (Ω−ω) cos 2 ω]
= A 2 [{cos 2 (Ω−ω) sin 2 ω + 2cosδsin (Ω−ω) cos (Ω−ω) sinω cosω
+ Cos 2 δsin 2 (Ω- ω) cos 2 ω + sin 2 δsin 2 (Ω-ω) cos 2 ω]
= A 2 [{cos 2 (Ω−ω) sin 2 ω + sin 2 (Ω−ω) cos 2 ω
+ 2cosδsin (Ω−ω) cos (Ω−ω) sinω cosω] (10)
It becomes. This sum (light intensity)
Ap 2 + As 2 = A 2 (11)
Next, although the degree of polarization by Ω and ω are changed, since the loss of energy is not the light intensity (Ap 2 + As 2) it is constant.

したがって、λ/4板をλ/4だけ傾けて挿入した場合、(10)式にω=π/4、δ=π/2を代入すればよいので、
Ap2 = A2{ cos2(Ω−π/4) cos2π/4+sin2(Ω−π/4) sin2π/4
−2cosπ/2sin(Ω−π/4) cos(Ω−π/4) sinπ/4 cosπ/4}
= A2/√2
また、同様に、
As2 = A2/√2
となる。
よって、入射光の偏光方向Ωによらず、
Ap2 = As2
が成り立つようになる。
Therefore, when the λ / 4 plate is inserted with an inclination of λ / 4, ω = π / 4 and δ = π / 2 may be substituted into the equation (10).
Ap 2 = A 2 {cos 2 (Ω−π / 4) cos 2 π / 4 + sin 2 (Ω−π / 4) sin 2 π / 4
−2cosπ / 2sin (Ω−π / 4) cos (Ω−π / 4) sinπ / 4 cosπ / 4}
= A 2 / √2
Similarly,
As 2 = A 2 / √2
It becomes.
Therefore, regardless of the polarization direction Ω of incident light,
Ap 2 = As 2
Comes to hold.

すなわち、入射光線の直線偏光がいずれの角度であっても、λ/4板を透過した透過光のp成分とs成分の強度は等しくなることから、p成分とs成分の反射率も等しくなる。   That is, regardless of the angle of the linearly polarized light of the incident light, the intensities of the p component and the s component of the transmitted light transmitted through the λ / 4 plate are equal, so that the reflectances of the p component and s component are also equal. .

以上のように、1/4波長板(λ/4板)73をハーフミラー74の反射面に対し±45度傾けて設置することで、入射光線によらず、λ/4板73を透過した光線の反射率が等しくなることから、λ/4板73に入射される光束の偏光方向によるハーフミラー74での反射率と透過率の変動をキャンセルすることができ、VCSEL61での駆動電流による変化(偏光方向依存)や発光ビーム間のばらつきをなくすことができるようになる。そのため、ハーフトーン露光像の露光量変動を低減できるようになる。
仮に、λ/4板73を45度以外で配置するようにすると、VCSEL61によって出射された発光ビームの偏光方向のずれによって、ハーフミラー74での反射率と透過率が変動し、特に、ハーフトーン画像での露光量に変動を来すようにもなり、画質の劣化が発生するようになる。
As described above, the quarter-wave plate (λ / 4 plate) 73 is installed with an inclination of ± 45 degrees with respect to the reflecting surface of the half mirror 74, so that the λ / 4 plate 73 is transmitted regardless of the incident light beam. Since the reflectance of the light beam becomes equal, fluctuations in reflectance and transmittance at the half mirror 74 due to the polarization direction of the light beam incident on the λ / 4 plate 73 can be canceled, and changes due to the drive current in the VCSEL 61 (Depending on the polarization direction) and variations between emitted light beams can be eliminated. Therefore, it is possible to reduce the exposure amount fluctuation of the halftone exposure image.
If the λ / 4 plate 73 is arranged at a position other than 45 degrees, the reflectance and transmittance at the half mirror 74 vary due to the deviation of the polarization direction of the emitted beam emitted from the VCSEL 61, and in particular, the halftone The exposure amount in the image also varies, and the image quality deteriorates.

本実施の形態では、結像光学装置90内に、シリンドリカルミラー94と折り返しミラー95とを備える構成を示したが、反射鏡の構成としてはこれに限定されるものではなく、例えば折り返しミラーを2枚備えるようにしてもよい。
また、本実施の形態の画像形成装置は、4サイクル方式の画像形成装置を示したが、例えば感光体ドラム20を並列に4個備えた所謂タンデム方式の画像形成装置にも適用できることは云うまでもない。
In the present embodiment, a configuration in which the cylindrical mirror 94 and the folding mirror 95 are provided in the imaging optical device 90 is shown. However, the configuration of the reflecting mirror is not limited to this. You may make it prepare a sheet.
The image forming apparatus according to the present embodiment is a four-cycle image forming apparatus. However, for example, the image forming apparatus can be applied to a so-called tandem image forming apparatus including four photosensitive drums 20 in parallel. Nor.

本発明に係る光走査装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the optical scanning device based on this invention. 本発明が適用された実施の形態に係る画像形成装置を示す説明図である。1 is an explanatory diagram illustrating an image forming apparatus according to an embodiment to which the present invention is applied. 実施の形態の光走査装置の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the optical scanning device of embodiment. 実施の形態の光走査装置の集光装置を示す平面図である。It is a top view which shows the condensing device of the optical scanning device of embodiment. 1/4波長板の作用の一例を示す説明図である。It is explanatory drawing which shows an example of an effect | action of a quarter wavelength plate. 従来のビームスプリッタを用いた例を示す説明図である。It is explanatory drawing which shows the example using the conventional beam splitter. 従来の偏光ビームスプリッタを用いた例を示す説明図である。It is explanatory drawing which shows the example using the conventional polarizing beam splitter.

符号の説明Explanation of symbols

1…光源,2…光束集光手段,2a…平行光束変換部材,2b…光束規制部材,2c…1/4波長板,2d…光束分岐部材,3…光束偏向手段,4…結像光学手段,5…結像面,6…光強度補正手段   DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Light beam condensing means, 2a ... Parallel light beam conversion member, 2b ... Light beam control member, 2c ... 1/4 wavelength plate, 2d ... Light beam branching member, 3 ... Light beam deflection means, 4 ... Imaging optical means 5 ... imaging plane, 6 ... light intensity correction means

Claims (10)

夫々の偏光方向成分の比率p/(p+s)が異なり且つ駆動電流による偏光成分の比率が変動する複数の光束を出射する光源と、
光源から出射された複数の光束を集光する光束集光手段と、
集光された光束を偏向走査する光束偏向手段と、
偏向走査された光束を結像面に結像させる結像光学手段とを備え、
光束集光手段は、光源から出射された光束を略平行な光束にする平行光束変換部材と、
平行光束変換部材からの平行光束を透過光束及び反射光束に分岐すると共にその反射面が前記光束偏向手段の反射面と略平行又は略直交するように配設された光束分岐部材と、
平行光束変換部材と光束分岐部材との間に設けられ且つ光束分岐部材での反射率が光束の偏光方向成分の比率が変動しても一定となるように配設される1/4波長板とを具備することを特徴とする光走査装置。
A light source that emits a plurality of light fluxes each having a different ratio p / (p + s) of polarization direction components and a change in the ratio of polarization components due to a drive current;
Luminous flux condensing means for collecting a plurality of luminous fluxes emitted from the light source;
Luminous flux deflecting means for deflecting and scanning the condensed luminous flux;
Imaging optical means for imaging the deflected and scanned light beam on the imaging surface;
The light beam condensing means includes a parallel light beam conversion member that converts the light beam emitted from the light source into a substantially parallel light beam,
A light beam branching member that branches the parallel light beam from the parallel light beam conversion member into a transmitted light beam and a reflected light beam, and whose reflection surface is substantially parallel or substantially orthogonal to the reflection surface of the light beam deflecting means;
A quarter-wave plate provided between the parallel light beam conversion member and the light beam branching member, and disposed so that the reflectance at the light beam branching member is constant even if the ratio of the polarization direction component of the light beam varies. An optical scanning device comprising:
請求項1記載の光走査装置において、
前記1/4波長板は、光学軸が光束分岐部材の反射面に対し+45度又は−45度傾けて配設されることを特徴とする光走査装置。
The optical scanning device according to claim 1,
The optical scanning device according to claim 1, wherein the quarter-wave plate is disposed with an optical axis inclined at +45 degrees or -45 degrees with respect to the reflecting surface of the light beam branching member.
請求項1記載の光走査装置において、
更に、光束分岐部材による透過光束又は反射光束のいずれかの光束の強度に基づいて光源の出射強度を補正する光強度補正手段を備えることを特徴とする光走査装置。
The optical scanning device according to claim 1,
An optical scanning device further comprising: a light intensity correction unit that corrects the emission intensity of the light source based on the intensity of either the transmitted light beam or the reflected light beam by the light beam branching member.
請求項1記載の光走査装置において、
光束集光手段は、平行光束変換部材と光束偏向手段との間に平行光束を形状規制する光束規制部材を備えることを特徴とする光走査装置。
The optical scanning device according to claim 1,
The light beam condensing unit includes a light beam regulating member for regulating the shape of the parallel light beam between the parallel light beam converting member and the light beam deflecting unit.
請求項1記載の光走査装置において、
結像光学手段は反射鏡を有し、この反射鏡の主走査方向中央部にて反射される光束の当該反射鏡における反射面が光束分岐部材の反射面と略直交又は略平行するように配置されていることを特徴とする光走査装置。
The optical scanning device according to claim 1,
The imaging optical means has a reflecting mirror, and is arranged so that the reflecting surface of the light beam reflected at the central portion in the main scanning direction of the reflecting mirror is substantially orthogonal or substantially parallel to the reflecting surface of the light beam branching member. An optical scanning device characterized by that.
請求項5記載の光走査装置において、
前記反射鏡は、反射される光束の偏光方向のp成分とs成分との差が共に互いの2%以下になるように当該反射鏡表面に反射防止層を備えていることを特徴とする光走査装置。
The optical scanning device according to claim 5.
The reflection mirror is provided with an antireflection layer on the surface of the reflection mirror so that the difference between the p component and the s component in the polarization direction of the reflected light beam is 2% or less of each other. Scanning device.
請求項6記載の光走査装置において、
前記反射防止層は、互いに屈折率の異なる複数の薄膜層を積層した積層膜であることを特徴とする光走査装置。
The optical scanning device according to claim 6.
2. The optical scanning device according to claim 1, wherein the antireflection layer is a laminated film in which a plurality of thin film layers having different refractive indexes are laminated.
請求項7記載の光走査装置において、
前記積層膜は、4層以上の薄膜層にて構成されていることを特徴とする光走査装置。
The optical scanning device according to claim 7.
2. The optical scanning device according to claim 1, wherein the laminated film is composed of four or more thin film layers.
請求項1記載の光走査装置において、
複数の光束を出射する光源は、1つの面発光レーザであることを特徴とする光走査装置。
The optical scanning device according to claim 1,
An optical scanning device characterized in that a light source for emitting a plurality of light beams is one surface emitting laser.
静電潜像が担持される像担持体と、
この像担持体上に結像可能な請求項1乃至9のいずれかに記載の光走査装置とを備えることを特徴とする画像形成装置。
An image carrier on which an electrostatic latent image is carried;
An image forming apparatus comprising: the optical scanning device according to claim 1, which is capable of forming an image on the image carrier.
JP2005370864A 2005-12-22 2005-12-22 Optical scanning device and image forming apparatus using the same Expired - Fee Related JP4853015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370864A JP4853015B2 (en) 2005-12-22 2005-12-22 Optical scanning device and image forming apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370864A JP4853015B2 (en) 2005-12-22 2005-12-22 Optical scanning device and image forming apparatus using the same

Publications (2)

Publication Number Publication Date
JP2007171689A true JP2007171689A (en) 2007-07-05
JP4853015B2 JP4853015B2 (en) 2012-01-11

Family

ID=38298314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370864A Expired - Fee Related JP4853015B2 (en) 2005-12-22 2005-12-22 Optical scanning device and image forming apparatus using the same

Country Status (1)

Country Link
JP (1) JP4853015B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133529A (en) * 2007-11-29 2009-06-18 Hitachi Kokusai Electric Inc Laser beam irradiating device
JP2009294327A (en) * 2008-06-03 2009-12-17 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2014063172A (en) * 2013-10-22 2014-04-10 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2015125210A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Scanning optical device and image forming apparatus including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235693A (en) * 2000-02-25 2001-08-31 Hitachi Koki Co Ltd Optical recorder and its controlling method
JP2002040350A (en) * 2000-07-28 2002-02-06 Fuji Xerox Co Ltd Optical scanner
JP2002182143A (en) * 2000-12-13 2002-06-26 Canon Inc Optical scanner, multibeam scanner and image forming device
JP2005250319A (en) * 2004-03-08 2005-09-15 Ricoh Co Ltd Light source apparatus, optical scanner, image forming apparatus and color image forming apparatus
JP2005266492A (en) * 2004-03-19 2005-09-29 Ricoh Co Ltd Light source device, optical scanner, image forming apparatus, system, method of positioning optical scanner, and method of manufacturing optical scanner
JP2005315997A (en) * 2004-04-27 2005-11-10 Fuji Xerox Co Ltd Optical scanner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235693A (en) * 2000-02-25 2001-08-31 Hitachi Koki Co Ltd Optical recorder and its controlling method
JP2002040350A (en) * 2000-07-28 2002-02-06 Fuji Xerox Co Ltd Optical scanner
JP2002182143A (en) * 2000-12-13 2002-06-26 Canon Inc Optical scanner, multibeam scanner and image forming device
JP2005250319A (en) * 2004-03-08 2005-09-15 Ricoh Co Ltd Light source apparatus, optical scanner, image forming apparatus and color image forming apparatus
JP2005266492A (en) * 2004-03-19 2005-09-29 Ricoh Co Ltd Light source device, optical scanner, image forming apparatus, system, method of positioning optical scanner, and method of manufacturing optical scanner
JP2005315997A (en) * 2004-04-27 2005-11-10 Fuji Xerox Co Ltd Optical scanner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133529A (en) * 2007-11-29 2009-06-18 Hitachi Kokusai Electric Inc Laser beam irradiating device
JP2009294327A (en) * 2008-06-03 2009-12-17 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2014063172A (en) * 2013-10-22 2014-04-10 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2015125210A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Scanning optical device and image forming apparatus including the same

Also Published As

Publication number Publication date
JP4853015B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5078820B2 (en) Optical scanning apparatus and image forming apparatus
US7450274B2 (en) Optical scanning apparatus, image forming apparatus, and beam positioning method
US8929412B2 (en) Optical scanning device and image forming apparatus
JP5034053B2 (en) Optical scanning apparatus and image forming apparatus
TW580448B (en) Color laser printer
JP5278253B2 (en) Optical scanning apparatus and image forming apparatus
US7755809B2 (en) Laser scanning optical system and image forming apparatus
JP2008076675A (en) Optical scanner, image forming apparatus and color image forming apparatus
KR20060052301A (en) Optical scanning apparatus and method for adjusting the same
JP2007093774A (en) Optical scanner and image forming apparatus using the same
JP2012003045A (en) Optical scanning device and image forming apparatus
JP2007025165A (en) Optical scanner and image forming apparatus
JP5505617B2 (en) Optical scanning apparatus and image forming apparatus
JP4853015B2 (en) Optical scanning device and image forming apparatus using the same
JP2005266775A (en) Optical scanner
US6963433B2 (en) Multibeam scanning optical device and image forming apparatus using the same
JP4566398B2 (en) Optical scanning device, multi-beam scanning device, and image forming apparatus
US8767029B2 (en) Light source device, optical scanning device, and image forming apparatus
JP2010191292A (en) Optical scanner and image forming apparatus
JP5440442B2 (en) Optical scanning apparatus and image forming apparatus
JP4594040B2 (en) Optical scanning device and image forming apparatus using the same
JP2007241240A (en) Optical scanner and image forming apparatus
JP2007140263A (en) Multi-beam scanning optical device and image forming apparatus using same
JP5059453B2 (en) Optical scanning apparatus and image forming apparatus
JP2009058779A (en) Light source device, optical scanner, and image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees